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15 Dirichlet’s unit theorem

Let K be a number field. The two main theorems of classical algebraic number theory are:

• The class group clOK is finite.

• The unit group O×
K is finitely generated.

We proved the first result in the previous lecture; in this lecture we will prove the second,
which is due to Dirichlet. Dirichlet (1805–1859) died five years before Minkowski (1864–
1909) was born, so he did not have Minkowski’s lattice point theorem (Theorem 14.13) to
work with. But we do, and this simplifies the proof considerably.

15.1 The group of Arakelov divisors of a global field

Let K be a global field. As in previous lectures, we use MK to denote the set of places
(equivalence classes of absolute values) of K. For each place v ∈ MK we use Kv to denote
the completion of K with respect to v (a local field), and we have a normalized absolute
value ∥ ∥v : Kv → R≥0 defined by

∥x∥v :=
µ(xS)

µ(S)
,

where µ is a Haar measure on Kv and S is any measurable set of positive finite measure.
This definition does not depend on the particular choice of µ or S; it is determined by the
topology of Kv, which is an invariant of the place v (see Definition 13.17).

When Kv is nonarchimedean its topology is induced by a discrete valuation that we also
denote v, and we use kv to denote the residue field (the quotient of the valuation ring by its
maximal ideal), which is a finite field (see Proposition 9.6). In Lecture 13 we showed that

∥x∥v =


|x|v = (#kv)

−v(x) if v is nonarchimedean,
|x|R if Kv ≃ R,
|x|2C if Kv ≃ C.

While ∥ ∥v is not always an absolute value (when Kv ≃ C it does not satisfy the triangle
inequality), it is always multiplicative and defines a continuous homomorphism K×

v → R×
>0

of locally compact groups that is surjective precisely when v is archimedean.

Definition 15.1. Let K be a global field. A (multiplicative) Arakelov divisor is a sequence
of positive real numbers c = (cv) indexed by v ∈ MK with all but finitely many cv = 1
and cv ∈ ∥K×

v ∥ := {∥x∥v : x ∈ K×
v }.1 The set of Arakelov divisors DivK forms an abelian

group under pointwise multiplication (cv)(dv) := (cvdv). The multiplicative group K× is
canonically embedded in DivK via the map x 7→ (∥x∥v), where it forms the subgroup
PrincK of principal Arakelov divisors.

Remark 15.2. Many authors define DivK as an additive group by taking logarithms (for
nonarchimedean places v, one replaces cv = (#kv)

−v(c) with the integer v(c)), as in [5] for
example. The multiplicative convention we use here is due to Weil [6] and is better suited
for our application to the multiplicative group O×

K .2
1When v is archimedean we have ∥K×

v ∥ = R>0 and this constraint is automatically satisfied.
2Weil calls them K-divisors [6, p. 422], while Lang uses MK-divisors [2, Ch.2 §5]. Neukirch works with

additive Arakelov divisors that he also calls replete divisors [3, III.1.8].
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Definition 15.3. Let K be a global field. The size of an Arakelov divisor c is

∥c∥ :=
∏

v∈MK

cv ∈ R>0.

The map DivK → R×
>0 defined by c 7→ ∥c∥ is a group homomorphism whose kernel contains

PrincK (by the product formula, Theorem 13.21). Corresponding to each Arakelov divisor c
is a subset L(c) of K defined by

L(c) := {x ∈ K : ∥x∥v ≤ cv for all v ∈MK}.

and a nonzero fractional ideal of OK defined by

Ic :=
∏
v∤∞

qv(c)v ,

where qv := {a ∈ OK : v(a) > 0} is the prime ideal corresponding to the discrete valuation v
that induces ∥ ∥v, and v(c) := − log#kv(cv) ∈ Z (so v(x) = v(c) if and only if ∥x∥v = cv).
We have L(c) ⊆ Ic ⊆ K, and the map c 7→ Ic defines a group homomorphism DivK → IK .
Observe that to specify an Arakelov divisor c it suffices to specify the fractional ideal Ic and
the real numbers cv > 0 for v|∞ (a finite set).

Remark 15.4. The quotient of DivK by the subgroup PrincK is denoted PicK. The
homomorphism DivK → IK sends principal Arakelov divisors to principal fractional ideals,
thus the ideal class group clOK is a quotient of PicK. We have a commutative diagram

DivK IK

PicK clOK .

