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16 Riemann’s zeta function and the prime number theorem

We now divert our attention from algebraic number theory to talk about zeta functions and
L-functions. As we shall see, every global field has a zeta function that is intimately related
to the distribution of its primes. We begin with the zeta function of the rational field Q,
which we will use to prove the prime number theorem.

We will need some basic results from complex analysis, all of which can be found in any
introductory textbook (such as [1, 2, 3, 7, 12]). A short glossary of terms and a list of the
basic theorems we will use can be found at the end of these notes.'

16.1 The Riemann zeta function
Definition 16.1. The Riemann zeta function is the complex function defined by the series
((s) := Z n=®,
n>1

for Re(s) > 1, where n varies over positive integers. It is easy to verify that this series
converges absolutely and locally uniformly on Re(s) > 1 (use the integral test on an open
ball strictly to the right of the line Re(s) = 1). By Theorem 16.17, it defines a holomorphic

function on Re(s) > 1, since each term n=% = ¢~*1°8™ is holomorphic.

Theorem 16.2 (EULER PRODUCT). For Re(s) > 1 we have
()= n=][a-»)7",
n>1 P
where the product converges absolutely. In particular, ((s) # 0 for Re(s) > 1.

The product in the theorem above ranges over primes p. This is a standard practice in
analytic number theory that we will follow: the symbol p always denotes a prime, and any
sum or product over p is understood to be over primes, even if this is not explicitly stated.

Proof. We have

Zn_s = ZHp—vp(")S - Hzp—es _ H(l _p—S)—]_.

n>1 n>1 p p e>0 p

To justify the second equality, consider the partial zeta function (p(s), which restricts the
summation in ((s) to the set Sy, of m-smooth integers (those with no prime factors p > m).

If p1,...,pr are the primes up to m, absolute convergence implies
Gn(s):= > n= > )= D =J[0a-»*"
neESm €1,...,e >0 1<i<k e;>0 p<m

For any 6 > 0 the sequence of functions (,(s) converges uniformly on Re(s) > 146 to ((s);
indeed, for any € > 0 and any such s we have

> o

n>m

[Gm(s) = C(s)] <

x
1
< - = —Re(s) </ _1_6d < — _6<
_E\n| En _mm x_am €,

n>m n>m

!Those familiar with this material should still glance at §16.3.2 which touches on some convergence issues
that are particularly relevant to number theoretic applications.
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for all sufficiently large m. It follows that the sequence (,,(s) converges locally uniformly to
((s) on Re(s) > 1. The sequence of functions Pp(s) :=[[,<,,(1 — p~*)~! clearly converges
locally uniformly to [J(1 — p~*)~! on any region in which the latter function is absolutely
convergent (or even just convergent). For any s in Re(s) > 1 we have

> llog(1—p~*)7!| —Z > p“"s <ZZIP‘SI“’—Z p*] = 1)7" < o0,
P

e>l p e>1

where we have used the identity log(1 —2) = =3, 5, 52 Lo valid for |z| < 1. It follows that
[, - p~%)~1 is absolutely convergent (and in particular, nonzero) on Re(s) > 1. O

Theorem 16.3 (ANALYTIC CONTINUATION I). For Re(s) > 1 we have

(s) = 1 +0(5),

where ¢(s) is a holomorphic function on Re(s) > 0. Thus ((s) extends to a meromorphic
function on Re(s) > 0 that has a simple pole at s =1 with residue 1 and no other poles.
Proof. For Re(s) > 1 we have

= Zn - / Tdr =) <n—5 —~ /nn+:lg—8dx> = ;/ﬂnﬂ(n—s —27%) da.

n>1

Cs) = -

For each n > 1 the function ¢,(s) := f;ﬂ(n_s — 27 *)dz is holomorphic on Re(s) > 0. For

each fixed s in Re(s) > 0 and = € [n,n + 1] we have

S —S| _

= — QR vt [ (. PR AL A |
o . =/ ’ts—&—l‘ - n t14Re(s) " — pl+Re(s)’

s s E
\¢n(8)\§/n n™* — \dwﬁm'

For any sg with Re(sg) > 0, if we put € := Re(sg)/2 and U := B.(s¢), then for each n > 1,

and therefore

‘30‘ te
< =
sup [Pn(s)] < ite My,

and ) M, = (|so| +€)((1+¢€) converges. The series ) ¢, thus converges locally normally
on Re(s) > 0. By the Weierstrass M-test (Theorem 16.19), > ¢, converges to a function
¢(s) = ((s) — 5 that is holomorphic on Re(s) > 0. O

We now show that ((s) has no zeros on Re(s) = 1; this fact is crucial to the prime
number theorem. For this we use the following ingenious lemma, attributed to Mertens.?

