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18 Dirichlet L-functions, primes in arithmetic progressions

Having proved the prime number theorem, we would like to prove an analogous result for
primes in arithmetic progressions. We begin with Dirichlet’s theorem on primes in arithmetic
progressions, a result that predates the prime number theorem by sixty years.

Theorem 18.1 (Dirichlet 1837). For all coprime integers a and m there are infinitely many
primes p ≡ a mod m.

In fact Dirichlet proved more than this. In a sense that we will make precise, he proved
that for every fixed modulus m the primes are equidistributed among the residue classes in
(Z/mZ)×. The equidistribution statement that Dirichlet was able to prove is a bit weaker
than one might like, but it is more than enough to establish Theorem 18.1.

Remark 18.2. Many of the standard tools of complex analysis we take for granted were not
available to Dirichlet in 1837. Riemann was the first to seriously study ζ(s) as a function of
a complex variable, some twenty years after Dirichlet proved Theorem 18.1. We will work
in a more modern setting, but our approach follows the spirit of Dirichlet’s proof.

18.1 Infinitely many primes

To motivate Dirichlet’s method of proof, let us consider the following (admittedly clumsy)
proof that there are infinitely many primes. It is sufficient to show that the Euler product

ζ(s) =
∏
p

(1− p−s)−1

diverges as s→ 1+. Of course we know ζ(s) has a pole at s = 1 (by Theorem 16.3), but let
us suppose for the moment that we did not already know this. Taking logarithms yields

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

p−s +O(1), (1)

as s→ 1+, where we have used the asymptotic bounds

− log(1− x) = x+O(x2) (as x→ 0) and
∑
p

O(p−2s) = O(1) (Re(s) > 1/2+ ϵ).

We can estimate
∑

p≤x
1
p via Mertens’ second theorem, one of three he proved in [4].

Theorem 18.3 (Mertens 1874). As x→∞ we have

(1)
∑
p≤x

log p
p = log x+R(x), where |R(x)| < 2.1

(2)
∑
p≤x

1
p = log log x+B +O

(
1

log x

)
, where B =0.261497 . . . is Mertens’ constant;

(3)
∑
p≤x

log
(
1− 1

p

)
= −log log x− γ +O

(
1

log x

)
, where γ =0.577216 . . . is Euler’s constant.

Proof. See Problem Set 9.
1In fact, R(x) = −B3 + o(1) where B3 =1.332582 . . . is an explicit constant.
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Thus not only does
∑

p−s diverge as s→ 1+, we can say with a fair degree of precision
how quickly this happens. We should note, however, that Mertens’ estimate is not as strong
as the prime number theorem. Indeed, as you will prove on Problem Set 9, the Prime
Number Theorem is equivalent to the statement∑

p≤x

1

p
= log log x+B + o

(
1

log x

)
,

which is (ever so slightly) sharper than Mertens’ estimate.2

18.2 Dirichlet characters

We now define the notion of a Dirichlet character. Historically, these preceded the notion of
a group character; they were introduced by Dirichlet in 1831, well before the notion of an
abstract group was in common use.3 In order to simplify the exposition we will occasionally
invoke some standard facts about characters of finite abelian groups that we recall in §18.6.

Definition 18.4. A function f : Z → C is called an arithmetic function.4 The function
f is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all coprime m,n ∈ Z; it is
totally multiplicative (or completely multiplicative) if f(1) = 1 and f(mn) = f(m)f(n) for
all m,n ∈ Z. For m ∈ Z>0 we say that f is m-periodic if f(n +m) = f(n) for all n ∈ Z,
and we call the least m > 0 for which this holds the period of f .

Definition 18.5. A Dirichlet character is a periodic totally multiplicative arithmetic func-
tion χ : Z→ C.

The image of a Dirichlet character is a finite multiplicatively closed subset of C, hence
the union of a finite subgroup of U(1) and a subset of {0}. The constant function 1(n) := 1
is the trivial Dirichlet character ; it is the unique Dirichlet character of period 1. Each m-
periodic Dirichlet character χ restricts to a group character χ on (Z/mZ)×. Conversely,
every group character χ of (Z/mZ)× can be extended to a Dirichlet character χ by defining
χ(n) = 0 for n ̸⊥ m; this is called extension by zero.

Definition 18.6. A Dirichlet character of modulus m is an m-periodic Dirichlet character χ
that is the extension by zero of a group character on (Z/mZ)×; equivalently, an m-periodic
Dirichlet character for which χ(n) ̸= 0⇐⇒ m ⊥ n.