←→

←→ ←→

←→

The Arakelov divisors of size 1 form a subgroup of DivK denoted Div0K that contains
PrincK and surjects onto IK via the map DivK → IK (we are free to choose any Ic ∈ IK
because we can always choose the cv at infinite places to ensure ∥c∥ = 1). The quotient
of Div0K by PrincK is the Arakelov class group Pic0K, which also admits the ideal class
group clOK as a quotient.3 As we shall see, Pic0K is a compact topological group that
is finite when K is a global function field. See [5] for more background on Arakelov class
groups and how to compute them.

Remark 15.5. The set L(c) associated to an Arakelov divisor c is directly analogous to the
Riemann-Roch space

L(D) := {f ∈ k(X) : vP (f) ≥ −nP for all closed points P ∈ X},

associated to a divisor D ∈ DivX of a smooth projective curve X/k, which is a k-vector
space of finite dimension. Recall that a divisor is a formal sum D =

∑
nPP over the closed

points (Gal(k̄/k)-orbits) of the curve X with nP ∈ Z and all but finitely many nP zero.
If k is a finite field then K = k(X) is a global field and there is a one-to-one correspon-

dence between closed points of X and places of K, and a normalized absolute value ∥ ∥P for
3Neukirch uses CH1(OK)0 to denote the (additive) Arakelov class group [3, III.1.10].
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each closed point P (indeed, one can take this as a definition). The constraint vP (f) ≥ −nP

is equivalent to ∥f∥P ≤ (#kP )
nP , where kP is the residue field corresponding to P . If we put

cP := (#kP )
nP then c = (cP ) is an Arakelov divisor with L(c) = L(D). The Riemann-Roch

space L(D) is finite (since k is finite), and we will prove below that L(c) is also finite (but
note that when K is a number field the finite set L(c) is not a vector space).

In §6.3 we described the divisor group DivX as the additive analog of the ideal group
of the ring of integers A = OK , equivalently, the coordinate ring A = k[X], of the global
function field K = k(X). When X is a smooth projective curve this is not a perfect analogy
because divisors in DivX may include terms corresponding to “points at infinity” which do
not correspond to a fractional ideal of A. The group of Arakelov divisors DivK takes these
infinite places into account and is a better analog of DivX than IK when X is a smooth
projective curve over a finite field and K is its function field.

We now specialize to the case where K is a number field. Recall that the absolute norm
N(I) of a fractional ideal of OK is the unique t ∈ Q>0 for which NOK/Z(I) = (t). We have

N(Ic) =
∏
v∤∞

N(qv)
v(c) =

∏
v∤∞

(#kv)
v(c) =

∏
v∤∞

c−1
v ,

and therefore
∥c∥ = N(Ic)

−1
∏
v|∞

cv. (1)

We also define
Rc := {x ∈ KR : |x|v ≤ cv for all v|∞},

which we note is a compact, convex, symmetric subset of the real vector space

KR := K ⊗Q R ≃ Rr × Cs,

where r is the number of real places of K, and s is the number of complex places. If we
view Ic and L(c) as subsets of KR via the canonical embedding K ↪→ KR, then

L(c) = Ic ∩Rc.

Example 15.6. Let K = Q(i). The ideal (2+ i) lying above 5 is prime and corresponds to
a finite place v1, and there is a unique infinite place v2|∞ which is complex. Let cv1 = 1/5,
let cv2 = 10, and set cv = 1 for all other v ∈MK . We then have Ic = (2 + i) and the image
of L(c) = {x ∈ (2 + i) : ∥x∥v2 ≤ 10} under the canonical embedding K ↪→ KR ≃ C is the
set of lattice points in the image of the ideal Ic that lie within the circle Rc ⊆ KR ≃ C of
radius

√
10. Note that ∥ ∥v2 = | |2C is the square of the usual absolute value on C, which is

why the circle has radius
√
10 rather than 10.
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√
10

The set L(c) is clearly finite; it contains exactly 9 points.

Lemma 15.7. Let c be an Arakelov divisor of a global field K. The set L(c) is finite.

Proof. We assume K is a number field; see Problem Set 7 for the function field case. The
fractional ideal Ic is a lattice in KR (under the canonical embedding K ↪→ KR), and is thus
a closed discrete subset of KR (recall from Remark 14.5 that lattices are closed). In KR
we may view L(c) = Ic ∩Rc as the intersection of a discrete closed set with a compact set,
which is a compact discrete set and therefore finite.

Corollary 15.8. Let K be a global field, and let µK denote the torsion subgroup of K×

(equivalently, the roots of unity in K). The group µK is finite and equal to the kernel of the
map K× → DivK defined by x 7→ (∥x∥v); it is also the torsion subgroup of O×

K .