Lemma 16.4 (Mertens). For x,y € R with x > 1 we have |{(z)3C(x + iy)*¢(x + 2iy)| > 1.

2If this lemma strikes you as pulling a rabbit out of a hat, well, it is. For a slight variation, see [15, TV],
which uses an alternative approach due to Hadamard.

18.785 Fall 2025, Lecture #16, Page 2



Proof. From the Euler product ((s) = [[,(1 — p~*)~L, we see that for Re(s) > 1 we have

log [((s) Zlog\l— —ZRelog(l— ZZRG
p

p n>1

—TlS

since log 2| = Relog z and log(1—2) = = > -, Z_ for |z| < 1. Plugging in s = z + iy yields

cos nylogp
log [(z +iy)| = » > ——— =2

p n>1

since Re(p™"*) = p~"® Re(e™"™198P) = p™"% cos(—nylog p) = p~"* cos(nylogp). Thus

3+4 1 2nyl
C(x + 2iy) ’_ZZ + 4 cos(ny log p) + cos(2ny ogp)

log [¢(2)?¢(z + iy)*¢ e

p n>1
We now note that the trigonometric identity cos(20) = 2cos?§ — 1 implies
3+ 4cosf + cos(20) = 2(1 + cosh)? > 0.
Taking § = ny log p yields log |¢(x)3¢(z + iy)*¢(z + 2iy)| > 0, which proves the lemma. [
Corollary 16.5. ((s) has no zeros on Re(s) > 1.

Proof. By Theorem 16.2, {(s) has no zeros on Re(s) > 1. Suppose ((1+iy) = 0 with y € R.
Then y # 0, since ((s) has a pole at s = 1, and ((s) does not have a pole at 1+ 2iy # 1, by
Theorem 16.3. Therefore

limn [G(2) ¢ + i) + 2i)] =0, 1)

since ((s) has a simple pole at s = 1, a zero at 1 + iy, and no pole at 1 + 2iy. But this
contradicts Lemma 16.4. O

16.2 The Prime Number Theorem
The prime counting function 7: R — Z>¢ is defined by
)= L
psz
it counts the number of primes up to x. The prime number theorem (PNT) states that

m(z) ~

X

logz’

The notation f(z) ~ g(x) means lim,_,~ f(z)/g(x) = 1; one says that f is asymptotic to g.
This conjectured growth rate for 7(x) dates back to Gauss and Legendre in the late 18th
century. In fact Gauss believed the asymptotically equivalent but more accurate statement?

Todt

m(x) ~ Li(x) := | Togt

3More accurate in the sense that |7(x) — Li(z)| grows more slowly than |m(z) — 2| as  — oo.

log @
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However it was not until a century later that the prime number theorem was independently
proved by Hadamard [5] and de la Vallée Poussin [9] in 1896. Their proofs are both based
on the work of Riemann [10], who in 1859 showed that there is a precise connection between
the zeros of ((s) and the distribution of primes (we shall say more about this later), but was
unable to prove the prime number theorem.

The proof we will give is more recent and due to Newman [8], but it relies on the
same properties of the Riemann zeta function that were exploited by both Hadamard and
de la Vallée, the most essential of which is the fact that ((s) has no zeros on Re(s) > 1
(Corollary 16.5). A concise version of Newman'’s proof by Zagier can be found in [15]; we will
follow Zagier’s outline but be slightly more expansive in our presentation. We should note
that there are also “elementary" proofs of the prime number theorem independently obtained
by Erdos [4] and Selberg [11] in the 1940s that do not use the Riemann zeta function, but
they are elementary only in the sense that they do not use complex analysis; the details of
these proofs are considerably more complicated than the one we will give.