Remark 18.7. Some authors only define Dirichlet characters of modulus m, thinking of
them as extensions by zero of group characters on (Z/mZ)×, in which case every χ has an
attached modulus m. But note that the function Z→ C given by the extension by zero does
not uniquely determine m (see Lemma 18.8 below). Indeed, the unique Dirichlet character
of modulus 2 is a Dirichlet character of modulus 2k for all k ≥ 1.

The Dirichlet characters of modulus m form a group under pointwise multiplication that
is canonically isomorphic to the character group of (Z/mZ)×. Not every m-periodic Dirichlet

2The standard error term in the PNT implies
∑

p≤x
1
p
= log log x+B+O

(
1

log x

)
, but a o( 1

log x
) bound is

enough to show π(x) ∼ x/ log x. That the difference between a little-o and a big-O is the difference between
proving the PNT and not proving it demonstrates how critical it is to understand error terms.

3Galois’ seminal paper was rejected that same year; it wasn’t published until 12 years after his death.
4Many authors restrict the domain of an arithmetic function to Z≥1; for the periodic arithmetic functions

we are interested in here, this distinction is irrelevant, and it is slightly more natural to work with Z.
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character χ is a Dirichlet character of modulus m, since an m-periodic Dirichlet character
need not vanish on n ̸⊥ m, but if χ has period m then this holds. More generally, we have
the following lemma.

Lemma 18.8. Let χ be a Dirichlet character of period m. Then χ is a Dirichlet character
of modulus m′ if and only if m|m′|mk for some k (which holds in particular for m′ = m).

Proof. To prove χ is a Dirichlet character of modulus m we must show χ(n) ̸= 0⇔ m ⊥ n.
Suppose χ(n) ̸= 0 with m ̸⊥ n, and let p be a common divisor of m and n. Then χ(p) ̸= 0,
since χ(p)χ(n/p) = χ(n) ̸= 0, and for any r ∈ Z we have

χ(r)χ(p) = χ(rp) = χ(rp+m) = χ(r +m/p)χ(p),

which implies χ(r) = χ(r + m/p), since χ(p) ̸= 0. Thus χ is (m/p)-periodic, but this
contradicts the minimality of the period m. Therefore χ(n) ̸= 0⇒ m ⊥ n.

For any n ⊥ m we can pick a = ne ≡ 1 mod m so that χ(1) = χ(a) = χ(ne) = χ(n)e ̸= 0,
in which case χ(n) ̸= 0. Thus n ⊥ m⇒ χ(n) ̸= 0, so χ is a Dirichlet character of modulus m.

If m|m′|mk, then the prime divisors of m′ coincide with those of m. It follows that

n ⊥ m′ ⇐⇒ n ⊥ m⇐⇒ χ(n) ̸= 0,

and χ is clearly m′-periodic (since m|m′), so χ is a Dirichlet character of modulus m′.
Conversely, if χ is a Dirichlet character of modulus m′, then χ is m′-periodic, and

therefore m|m′, since m is the period of χ. And since χ is a Dirichlet character of modulus m
and of modulus m′, for each prime p we have

p|m⇐⇒ χ(p) = 0⇐⇒ p|m′,

thus the prime divisors of m and m′ coincide and m′ must divide some power mk of m.

18.2.1 Primitive Dirichlet characters

Given a Dirichlet character χ1 of modulus m1 dividing m2, we can always create a Dirichlet
character χ2 of modulus m2 by taking the extension by zero of the restriction of χ1 to
(Z/m2Z)×; in other words, let χ2(n) := χ1(n) for n ∈ (Z/m2Z)× and χ2(n) := 0 otherwise.
If m2 is divisible by a prime p that does not divide m1, the Dirichlet characters χ1 and χ2

will not be the same (χ2(p) = 0 ̸= χ1(p), for example); they will agree on n ∈ (Z/m2Z)×
but not on n ∈ (Z/m1Z)×.5 We can create infinitely many new Dirichlet characters from
χ1 in this way, but they will differ from χ1 only in a rather trivial sense. We would like to
distinguish the Dirichlet characters that arise in this way from those that do not.

Definition 18.9. Let χ1 and χ2 be Dirichlet characters of modulus m1 and m2, respectively,
with m1|m2. If χ2(n) = χ1(n) for n ∈ (Z/m2Z)× then χ2 is induced by χ1. A Dirichlet
character that is not induced by any character other than itself is primitive.

Lemma 18.10. A Dirichlet character χ2 of modulus m2 is induced by a Dirichlet character
of modulus m1|m2 if and only if χ2 is constant on residue classes in (Z/m2Z)× that are
congruent modulo m1. When this holds, the Dirichlet character χ1 of modulus m1 that
induces χ2 is uniquely determined.