Proof. Each ζ ∈ µK satisfies ζn = 1 for some positive integer n. For every place v ∈MK we
have ∥ζn∥v = ∥ζ∥nv = 1, and therefore ∥ζ∥v = 1. It follows that µK ⊆ ker(K× → DivK).
Let c be the Arakelov divisor with cv = 1 for all v ∈ MK . Then ker(K× → DivK) ⊆ L(c)
is a finite subgroup of K× and is therefore contained in the torsion subgroup µK . Every
element of µK is an algebraic integer (in fact a root of xn − 1), so µK ⊆ O×

K .

It follows from Corollary 15.8 that for any global field K we have the following exact
sequence of abelian groups

1 −→ µK −→ K× −→ DivK −→ PicK −→ 1.

Proposition 15.9. Let K be a number field with s complex places, define

BK :=

(
2

π

)s√
|DK |.

If c is an Arakelov divisor of size ∥c∥ > BK then L(c) contains an element of K×.
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Proof. Our strategy is to apply Minkowski’s lattice point theorem (see Theorem 14.13) to
the convex symmetric set Rc and the lattice Ic ⊆ K ⊆ KR; we just need to show that
if ∥c∥ > BK then the ratio of the Haar measure of Rc to the covolume of Ic exceeds 2n,
where n = r + 2s is the degree of K (which is the real dimension of KR). As defined in
§14.2, we normalize the Haar measure µ on the locally compact group KR ≃ Rr ×Cs ≃ Rn

so that µ(S) = 2sµRn(S) for measurable S ⊆ KR. For each real place v, the constraint
∥x∥v = |x|R ≤ cv contributes a factor of 2cv to µ(Rc), and for each complex place v the
constraint ∥x∥v = |x|2C ≤ cv contributes a factor of πcv (the area of a circle of radius

√
cv).

We may then compute

µ(Rc)

covol(Ic)
=

2sµRn(Rc)

covol(Ic)
=

2s
(∏

v real 2cv

)(∏
v complex πcv

)
covol(Ic)

=
2r(2π)s

∏
v|∞ cv√

|DK |N(Ic)
=

2r(2π)s√
|DK |

∥c∥ = ∥c∥
BK

2n > 2n

where we have used Corollary 14.17 and (1) in the second line. Theorem 14.13 implies that
L(c) = Rc∩Ic contains a nonzero element (which lies in K× ⊆ KR, since Ic ⊆ K ⊆ KR).

Remark 15.10. The bound in Proposition 15.9 can be turned into an asymptotic, that is,
for c ∈ DivK, as ∥c∥ → ∞ we have

#L(c) =

(
2r(2π)s√
|DK |

+ o(1)

)
∥c∥. (2)

This can be viewed as a multiplicative analog of the Riemann-Roch theorem for function
fields, which states that for divisors D =

∑
nPP , as degD :=

∑
nP →∞ we have

dimL(D) = 1− g + degD. (3)

The nonnegative integer g is the genus, an important invariant of a function field that is
often defined by (3); one could similarly use (2) to define the nonnegative integer |DK |.
For all sufficiently large ∥c∥ the o(1) error term will be small enough so that (2) uniquely
determines |DK |. Conversely, with a bit more work one can adapt the proofs of Lemma 15.7
and Proposition 15.9 to give a proof of the Riemann-Roch theorem for global function fields.

15.2 The unit group of a number field

Let K be a number field with ring of integers OK . The multiplicative group O×
K is the unit

group of OK , and may also be called the unit group of K. Of course the unit group of K
(as a ring) is K×, but this is typically referred to as the multiplicative group of K.

As a ring, the finite étale R-algebra KR = K ⊗Q R also has a unit group, and we have
an isomorphism of topological groups4

K×
R ≃

∏
v|∞

K×
v ≃

∏
real v|∞

R×
∏

complex v|∞

C× = (R×)r × (C×)s.

4The additive group of KR is isomorphic to Rn as a topological group (and R-vector space), a fact we
have used in our study of lattices in KR. But as topological rings KR ≃ Rr × Cs ̸≃ Rn unless s = 0.
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Writing elements of K×
R as vectors x = (xv) indexed by the infinite places v of K, we now

define a surjective homomorphism of locally compact groups

Log : K×
R → Rr+s

(xv) 7→ (log ∥xv∥v).