Rather than work directly with 7 (z), it is more convenient to work with the log-weighted
prime-counting function defined by Chebyshev?

9(z) =) logp,

p<w

whose growth rate differs from that of 7(z) by a logarithmic factor.

Theorem 16.6 (Chebyshev). 7(x) ~ ez 4 and only if I (zx) ~ x.

Proof. We clearly have 0 < ¢(z) < m(z)logx, thus

I(x) <

m(x)logx

For every € € (0,1) we have

dz) = Y logp > (1-e)(logz)(m(z) - n(z' ™))

> (1- O loga)(n(a) — £,

1 Y(x) 1—
< ‘.
m@) < (1 — e) log e
Thus for all € € (0,1) we have

i) _ w(x)logr _ ( 1 ) i) , logz

1—c¢ x x€

and therefore

x x

The second term on the RHS tends to 0 as x — oo, and the lemma follows: by choosing e
sufficiently small we can make the ratios of ¥(x) to x and 7(x) to x/logx arbitrarily close
together as x — 00, so if one of them tends to 1, so must the other. O

4As with most Russian names, there is no canonical way to write Chebyshev in the Latin alphabet and
one finds many variations in the literature; in English, the spelling used here appears to be the most common.
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In view of Chebyshev’s result, the prime number theorem is equivalent to ¥(z) ~ .
We thus want to prove lim,_,o ¥(z)/x = 1; let us first show that lim,_, ¥(z)/z bounded,
which is indicated by the asymptotic notation 9(x) = O(x).?

Lemma 16.7 (Chebyshev). For z > 1 we have 9(z) < (4log2)x, thus ¥(z) = O(x).
Proof. For any integer n > 1, the binomial theorem implies
(11— 3 (2"> > (2”) = COU S T = exp(0(20) — 9(n)
L= \m —\n nln! _n<p§2n ’

since (2n)! is divisible by every prime p € (n,2n] but n! is not divisible by any such p.
Taking logarithms on both sides yields

¥(2n) — ¥ (n) < 2nlog?2,

valid for all integers n > 1. For any integer m > 1 we have

m m

9(2™) = Z(ﬁ(Q”) - 19(2”—1)) < Y 2"log2 < 27 log2.

n=1 n=1

For any real x > 1 we can choose an integer m > 1 so that 2m—1 < 2 < 2™ and then
I(z) < 9(2™) < 2™ log2 = (410g2)2™ ! < (41og2)z,

as claimed. O

In order to prove ¥(x) ~ x, we will use a general analytic criterion applicable to any
non-decreasing real function f(x).

Lemma 16.8. Let f: R>; — R be a nondecreasing function. If the integral floo f(?[tdt
converges then f(z) ~ x.

Proof. Let F(z) := [/ %dt. The hypothesis is that lim,_,o F(z) exists. This implies
that for all A > 1 and all € > 0 we have |F(A\x) — F(z)| < € for all sufficiently large .

Fix A > 1 and suppose there is an unbounded sequence (z,,) such that f(z,) > Az, for
all n > 1. For each z,, we have

A\x Ax A
nF(t) —t n Az, —t A—t

n n

for some ¢ > 0, where we used the fact that f is non-decreasing to get the middle inequality.
Taking € < ¢, we have |F(Az,) — F(x,)| = ¢ > € for arbitrarily large z,,, a contradiction.
Thus f(z) < Az for all sufficiently large z. A similar argument shows that f(z) > ta
for all sufficiently large x. These inequalities hold for all A > 1, so lim,_, f(x)/x = 1.
Equivalently, f(x) ~ x. O

®The equality sign in the big-O notation f(z) = O(g(z)) is a standard abuse of notation; it simply means
limsup,_, . |f(x)|/]lg(x)| < co (and nothing more). In more complicated equalities a big-O expression should
be interpreted as a set of functions, one of which makes the equality true, for example, > L — logz+0O(1).

n<z n
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In order to show that the hypothesis of Lemma 16.8 is satisfied for f = 9, we will work
with the function H(t) = J(e!)e™" — 1; the change of variables ¢ = e¢* shows that

CY(t) —t o0
/ 2 dt converges = / H (u)du converges .
1 0

We now recall the Laplace transform.