5Note that while #(Z/m1Z)× ≤ #(Z/m2Z)×, the set of integers n ∈ (Z/m1Z)× (the n coprime to m1)
contains the set of integers n ∈ (Z/m2Z)× (the n coprime to m2) and is usually larger.
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Proof. If χ2 is induced by χ1 then it must be constant on residue classes in (Z/m2Z)× that
are congruent modulo m1, since χ1 is. To prove the converse we first show that the surjective
ring homomorphism Z/m2Z → Z/m1Z given by reduction modulo m1 induces a surjective
homomorphism π : (Z/m2Z)× → (Z/m1Z)× of unit groups.6

Suppose u1 ∈ Z is a unit modulo m1. Let a be the product of all primes dividing m2/m1

but not u1. Then u2 = u1+m1a is not divisible by any prime p|m1 (since u1 isn’t), nor is it
divisible by any prime p|(m2/m1): by construction, such a p divides exactly one of u1 and
m1a. Thus u2 is a unit modulo m2 that reduces to u1 modulo m1 and π is surjective.

If χ2 is a Dirichlet character of modulus m2 constant on fibers of π we can define
a Dirichlet character χ1 of modulus m1 via χ1(n1) := χ2(n2) for n1 ∈ (Z/m1Z)× with
n2 ∈ π−1(n1) (any such n2 will do). Thus χ1 induces χ2, and if χ′

1 also induces χ2 it must
satisfy the same condition χ1(n1) = χ2(n2) that uniquely determines χ1.

Definition 18.11. A Dirichlet character χ induced by 1 is called principal (and is primitive
if and only if χ = 1). For m ∈ Z>0 we use 1m to denote the principal Dirichlet character of
modulus m; it corresponds to the trivial character of (Z/mZ)×.

Lemma 18.12. Let χ be a Dirichlet character of modulus m. Then∑
n∈Z/mZ

χ(n) ̸= 0 ⇐⇒ χ = 1m.

Proof. We have χ(n) = 0 for n ̸∈ (Z/mZ)×, and the sum over (Z/mZ)× is nonzero if and
only if χ restricts to the trivial character on (Z/mZ)×, by the orthogonality of characters;
see Corollary 18.37.

Note that the principal Dirichlet characters 1m and 1m′ necessarily coincide when
m|m′|mk; for example the principal Dirichlet character of modulus 2 (the parity function)
is the same as the principal Dirichlet character of modulus 4 (and every power of 2).

Theorem 18.13. Every Dirichlet character χ is induced by a primitive Dirichlet character χ̃
that is uniquely determined by χ.

Proof. Let us define a partial ordering ⪯ on the set of all Dirichlet characters by defining
χ1 ⪯ χ2 if χ1 induces χ2. The relation ⪯ is clearly reflexive, and it follows from Lemma 18.10
that it is transitive.

Let χ be a Dirichlet character of period m and consider the set X = {χ′ : χ′ ⪯ χ}. Each
χ′ ∈ X necessarily has period m′ dividing m and there is at most one χ′ of period m′ for
each divisor m′ of m, by Lemma 18.10. Thus X is finite, and nonempty (since χ ∈ X).

Suppose χ1, χ2 ∈ X have periods m1 and m2, respectively. Then m1 and m2 both divide
m, as does m3 = gcd(m1,m2). We have a commutative square of surjective unit group
homomorphisms induced by reduction maps:

(Z/mZ)× (Z/m1Z)×

(Z/m2Z)× (Z/m3Z)×.

←↠

←↠

←↠

←↠

6In fact, one can show that every surjective homomorphism of finite rings induces a surjective homomor-
phism of unit groups, but this does not hold in general (consider Z → Z/5Z, for example).
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From Lemma 18.10 we know that χ is constant on residue classes in (Z/mZ)× that are
congruent modulo either m1 or m2, and therefore χ is constant on residue classes in (Z/mZ)×
that are congruent modulo m3, as are χ1 and χ2 (which are determined by χ). It follows
that there is a unique Dirichlet character χ3 of modulus m3 that induces χ, χ1, and χ2.

Thus every pair χ1, χ2 ∈ X has a lower bound χ3 under the partial ordering ⪯ that is
compatible with the total ordering of X by period. This implies that X contains a unique
element χ̃ that is minimal, both with respect to the partial ordering ⪯ and with respect to
the total ordering by period; it must be primitive, by the transitivity of ⪯.

Definition 18.14. The conductor of a Dirichlet character χ is the period of the unique
primitive Dirichlet character χ̃ that induces χ.

Corollary 18.15. For a Dirichlet character χ of modulus m we have
∑

n∈Z/mZ χ(n) ̸= 0 if
and only if χ has conductor 1.