It is surjective and continuous because each of the maps xv 7→ log ∥xv∥v is, and it is a group
homomorphism because

Log(xy)=(log ∥xvyv∥v)=(log ∥xv∥v + log ∥yv∥v)=(log ∥xv∥v) + (log ∥yv∥v)= Log x+Log y;

here we have used the fact that the normalized absolute value ∥ ∥v is multiplicative.
Recall from Corollary 13.7 that there is a one-to-one correspondence between the infinite

places of K and the Gal(C/R)-orbits of HomQ(K,C). For each v|∞ let us now pick a
representative σv of its corresponding Gal(C/R)-orbit in HomQ(K,C); for real places v
there is a unique choice for σv, while for complex places there are two choices, σv and its
complex conjugate σ̄v. Regardless of our choices, we then have

∥x∥v =

{
|σv(x)|R if v|∞ is real
|σv(x)σ̄v(x)|R if v|∞ is complex.

The absolute norm N: K× → Q×
>0 extends naturally to a continuous homomorphism of

locally compact groups

N: K×
R → R×

>0

(xv) 7→
∏
v|∞

∥xv∥v

which is compatible with the canonical embedding K× ↪→ K×
R . Indeed, we have

N(x) =
∣∣NK/Q(x)

∣∣ = ∣∣∣∣∣∏
σ

σ(x)

∣∣∣∣∣
R

=
∏
v|∞

∥x∥v.

We thus have a commutative diagram

K× K×
R Rr+s

Q×
>0 R×

>0 R,

←↩ →

←→ N

←→Log

←→ N ←→ T

←↩ → ←→log

where T: Rr+s → R is defined by T(x) =
∑

i xi. We may view Log as a map from K× to
Rr+s via the embedding K× ↪→ K×

R , and similarly view N as a map from K× to R×
>0.

We can succinctly summarize the commutativity of the above diagram by the identity

T(Log x) = logN(x),

which holds for all x ∈ K×, and all x ∈ K×
R . The norm of a unit in OK must be a unit in

Z, hence have absolute value 1. Thus O×
K lies in the kernel of the map x 7→ log N(x) and
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therefore also in the kernel of the map x 7→ T(Log x). It follows that Log(O×
K) is a subgroup

of the trace zero hyperplane

Rr+s
0 := {x ∈ Rr+s : T(x) = 0},

which we note is both a subgroup of Rr+s and an R-vector subspace of dimension r+ s− 1.
The proof of Dirichlet’s unit theorem amounts to showing that Log(O×

K) is a lattice in Rr+s
0 .

Proposition 15.11. Let K be a number field with r real and s complex places, and let ΛK

be the image of the unit group O×
K in Rr+s

0 under the Log map. The following hold:

(1) We have a split exact sequence of finitely generated abelian groups

1→ µK → O×
K

Log−→ ΛK → 0;

(2) ΛK is a lattice in the trace zero hyperplane Rr+s
0 .

Here µK is not a Haar measure, it denotes the group of roots of unity in K, all of which
are clearly torsion elements of O×

K , and any torsion element of O×
K is clearly a root of unity.

Proof. (1) We first show exactness. Let Z be the kernel of O×
K

Log−→ ΛK . Clearly µK ⊆ Z,
since ΛK ⊆ Rr+s

0 is torsion free. Let c be the Arakelov divisor with Ic = OK and cv = 2 for
v|∞, so that

L(c) = {x ∈ OK : ∥x∥v ≤ 2 for all v|∞}.

For x ∈ O×
K we have

x ∈ L(c)⇐⇒ Log(x) ∈ {z ∈ Rr+s : zi ≤ log 2}.

The set on the RHS includes the zero vector, thus Z ⊆ L(c), which by Lemma 15.7 is a
finite set. As a finite subgroup of O×

K , we must have Z ⊆ µK , so Z = µK and the sequence
is exact (the map from O×

K to ΛK is surjective by the definition of ΛK).
We now show the sequence splits. Note that ΛK ∩ Log(Rc) = Log

(
O×

K ∩ L(c)
)

is finite,
since L(c) is finite. It follows that 0 is an isolated point of ΛK in Rr+s, and in Rr+s

0 , so ΛK

is a discrete subgroup of Rr+s
0 ≃ Rr+s−1 and must be finitely generated, by Lemma 14.3.

It follows that O×
K is finitely generated, since it lies in a short exact sequence whose left

and right terms are finitely generated (recall that µK is finite, by Corollary 15.8). By the
structure theorem for finitely generated abelian groups, the sequence must split, since µK

is the torsion subgroup of O×
K .