Definition 16.9. Let h: R.g — R be a piecewise continuous function. The Laplace trans-
form Lh of h is the complex function defined by

Lh(s) := /OOO e S'h(t)dt,

which is holomorphic on Re(s) > ¢ for any ¢ € R for which h(t) = O(e®).
The following properties of the Laplace transform are easily verified.

e L(g+h)=Lg+ Lh, and for any a € R we have L(ah) = aLlh.
o If h(t) = a € R is constant then Lh(s) = .
o L(e"n(t))(s) =L(h)(s —a) for all a € R.

We now define the auxiliary function

®(s):= > p *logp,
p

which is related to ¥(z) by the following lemma.

Lemma 16.10. L(9(et))(s) = (Pgs) is holomorphic on Re(s) > 1.

Proof. By Lemma 16.7, 9(e') = O(et), so L(¥(e?)) is holomorphic on Re(s) > 1. Let p, be
the nth prime, and put pg := 0. The function 9¥(e') is constant on t € (log py, log ppi1), S0

logpni1 o logpni1 . 1 _ s
/ e *'d(e’)dt = ﬂ(pn)/ e *dt = —J(pn) (pns - pn+1)'
log pn, log pn, &

We then have

@O = [ e oteha =1 o) (5~ i)
n=1
O MDA S
n=1 n=1

— % i (z?(pn) - ﬂ(?n—l))pﬁs
n=1

1~ _ (s
:fE pnslogpn:—(). O
s s
n=1

Let us now consider the function H(t) := J(e!)e™ — 1. It follows from the lemma and
standard properties of the Laplace transform that on Re(s) > 0 we have

LH(s) = L3 )e)(s) — (£1)(s) = L) (s +1) - - = T FL L
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Lemma 16.11. The function ®(s) — =5 estends to a meromorphic function on Re(s) >
that is holomorphic on Re(s) > 1.

1
2

Proof. By Theorem 16.3, ((s) extends to a meromorphic function on Re(s) > 0, which
we also denote ((s), that has only a simple pole at s = 1 and no zeros on Re(s) > 1,
by Corollary 16.5. It follows that the logarithmic derivative ¢’(s)/{(s) is meromorphic on
Re(s) > 0, with only a simple pole at s = 1 of residue —1 (see §16.3.1 for standard facts
about the logarithmic derivative of a meromorphic function). In terms of the Euler product,
for Re(s) > 1 we have®

—g((j)) = (—log((s)) = (—bgH(l —p5)1> = (Zlog(l —p5)>
p~*logp log p 1 1
SRR - S-S () e

s
o \P

log p
zp:p (p*—1)

The sum on the RHS converges absolutely and locally uniformly to a holomorphic function
on Re(s) > 1/2. The LHS is meromorphic on Re(s) > 0, and on Re(s) > 1 it has only a
simple pole at s = 1 with residue 1. It follows that ®(s) — ﬁ extends to a meromorphic

function on Re(s) > 3 that is holomorphic on Re(s) > 1. O

Corollary 16.12. The functions ®(s + 1) — 2 and (LH)(s) = % — 1 both extend to

meromorphic functions on Re(s) > —% that are holomorphic on Re(s) > 0.

Proof. The first statement follows immediately from the lemma. For the second, note that

P(s+1) 1 1 1 1
v o N—=)—
s+1 s s+1< (s+1) s) s+1

is meromorphic on Re(s) > —2 and holomorphic on Re(s) > 0, since it is a sum of products
of such functions. O

The final step of the proof relies on the following analytic result due to Newman [§].

Theorem 16.13. Let f: R>o — R be a bounded piecewise continuous function, and suppose

its Laplace transform extends to a holomorphic function g(s) on Re(s) > 0. Then the integral
o0 .

Jo f(t)dt converges and is equal to g(0).

Proof. Without loss of generality we assume f(t) < 1 for all ¢ > 0. For 7 € Ry, define
g-(s) = [y f(t)e~*tdt, By definition [;° f(t)dt = lim, o g-(0), thus it suffices to prove
lim g, (0) = g(0).