Proof. This follows immediately from Lemma 18.12.

Corollary 18.16. Let M(m) denote the set of Dirichlet characters of modulus m, let X(m)
denote the set of primitive Dirichlet characters of conductor dividing m, and let Ĝ(m) denote
the character group of (Z/mZ)×. We have canonical bijections

M(m)
∼−→ X(m)

∼−→ Ĝ(m)

χ 7−→ χ̃ 7−→ (n 7→ χ̃(n)).

Proof. By Theorem 18.13, the map χ → χ̃ is injective, and it is also surjective: each
χ̃ ∈ X(m) induces the character χ ∈ M(m) by setting χ(n) := χ̃(n) for n ∈ (Z/mZ)×
and extending by zero. As previously noted, the map χ → (n 7→ χ(n)) defines a bijection
M(m)→ Ĝ(m) (a group isomorphism, in fact), and this bijection factors through the map
χ 7→ χ̃, since χ̃(n) = χ(n) for n ∈ (Z/mZ)×.

Remark 18.17. Corollary 18.16 implies that we can make X(m) a group by defining
χ̃1χ̃2 := χ̃1χ2. Note that χ̃1χ2 is not the pointwise product of χ̃1 and χ̃2 (which is typically
not primitive), it is the unique primitive character that induces the pointwise product.

Example 18.18. 12-periodic Dirichlet characters, ordered by period m and conductor c.

m c 0 1 2 3 4 5 6 7 8 9 10 11 mod-12 principal primitive
1 1 1 1 1 1 1 1 1 1 1 1 1 1 no yes yes
2 1 0 1 0 1 0 1 0 1 0 1 0 1 no yes no
3 1 0 1 1 0 1 1 0 1 1 0 1 1 no yes no
3 3 0 1 -1 0 1 -1 0 1 -1 0 1 -1 no no yes
4 4 0 1 0 -1 0 1 0 -1 0 1 0 -1 no no yes
6 1 0 1 0 0 0 1 0 1 0 0 0 1 yes yes no
6 3 0 1 0 0 0 -1 0 1 0 0 0 -1 yes no no

12 4 0 1 0 0 0 1 0 -1 0 0 0 -1 yes no no
12 12 0 1 0 0 0 -1 0 -1 0 0 0 1 yes no yes

The fact that χ(n) ∈ {0,±1} for all 12-periodic Dirichlet characters χ follows from the
fact that the exponent of (Z/mZ)× is 2; thus (imχ) ∩U(1) ⊆ µ2 = {±1}.
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18.3 Dirichlet L-functions

Definition 18.19. The Dirichlet L-function associated to a Dirichlet character χ is

L(s, χ) :=
∏
p

(1− χ(p)p−s)−1 =
∑
n≥1

χ(n)n−s.

The sum and product converge absolutely for Re s > 1, since |χ(n)| ≤ 1, thus L(s, χ) is
holomorphic on Re(s) > 1.

For the trivial Dirichlet character 1 we have L(s,1) = ζ(s). For the principal character
1m of modulus m induced by 1 we have

ζ(s) = L(s,1m)
∏
p|m

(1− p−s)−1.

The product on the RHS is finite, hence bounded and nonzero as s→ 1+, so the L-function
L(s,1m) has a simple pole at s = 1 with residue

ress=1 L(s,1m) = lim
s→1+

(s− 1)ζ(s)
∏
p|m

(1− p−s) =
∏
p|m

(1− p−1) =
ϕ(m)

m
.

The L-functions of non-principal Dirichlet characters do not have a pole at s = 1.

Proposition 18.20. Let χ be a non-principal Dirichlet character of modulus m. Then
L(s, χ) extends to a holomorphic function on Re s > 0.

Proof. Define the function T : R≥0 → C by

T (x) :=
∑

0<n≤x

χ(n).

For any x ∈ R≥0 Corollary 18.15 implies

T (x+m)− T (x) =
∑

x<n≤x+m

χ(n) =
∑

n∈Z/mZ

χ(n) = 0,

since χ is non-principal. Thus T (x) is periodic modulo m and therefore bounded.
Writing L(s, χ) as a Stieltjes integral (see §18.5) and integrating by parts yields

L(s, χ) =
∑
n≥1

χ(n)n−s

=

∫ ∞

0
x−sdT (x)

= x−sT (x)

∣∣∣∣∣
∞

0

−
∫ ∞

0
T (x)d(x−s)

= 0−
∫ ∞

0
T (x)(−sx−s−1)dx

= s

∫ ∞

0
T (x)x−s−1dx.

The RHS is holomorphic on Re s > 0, since it is the limit of the uniformly converging
sequence of functions ϕn(s) := s

∫ n
0 T (x)x−s−1dx (here we use the fact that T (x) is bounded),

and is thus the analytic continuation of L(s, χ) to Re(s) > 0.