(2) Having proved (1) it remains only to show that ΛK spans Rr+s
0 . Let V be the subspace

of Rr+s
0 spanned by ΛK and suppose for the sake of contradiction that dimV < dimRr+s

0 .
The orthogonal subspace V ⊥ then contains a unit vector u, and for every λ ∈ R>0 the open
ball B<λ(λu) does not intersect ΛK . Thus Rr+s

0 contains points arbitrarily far away from
every point in ΛK (with respect to any norm on Rr+s

0 ⊆ Rr+s). To obtain a contradiction
it is enough to show that there is a constant M ∈ R>0 such that for every h ∈ Rr+s

0 there
is an ℓ ∈ ΛK for which ∥h − ℓ∥ := maxi |hi − ℓi| < M (here we are using ∥ ∥ to denote the
sup norm on the R-vector space Rr+s).

Let us fix a real number B > BK , where BK is as in Proposition 15.9, so that for every
c ∈ DivK with ∥c∥ ≥ B the set L(c) contains a nonzero element, and fix a vector b ∈ Rr+s

with nonnegative components bi such that T(b) =
∑

i bi = logB. Let (α1), . . . , (αm) be the
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list of all nonzero principal ideals with N(αj) ≤ B (by Lemma 14.21 this is a finite list). Let
M be twice the maximum of (r + s)B and maxj ∥Log(αj)∥.

Now let h ∈ Rr+s
0 , and define c ∈ DivK by Ic := OK and cv := exp(hi + bi) for v|∞,

where i is the coordinate in Rr+s corresponding to v under the Log map. We have

∥c∥ =
∏
v

cv = exp
(∑

i

(hi+ bi)
)
= expT(h+ b) = exp(T(h)+T(b)) = expT(b) = B > BK ,

thus L(c) contains a nonzero γ ∈ Ic∩K = OK , and g = Log(γ) satisfies gi ≤ log cv = hi+bi.
We also have T(g) = T(Log γ) = logN(γ) ≥ 0, since N(γ) ≥ 1 for all nonzero γ ∈ OK . The
vector w := g−h ∈ Rr+s satisfies

∑
iwi = T(w) = T(g)−T(h) = T(g) ≥ 0 and wi ≤ bi ≤ B

which together imply |wi| ≤ (r + s)B, so ∥g − h∥ = ∥w∥ ≤M/2. We also have

log N(γ) = T(Log(γ)) ≤ T(h+ b) = T(b) = logB,

so N(γ) ≤ B and (γ) = (αj) for one of the αj fixed above. Thus γ/αj ∈ O×
K is a unit, and

ℓ := Log(γ/αj) = Log(γ)− Log(αj) ∈ ΛK

satisfies ∥g − ℓ∥ = ∥Log(αj)∥ ≤M/2. We then have

∥h− ℓ∥ ≤ ∥h− g∥+ ∥g − ℓ∥ ≤M

as desired (by the triangle inequality for the sup-norm).

Dirichlet’s unit theorem follows immediately from Proposition 15.11.

Theorem 15.12 (Dirichlet’s Unit Theorem). Let K be a number field with r real and s
complex places. Then O×

K ≃ µK × Zr+s−1 is a finitely generated abelian group.

Proof. The image of the torsion-free part of the unit group O×
K under the Log map is the

lattice ΛK in the trace-zero hyperplane Rr+s
0 , which has dimension r + s− 1.

We can restate this theorem in a more general form so that it applies to all global fields.
As usual, when we consider global function fields we view them as extensions of Fq(t), with q
chosen so that K ∩ Fq = Fq and t chosen so that K/Fq(t) is separable.

Theorem 15.13 (Unit Theorem for Global Fields). Let K/F be a finite separable
extension, with F = Q or F = Fq(t), let S ⊆ MK be the set of places of K lying above the
unique infinite place of F , and define O×

K,S := {x ∈ K× : v(x) = 0 for all v ∈ MK − S}.
Then O×

K,S ≃ µK × Z#S−1 is a finitely generated abelian group.

Proof. For F = Q we have #S = r + s and this is Dirichlet’s unit theorem; for F = Fq(t),
see [4, Prop. 14.1].