T—00

For r > 0, let v, be the boundary of the region {s : [s| < r and Re(s) > —9,} with
0 > 0 chosen so that g is holomorphic on ~,; such a §, exists because g is holomorphic
on Re(s) > 0, hence on some open ball B<ys(,(iy) for each y € [—7,7], and we may take

5As is standard when computing logarithmic derivatives, we are taking the principal branch of the complex
logarithm and can safely ignore the negative real axis where it is not defined since we are assuming Re(s) > 1.
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O == inf{d(y) : y € [r,—r]}, which is positive because [—r,r] is compact. Each 7, is a
simple closed curve, and for each 7 > 0 the function h(s) == (g(s) — g-(s))e* (1 + fé) is
holomorphic on a region containing ,. Using Cauchy’s integral formula (Theorem 16.26)

to evaluate h(0) yields

1 1 s
_T:h:7<—7)”f—d. 2
00) =) = 0) = 5 [ (o) =)o (5 + 5 ) s )
We will show the LHS tends to 0 as 7 — oo by showing that for any ¢ > 0 we can set
r = 3/e > 0 so that the absolute value of the RHS is less than e for all sufficiently large 7.
Let ;7 denote the part of 7, in Re(s) > 0, a semicircle of radius r. The integrand is
absolutely bounded by 1/r on ~,", since for |s| = r and Re(s) > 0 we have

o 1 S B 00 L eRe(s)T r S
o6 = ae0)| - o (34 5| = | [ roea - S 2
S /Ooe— Re(s)tdt . eRe(S)T . 2Re(8)
- r r
B e~ Re(s)T eRe(s)T ) RQ(S)
Re(s) r r
=2/r?
Therefore ) . ) ) .
s
- . st [ = 2 < . L2
21 L; (g(s) gT(s))e <s + 7"2) ds| < 2T o r2 r 3)

Now let v~ be the part of 4, in Re(s) < 0, a truncated semi-circle. For any fixed r, the
first term g(s)e*7(s™! + sr72) in the integrand of (2) tends to 0 as 7 — oo for Re(s) < 0
and |s| < r. For the second term we note that since g-(s) is holomorphic on C, it makes no
difference if we instead integrate over the semicircle of radius r in Re(s) < 0. For |s| = r
and Re(s) < 0 we then have

T Re(s)T
o 1) o 22

' r S
< /Te— Re(s)tdt . 6Re(s)7’ (_2 Re(s))
— Jo T T
- 1—e™ Re(s)T eRe(s)T (_2 RG(S))
~ Re(s) T r

— 2/7"2 . (1 _ 6Re(s)’r),
where the factor (1 — eR°()7) on the RHS tends to 1 as 7 — oo since Re(s) < 0. We thus

obtain the bound 1/r + o(1) when we replace v, with v, in (3), and the RHS of (2) is
bounded by 2/r + o(1) as 7 — oo. It follows that for any € > 0, for r = 3/e > 0 we have

9(0) = g-(0)] <3/r=e

for all sufficiently large 7. Therefore lim;_,~ g-(0) = g(0) as desired. O
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Remark 16.14. Theorem 16.13 is an example of what is known as a Tauberian theorem.
For a piecewise continuous function f: R>o — R, its Laplace transform

Lf(s):= /0 T e,

is typically not defined on Re(s) < ¢, where c is the least ¢ for which f(t) = O(e!). Now
it may happen that the function £f has an analytic continuation to a larger domain; for
example, if f(t) = e’ then (Lf)(s) = -1 extends to a holomorphic function on C—{1}. But
plugging values of s with Re(s) < ¢ into the integral usually does not work; in our f(t) = e
example, the integral diverges on Re(s) < 1. The theorem says that when Lf extends to a
holomorphic function on the entire half-plane Re(s) > 0, its value at s = 0 is exactly what
we would get by simply plugging 0 into the integral defining Lf.

More generally, Tauberian theorems refer to results related to transforms f — 7 (f) that
allow us to deduce properties of f (such as the convergence of fooo f(t)dt) from properties
of T(f) (such as analytic continuation to Re(s) > 0). The term “Tauberian" was coined by
Hardy and Littlewood and refers to Alfred Tauber, who proved a theorem of this type as a
partial converse to a theorem of Abel.