Remark 18.21. In fact, L(s, χ) extends to a holomorphic function on C whenever χ is
non-principal.
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18.4 Primes in arithmetic progressions

We now return to our goal of proving Dirichlet’s theorem on primes in arithmetic progres-
sions. It suffices to show that for any a ⊥ m the sum∑

p≡ a mod m

p−s

is unbounded as s→ 1+. To convert this to a sum over all primes we use Proposition 18.36
to construct the indicator function

1

ϕ(m)

∑
χ∈X(m)

χ(p/a) =

{
1 if p ≡ a mod m,

0 otherwise

where p/a is computed modulo m and χ ranges over primitive Dirichlet characters of conduc-
tor dividing m, which we identify with the character group of (Z/mZ)× via Corollary 18.16.

As s→ 1+ we have∑
p≡ a mod m

p−s =
∑
p

p−s 1

ϕ(m)

∑
χ∈X(m)

χ(p/a)

=
∑

χ∈X(m)

χ(1/a)

ϕ(m)

∑
p

χ(p)p−s

=
∑

χ∈X(m)

χ(1/a)

ϕ(m)

(
logL(s, χ) +O(1)

)
=

log ζ(s)

ϕ(m)
+

∑
χ∈X(m)
χ ̸=1

χ(1/a)

ϕ(m)
logL(s, χ) +O(1).

We now make the key claim that so long as χ is not principal, we have

L(1, χ) ̸= 0.

This implies that logL(s, χ) = O(1) as s→ 1+ and therefore∑
p≡ a mod m

p−s =
log ζ(s)

ϕ(m)
+O(1)

is unbounded as s→ 1+, since ζ(s) is. Moreover, Mertens’ second theorem implies∑
p≤x

p≡ a mod m

1

p
∼ log log x

ϕ(m)
.

which proves that there are infinitely many primes p ≡ a mod m. We can makes this
statement more precise by using the notion of Dirichlet density.

Definition 18.22. The Dirichlet density of a set of primes S is given by

d(S) := lim
s→1+

∑
p∈S p−s∑
p p

−s
,
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defined whenever this limit exists (one can also define notions of lower and upper Dirichlet
density using lim inf and lim sup which both agree with d(S) whenever it is defined). This
definition differs from the more common notion of natural density

δ(S) := lim
x→∞

#{p ≤ x : p ∈ S}
#{p ≤ x}

.

The Dirichlet density of the set S = {p ≡ a mod m} is

d(S) = lim
s→1+

∑
p∈S p−s∑
p p

−s
= lim

s→1+

log ζ(s)/ϕ(m)

log ζ(s)
=

1

ϕ(m)
.

The primes are thus equidistributed modulo m in the sense that for all a ⊥ m we have∑
p≤x

p≡ a mod m

1

p
∼ 1

ϕ(m)

∑
p≤x

1

p
∼ 1

ϕ(m)
log log x.

We should note that this statement is weaker than the prime number theorem for arithmetic
progressions, which states that

π(x;m, a) ∼ 1

ϕ(m)
π(x),

where π(x;m, a) counts the primes p ≤ x for which p ≡ a mod m (see Problem Set 9).

18.5 Stieltjes integrals

For the benefit of those who have not seen them before, we recall a few facts about Stieltjes
integrals (also called Riemann-Stieltjes integrals), taken from [1, Ch. 7]. These generalize
the Riemann integral but are less general than the Lebesgue integral; they provide a handy
way for converting sums to integrals that is often used in analytic number theory.

Definition 18.23. Let f and g be (real or complex valued) functions defined on a nonempty
real interval [a, b]. For any partition P = (x0, . . . , xn) of [a, b] and sequence T = (t1, . . . , tn)
with tk ∈ [xk−1, xk], we define the Riemann-Stieltjes sum

S(P, T, f, g) :=

n∑
k=1

f(tk)
(
g(xk)− g(xk−1)

)
We say that f is Riemann-Stieltjes integrable with respect to g and write f ∈ S(g) if there is
a (real or complex) number S such that for every ϵ > 0 there is a partition Pϵ of [a, b] such
that for every refinement P = (x0, . . . , xn) of Pϵ and every sequence T = (t1, . . . , tn) with
tk ∈ [xk−1, xk] we have |S(P, T, f, g)− S| < ϵ.7

When such an S exists it is necessarily unique and we denote it by
∫ b
a f dg, the Riemann-

Stieltjes integral of f with respect to g. Improper Riemann-Stieltjes integrals are then defined
as limits ∫ ∞

a
f dg := lim

b→∞

∫ b

a
f dg

(and similarly for the lower limit), and we define
∫ a
b f dg = −

∫ b
a f dg and

∫ a
a f dg = 0.

7This definition (due to Pollard) is more general than that originally given by Stieltjes but is now standard.
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Taking g(x) = x yields the Riemann integral. The Riemann-Stieltjes integral satisfies
the usual properties of linearity, summability, and integration by parts.

Proposition 18.24. Let f, g, and h be functions on [a, b] and let c1 and c2 be constants.
The following hold:

• If f, g ∈ S(h) then
∫ b
a (c1f + c2g) dh = c1

∫ b
a f dh+ c2

∫ b
a g dh.

• If f ∈ S(g), S(h) then
∫ b
a f d(c1g + c2h) = ci

∫ b
a f dg + c2

∫ b
a f dh.

• If f ∈ S(g) then for any c ∈ [a, b] we have
∫ b
a f dg =

∫ c
a f dg +

∫ b
c f dg.

• If f ∈ S(g) then g ∈ S(f) and
∫ b
a f dg +

∫ b
a g df = f(b)g(b)− f(a)g(a).

• If f = f1 + if2 and g = g1 + ig2 with f1, f2 ∈ S(g1), S(g2) then∫ b

a
f dg =

(∫ b

a
f1 dg1 −

∫ b

a
f2 dg2

)
+ i

(∫ b

a
f2 dg1 +

∫ b

a
f1 dg2

)
.

Proof. See [1, Thm. 7.2-7,7.50].

The last identity allows us to reduce complex-valued integrals to real-valued integrals.
The following proposition allows us to reduce Stieltjes integrals to Riemann integrals.

Proposition 18.25. Let f and g be real-valued functions on [a, b] and suppose g has a
continuous derivative g′ on [a, b]. Then∫ b

a
f dg =

∫ b

a
f(x)g′(x)dx.

Proof. See [1, Thm. 7.8].

A key advantage of the Stieltjes integral
∫ b
a f dg is that neither the integrand f nor

the integrator g is required to be continuous. It suffices for f and g to be of bounded
variation and not share any discontinuities (and they can even share certain discontinuities,
see Theorem 18.27).

Definition 18.26. Let f be a (real or complex valued) function defined on a nonempty real
interval [a, b]. Then f is of bounded variation if there exists a real number M such that

n−1∑
i=0

|f(xi+1)− f(xi)| < M

for every partition P = (x0, . . . , xn) of [a, b]. If f has a continuous derivative f ′ on [a, b]

this is equivalent to requiring
∫ b
a |f

′(x)|dx < ∞. Every piecewise monotone function is of
bounded variation. In particular, any step function with finitely many discontinuities on
[a, b] is of bounded variation.

Theorem 18.27. Let f and g be functions on [a, b] of bounded variation such that for every
c ∈ [a, b] the function f is continuous from the left at c and the function g is continuous
from the right at c. Then

∫ b
a f dg and

∫ b
a g df both exist.

Proof. See [2, Thm. 3.7].
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Corollary 18.28. Let f and g be functions on [a, b] such that f and g are not both discon-
tinuous from the left or from the right at integers n ∈ [a, b], and let G(x) =

∑
a<n≤x g(n).

Then ∑
a<n≤b

f(n)g(n) =

∫ b

a
f(x) dG(x).

In particular, the integral on the RHS always exists.

Proof. See [1, Thm. 7.11].

As an example of using Stieltjes integrals, let us derive an asymptotic estimate for the
harmonic sum

H(x) :=
∑

1≤n≤x

1

n
.

Theorem 18.29. For x ∈ R≥1, as x→∞ we have

H(x) = log x+ γ +O
(
1
x

)
where γ = limx→∞(H(x)− log x) =0.577216 . . . is Euler’s constant.