Theorem 16.15 (PRIME NUMBER THEOREM). 7(x) ~ =

logx*

Proof. H(t) = 9(et)e™t — 1 is piecewise continuous and bounded, by Lemma 16.7, and its
Laplace transform extends to a holomorphic function on Re(s) > 0, by Corollary 16.12.
Theorem 16.13 then implies that the integral

/OOO H(t)dt = /OOO (ﬁ(et)e_t - 1)dt

converges. Replacing ¢ with log z, we see that

/IOO (ﬁ(x)i—l)f:/ldex

converges. Lemma 16.8 implies ¥(z) ~ x, equivalently, 7(z) ~ fogz> Py Theorem 16.6. [

One disadvantage of our proof is that it does not give us an error term. Using more
sophisticated methods, Korobov [6] and Vinogradov [14] independently obtained the bound

m(x) = Li(z) + O (exp ((log i)3/5+o(1))> ’

in which we note that the error term is bounded by O(z/(logx)™) for all n but not by
O(x'7€) for any ¢ > 0. Assuming the Riemann Hypothesis, which states that the zeros of

¢(s) in the critical strip 0 < Re(s) < 1 all lie on the line Re(s) = %, one can prove

m(x) = Li(z) + O(z/2oM),

More generally, if we knew that ((s) has no zeros in the critical strip with real part greater
than ¢, for some ¢ > 1/2 strictly less than 1, we could prove m(z) = Li(z) + O(z¢toM).

There thus remains a large gap between what we can prove about the distribution of
prime numbers and what we believe to be true. Remarkably, other than refinements to the
o(1) term appearing in the Korobov-Vinogradov bound, essentially no progress has been
made on this problem in the last 60 years.

18.785 Fall 2025, Lecture #16, Page 9



16.3 A quick recap of some basic complex analysis

The complex numbers C are a topological field under the distance metric d(z,y) = |z — y|
induced by the standard absolute value |z| := /2%, which is also a norm on C as an R-
vector space; all references to the topology on C (open, compact, convergence, limits, etc.)
are made with this understanding.

16.3.1 Glossary of terms and standard theorems

Let f and g denote complex functions defined on an open subset of C.

f(z)=f(z0)
0

o fis differentiable at zg if lim,_, exists.

zZ—Zz

e f is holomorphic at zg if it is differentiable on an open neighborhood of z.

f is analytic at zg if there is an open neighborhood of zg in which f can be defined by
a power series f(z) =, _,an(z— 20)"; equivalently, f is infinitely differentiable and
has a convergent Taylor series on an open neighborhood of zj.

e Theorem: f is holomorphic at zy if and only if it is analytic at zp.

e Theorem: If C is a connected set containing a nonempty open set U and f and g are
holomorphic on C' with fjiy = gy, then fic = g|c.

e With U and C as above, if f is holomorphic on U and ¢ is holomorphic on C' with
fiy = gju, then g is the (unique) analytic continuation of f to C and f extends to g.

e If f is holomorphic on a punctured open neighborhood of zp and |f(z)| — oo as z — 2o
then zg is a pole of f; note that the set of poles of f is necessarily a discrete set.

e f is meromorphic at zy if it is holomorphic at zy or has zy as a pole.

e Theorem: If f is meromorphic at zy then it can be defined by a Laurent series
f(2) = 2 5 @n(2 — 20)™ that converges on an open punctured neighborhood of 2.

e The order of vanishing ord,,(f) of a nonzero function f that is meromorphic at z is
the least index n of the nonzero coefficients a, in its Laurent series expansion at zg.
Thus zp is a pole of f iff ord,,(f) < 0 and zp is a zero of f iff ord,,(f) > 0.

o If ord,,(f) =1 then zq is a simple zero of f, and if ord,,(f) = —1 it is a simple pole.

o The residue res.,(f) of a function f meromorphic at zg is the coefficient a_; in its
Laurent series expansion f(z) = ZnZTLO an(z — zp)™ at 2.

e Theorem: If zj is a simple pole of f then res,,(f) = lim,_.,(z — 2z0) f(2).

e Theorem: If f is meromorphic on a set S then so is its logarithmic derivative f'/f,
and f’/f has only simple poles in S and res,,(f’/f) = ord,,(f) for all zp € S. In
particular the poles of f’/f are precisely the zeros and poles of f.