Proof. Let [t] denote the greatest integer function. Applying Corollary 18.28 with g(t) = 1
and G(t) =

∑
1≤n≤t 1 = [t], we have

H(x) =
∑

1≤n≤x

1

n
=

∫ x

1−

1

t
d[t]

=
[t]

t

∣∣∣∣x
1−
−
∫ x

1−
[t] d

1

t

=
[x]

x
+

∫ x

1−

[t]

t2
dt

=
[x]

x
+

∫ x

1−

1

t
dt−

∫ x

1−

t− [t]

t2
dt

=
[x]

x
+ log x−

∫ x

1−

t− [t]

t2
dt,

where we used integration by parts in the second line and applied Proposition 18.25 to get
the third line. Now let γ = 1−

∫∞
1−(t− [t])/t2 dt. Then

H(x) =
[x]

x
+ log x− 1 + γ +

∫ ∞

x

t− [t]

t2
dt

= log x+ γ +

(
[x]− x

x
+

∫ ∞

x

t− [t]

t2
dt

)
. (2)

Both summands in the parenthesized quantity in (2) are clearly O
(
1
x

)
; thus

γ = lim
x→∞

(H(x)− log x) ,

and the theorem follows.
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18.6 A quick recap of the character theory of finite abelian groups

In this section we recall some standard results on characters of finite abelian groups.

Definition 18.30. A character of a group G is a homomorphism χ : G → U(1).8 The
character group (or dual group) of G is the abelian group

Ĝ := Hom(G,U(1))

under pointwise multiplication: (χ1χ2)(g) := χ1(g)χ2(g). The inverse of χ is given by
complex conjugation: χ−1(g) = χ(g) := χ(g). The identity element of Ĝ is the trivial
character g 7→ 1.

Remark 18.31. This definition generalizes to locally compact abelian groups G, in which
case each character χ : G → U(1) is a homomorphism of topological groups and the dual
group Ĝ is locally compact under the compact-open topology which has a basis of neigh-
borhoods of the identity the sets U(C, V ) := {χ ∈ Ĝ : χ(C) ⊆ V }, where C ranges over
compact subsets of G and V ranges over open neighborhoods of the identity in U(1). The
locally compact group Ĝ is called the Pontryagin dual of G.9 When G is finite it necessarily
has the discrete topology (since it must be Hausdorff), every homomorphism G → U(1) is
automatically continuous, and the compact-open topology on Ĝ is also discrete.

Proposition 18.32. Let G be a finite abelian group with character group Ĝ. Then G ≃ Ĝ.

Proof. As a finite abelian group we can write G as a direct product of cyclic groups

G = ⟨g1⟩ × · · · × ⟨gr⟩ ≃ Z/n1Z× · · · × Z/nrZ,

with ni = |gi|, and each g ∈ G can be uniquely written as g =
∏

i g
ei
i with 0 ≤ ei < n1.

Now fix (not necessarily distinct) primitive ni-th roots of unity αi ∈ U(1) and for 1 ≤ i ≤ r
define χi ∈ Ĝ via

χi(gj) :=

{
αi if i = j,

1 if i ̸= j.

Then |χi| = |αi| = ni, and each χ ∈ Ĝ can be written uniquely as
∏

i χ
ei
i with 0 ≤ ei < ni,

where χ(gi) = αei
i (because a character is completely determined by its values on generators

and the χi are clearly orthogonal). Therefore

Ĝ = ⟨χ1⟩ × · · · × ⟨χn⟩ ≃ Z/n1Z× · · · × Z/nrZ ≃ G.

Corollary 18.33. Let G be a finite abelian group. Then g ∈ G is the identity if and only if
χ(g) = 1 for all χ ∈ Ĝ and χ ∈ Ĝ is the identity if and only if χ(g) = 1 for all g ∈ G.

The isomorphism in Proposition 18.32 is not canonical. Indeed, there are #Aut(G)
distinct ways to choose the αi used to construct the isomorphism G ≃ Ĝ. But there is a
canonical isomorphism from G to the character group of Ĝ, the double dual of G.

8Some authors call these unitary characters, allowing characters to have image in C×. When G is finite
every character is a unitary character, so this distinction won’t concern us.

9Some authors define the topology on the Pontryagin duality using uniform convergence on compact sets;
for topological groups this is equivalent to the compact-open topology. The unitary group U(1) ≃ R/Z is
also referred to as the 1-torus or circle group and may be denoted T or S1 and viewed as an additive group.
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Corollary 18.34. Let G be a finite abelian group. The evaluation map

g 7→ (χ 7→ χ(g))

is a canonical isomorphism from G to its double dual.

Proof. It is clear that the map above is a homomorphism, and Proposition 18.32 implies that
G is isomorphic to its dual group Ĝ, which is in turn isomorphic to its dual group, the double
dual of G. So it suffices to show the map is injective, which follows from Corollary 18.33:
if g lies in the kernel then χ(g) = 1 for all χ ∈ Ĝ and g = 1G, by Corollary 18.33,

Corollary 18.34 allows us to view G as the character group of Ĝ by defining g(χ) := χ(g).