16.3.2 Convergence

Recall that a series Y > | a,, of complex numbers converges absolutely if the series Y |an| of
nonnegative real numbers converges. An equivalent definition is that the function a(n) := a,
is integrable with respect to the counting measure p on the set of positive integers N. Indeed,
if the series is absolutely convergent then

nfjlan: [ atwin
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and if the series is not absolutely convergent, the integral is not defined. Absolute conver-
gence is effectively built-in to the definition of the Lebesgue integral, which requires that
in order for the function a(n) = z(n) + iy(n) to be integrable, the positive real functions
|x(n)| and |y(n)| must both be integrable (summable), and separately computes sums of the
positive and negative subsequences of (z(n)) and (y(n)) as suprema over finite subsets.

The measure-theoretic perspective has some distinct advantages. It makes it immediately
clear that we may replace the index set N with any set of the same cardinality, since the
counting measure depends only on the cardinality of N, not its ordering. We are thus free to
sum over any countable index set, including Z, Q, any finite product of countable sets, and
any countable coproduct of countable sets (such as countable direct sums of Z); such sums
are ubiquitous in number theory and many cannot be meaningfully interpreted as limits of
partial sums in the usual sense, since this assumes that the index set is well ordered (not
the case with Q, for example). The measure-theoretic view also makes it clear that we may
convert any absolutely convergent sum of the form )y, into an iterated sum ) > (or
vice versa), via Fubini’s theorem.

We say that an infinite product [], a, of nonzero complex numbers is absolutely con-
vergent when the sum Y, loga, is, in which case [],, a, := exp(3>_,, logay).” This implies
that an absolutely convergent product cannot converge to zero, and the sequence (a,,) must
converge to 1 (no matter how we order the a,). All of our remarks above about absolutely
convergent series apply to absolutely convergent products as well.

A series or product of complex functions f,(z) is absolutely convergent on S if the series
or product of complex numbers f,(zg) is absolutely convergent for all zy € S.

Definition 16.16. A sequence of complex functions (f,,) converges uniformly on S if there is
a function f such that for every e > 0 there is an integer N for which sup,cg |fn(2)—f(2)] <€
for all n > N. The sequence (f,) converges locally uniformly on S if every zy € S has an
open neighborhood U for which (f,,) converges uniformly on UNS. When applied to a series
of functions these terms refer to the sequence of partial sums.

Because C is locally compact, locally uniform convergence is the same thing as compact
convergence: a sequence of functions converges locally uniformly on S if and only if it
converges uniformly on every compact subset of S.

Theorem 16.17. A sequence or series of holomorphic functions f, that converges locally
uniformly on an open set U converges to a holomorphic function f on U, and the sequence
or series of derivatives f], then converges locally uniformly to f' (and if none of the f, has
a zero in U and f # 0, then f has no zeros in U ).

Proof. See |3, Thm.II1.1.3] and [3, Thm. II1.7.2]. O

Definition 16.18. A series of complex functions ), fn(z) converges normally on a set S
if > 1 fnll = 22, sub.cg | fa(2)| converges. The series ) fn(z) converges locally normally
on S if every zp € S has an open neighborhood U on which ), f,(2) converges normally.

Theorem 16.19 (WEIERSTRASS M-TEST). FEvery locally normally convergent series of
functions converges absolutely and locally uniformly. Moreover, a series Y, fn of holomor-
phic functions on S that converges locally normally converges to a holomorphic function f
on S, and then Y, fr, converges locally normally to f'.

"In this definition we use the principal branch of log z := log |z| 4 i Arg z with Argz € (—m, 7).
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Proof. See [3, Thm. III.1.6]. O

Remark 16.20. To show a series ), f, is locally normally convergent on a set S amounts
to proving that for every zg € S there is an open neighborhood U of 2y and a sequence of
real numbers (My,) such that |f,(z)] < M, for z € UN S and ), M, < oo, whence the
term “M-test".

16.3.3 Contour integration

We shall restrict our attention to integrals along contours defined by piecewise-smooth pa-
rameterized curves; this covers all the cases we shall need.

Definition 16.21. A parameterized curve is a continuous function v: [a,b] — C whose
domain is a compact interval [a,b] € R. We say that v is smooth if it has a continuous
nonzero derivative on [a,b], and piecewise-smooth if [a,b] can be partitioned into finitely
many subintervals on which the restriction of v is smooth. We say that v is closed if
v(a) = v(b), and simple if it is injective on [a,b) and (a, b]. Henceforth we will use the term
curve to refer to any piecewise-smooth parameterized curve v, or to its oriented image in
the complex plane (directed from v(a) to (b)), which we may also denote 7.

Definition 16.22. Let f: 2 — C be a continuous function and let v be a curve in Q. We
define the contour integral

b
z)dz == '(t)dt,
L f(2) / ) (1)t

whenever the integral on the RHS (which is defined as a Riemann sum in the usual way)
converges. Whether fv f(2)dz converges, and if so, to what value, does not depend on the
parameterization of ~: if 4" is another parameterized curve with the same (oriented) image

as 7y, then [, f(z)dz = [ f(z)dz.
We have the following analog of the fundamental theorem of calculus.

Theorem 16.23. Let v: [a,b] — C be a curve in an open set Q and let f: Q — C be a
holomorphic function Then

Proof. See |2, Prop.4.12]. O]

Recall that the Jordan curve theorem implies that every simple closed curve 7 parti-
tions C into two components, one of which we may unambiguously designate as the interior
(the one on the left as we travel along our oriented curve). We say that v is contained in an
open set U if both « and its interior lie in U. The interior of « is a simply connected set, and
if an open set U contains ~ then it contains a simply connected open set that contains ~.

Theorem 16.24 (CAUCHY’S THEOREM). Let U be an open set containing a simple closed
curve . For any function f that is holomorphic on U we have

/vf(z)dz ~0.
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Proof. See |2, Thm. 8.6] (we can restrict U to a simply connected set). O
Cauchy’s theorem generalizes to meromorphic functions.

Theorem 16.25 (CAUCHY RESIDUE FORMULA). Let U be an open set containing a simple
closed curve v. Let f be a function that is meromorphic on U, let z1, ..., z, be the poles of
f that lie in the interior of v, and suppose that no pole of f lies on . Then

/f(z)dz = 2772'Zreszi(f).
g i=1

Proof. See |2, Thm. 10.5] (we can restrict U to a simply connected set). O

To see where the 27 comes from, consider f7 % with y(t) = €' for t € [0,27]. In general one
weights residues by a corresponding winding number, but the winding number of a simple
closed curve about a point in its interior is always 1.

Theorem 16.26 (CAUCHY’S INTEGRAL FORMULA). Let U be an open set containing a
simple closed curve . For any function f holomorphic on U and a in the interior of v,

a) = L 1(z) dz.
s =5 |

21 zZ—a

Proof. Apply Cauchy’s residue formula to g(z) = f(z)/(z — a); the only poles of ¢ in the
interior of v are a simple pole at z = a with res,(g) = f(a). O

Cauchy’s residue formula can also be used to recover the coefficients f(™(a)/n! appearing
in the Laurent series expansion of a meromorphic function at a (apply it to f(z)/(z—a)"*!).
One of many useful consequences of this is Liouville’s theorem, which can be proved by
showing that the Laurent series expansion of a bounded holomorphic function on C about
any point has only one nonzero coefficient (the constant coefficient).

Theorem 16.27 (LIOUVILLE’S THEOREM). Bounded entire functions are constant.
Proof. See |2, Thm. 5.10]. O
We also have the following converse of Cauchy’s theorem.

Theorem 16.28 (MORERA’S THEOREM). Let f be a continuous function on an open set
U, and suppose that for every simple closed curve v contained in U we have

[yf(z)dz = 0.

Then f is holomorphic on U.
Proof. See [3, Thm.II.3.5]. O
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