Remark 18.35. Corollary 18.34 is a special case of Pontryagin duality, which applies to
any locally compact abelian group G. For infinite groups, G and Ĝ need not be isomorphic;
for example, the character group of Z is isomorphic to U(1) (but in some cases they are,
as when G is R or Qp, or any local field, see [3, XV, Lemma 2.2.1]). But the canonical
isomorphism between G and its double dual always holds.

This is analogous to the situation with vector spaces: a finite dimensional vector space
(which may be an infinite abelian group) is non-canonically isomorphic to its dual space but
canonically isomorphic to its double dual via the evaluation map. We should note that for
a locally compact topological vector space V over a field k, the Pontryagin dual is not the
same thing as the vector space dual: the Pontryagin dual corresponds to Hom(V,U(1)) (mor-
phisms of locally compact groups) while the vector space dual corresponds to Homk(V, k)
(morphisms of topological k-vector spaces). For example, the vector space dual of Q is iso-
morphic to Q, as is its double dual, but the Pontryagin dual of Q is uncountable (thus not
isomorphic to Q), even though the Pontryagin double dual is isomorphic to Q.

Proposition 18.36. Let G be a finite abelian group. For all g1, g2 ∈ G we have

⟨g1, g2⟩ :=
1

#G

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
1 if g1 = g2,

0 if g1 ̸= g2,

and for all χ1, χ2 ∈ Ĝ we have

⟨χ1, χ2⟩ :=
1

#G

∑
g∈G

χ1(g)χ2(g) =

{
1 if χ1 = χ2,

0 if χ1 ̸= χ2.

Proof. By duality it suffices to consider ⟨g1, g2⟩. If g1 = g2 then χ(g1)χ(g2) = 1 for all χ ∈ Ĝ
and ⟨g1, g2⟩ = #Ĝ/#G = 1. If g1 ̸= g2 then by Corollary 18.33 there exists λ ∈ Ĝ for which
α := λ(g1)λ(g2) = λ(g1g

−1
2 ) ̸= 1. We then have

α⟨g1, g2⟩ =
1

#G

∑
χ∈Ĝ

(λχ)(g1)(λχ)(g2) =
1

#G

∑
χ∈λĜ

χ(g1)χ(g2) = ⟨g1, g2⟩,

which implies ⟨g1, g2⟩ = 0, since α ̸= 1.

Corollary 18.37. For χ ∈ Ĝ we have
∑

g∈G χ(g) ̸= 0 if and only χ is the trivial character.
For g ∈ G we have

∑
χ∈Ĝ χ(g) ̸= 0 if and only if g is the trivial element.
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Remark 18.38. The orthogonality of characters given by Proposition 18.36 is a special case
of the orthogonality of characters one encounters in Fourier analysis on compact groups; since
G is finite, the weighted sum over G amounts to integrating against its Haar measure (the
counting measure µ normalized so that µ(G) = 1).

We conclude our discussion of character groups with a theorem analogous to the funda-
mental theorem of Galois theory.

Proposition 18.39. Let G be a finite abelian group. There is an inclusion reversing bijection
φ between subgroups H of G and subgroups K of Ĝ defined by

φ(H) := {χ ∈ Ĝ : χ(h) = 1 for all h ∈ H}.

The inverse bijection ϕ is given by

ϕ(K) := {g ∈ G : χ(g) = 1 for all χ ∈ K},

and Ĥ ≃ Ĝ/φ(H) and K̂ ≃ G/ϕ(K); in particular, #H = [Ĝ :φ(H)] and #K = [G :ϕ(K)].

Proof. Its clear from the definitions that φ and ϕ are inclusion reversing. Let H be a
subgroup of G. The group K = φ(H) consists of the characters of G whose kernel contains H.
It is clear that H ′ := ϕ(K) contains H, since it is equal to the intersection of these kernels,
and by duality it is similarly clear that K ′ := φ(H ′) contains K. We then have H ⊆ H ′ and
φ(H) ⊆ φ(H ′), but φ is inclusion reversing so H = H ′; thus ϕ ◦ φ is the identity map, and
by duality, so is φ ◦ ϕ.

The restriction map Ĝ→ Ĥ defined by χ 7→ χ|H is a group homomorphism with kernel
K = φ(H). It is surjective because if we let χ1 := 1

Ĝ
then we have

#H#K =
∑
h∈H

∑
χ∈K

χ(h) =
∑
h∈H

∑
χ∈K

χ(h)χ1(h) =
∑
g∈G

∑
χ∈K

χ(g)χ1(g) = #G,

by Proposition 18.36, and therefore #Ĥ#K = #Ĝ (by Proposition 18.32). It follows that
Ĥ ≃ Ĝ/φ(H), and by duality, K ≃ G/ϕ(K).
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