Remark 15.14. We should be careful how we interpret 15.13 in the case F = Fq(t). By
applying an automorphism of Fq(t) (replace t by t−a for some a ∈ Fq, say) we can move any
degree-one place to infinity. This will change the group O×

K and may change the number of
places of K above our new point at infinity. In contrast to the number field setting (where
the place of Q at infinity is invariant because it is the only archimedean place) the ring OK

and the set S are not intrinsic to K in the function field setting; they depend on the choice
of the separating element t used to construct the separable extension K/Fq(t).
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Example 15.15. Let K = Q(
√
d) be a quadratic field with d ̸= 1 squarefree. If d < 0 then

r = 0 and s = 1, in which case the unit group O×
K has rank 0 and O×

K = µK is finite.
If d > 0 then K = Q(

√
d) ⊆ R is a real quadratic field with r = 2 and s = 0, and the

unit group O×
K has rank 1. The only torsion elements of O×

K ⊆ R are ±1, thus

O×
K = {±ϵn : n ∈ Z},

for some ϵ ∈ O×
K of infinite order. We may assume ϵ > 1: if ϵ < 0 then replace ϵ by −ϵ, and

if ϵ < 1 then replace ϵ by ϵ−1 (we cannot have ϵ = 1 ∈ µK).
The assumption ϵ > 1 uniquely determines ϵ. This follows from the fact that for ϵ > 1

we have |ϵn| > |ϵ| for all n > 1 and |ϵn| ≤ 1 for all n ≤ 0.
This unique ϵ is the fundamental unit of OK (and of K). To explicitly determine ϵ, let

D = discOK (so D = d if d ≡ 1 mod 4 and D = 4d otherwise). Every element of OK can
be uniquely written as

x+ y
√
D

2
,

where x and Dy are integers of the same parity. In the case of a unit we must have
N(x+y

√
D

2 ) = ±1, equivalently,
x2 −Dy2 = ±4. (4)

Conversely, any solution (x, y) ∈ Z2 to the above equation has x and Dy with the same
parity and corresponds to an element of O×

K . The constraint ϵ = x+y
√
D

2 > 1 forces x, y > 0.

This follows from the fact that ϵ−1 = |x−y
√
D|

2 < 1, so −2 < x− y
√
D < 2, and adding and

subtracting x+ y
√
D > 2 shows x > 0 and y > 0 (respectively).

Thus we need only consider positive integer solutions (x, y) to (4). Among such solutions,
x1 + y1

√
D < x2 + y2

√
D implies x1 < x2, so the solution that minimizes x will give us the

fundamental unit ϵ.
Equation (4) is a (generalized) Pell equation. Solving the Pell equation is a well-studied

problem and there are a number of algorithms for doing so. The most well known uses
continued fractions and is explored on Problem Set 7; this is not the most efficient method,
but it is dramatically faster than an exhaustive search; see [1] for a comprehensive survey. A
remarkable feature of this problem is that even when D is quite small, the smallest solution
to (4) may be very large. For example, when D = d = 889 the fundamental unit is

ϵ =
26463949435607314430 + 887572376826907008

√
889

2
.

15.3 The regulator of a number field

Let K be a number field with r real places and s complex places, and let Rr+s
0 be the

trace-zero hyperplane in Rr+s. Choose any coordinate projection π : Rr+s → Rr+s−1, and
use the induced isomorphism Rr+s

0
∼−→ Rr+s−1 to endow Rr+s

0 with a Euclidean measure.
By Proposition 15.11, the image ΛK of the unit group O×

K is a lattice in Rr+s
0 , and we can

measure its covolume using the Euclidean measure on Rr+s
0 .

Definition 15.16. The regulator of a number field K is

RK := covol(π(Log(O×
K))) ∈ R>0,
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where π : Rr+s → Rr+s−1 is any coordinate projection; the value of RK does not depend
on the choice of π, since we use π to normalize the Haar measure on Rr+s

0 ≃ Rr+s−1. If
ϵ1, . . . , ϵr+s−1 is a fundamental system of units (a Z-basis for the free part of O×

K), then RK

can be computed as the absolute value of the determinant of any (r + s − 1) × (r + s − 1)
minor of the (r + s)× (r + s− 1) matrix whose columns are the vectors Log(ϵi) ∈ Rr+s.

Example 15.17. If K is a real quadratic field with absolute discriminant D and funda-
mental unit ϵ = x+y

√
D

2 , then r + s = 2 and the product of the two real embeddings
σ1(ϵ), σ2(ϵ) ∈ R is N(ϵ) = ±1. Thus log |σ2(ϵ)| = − log |σ1(ϵ)| and

Log(ϵ) = (log |σ1(ϵ)|, log |σ2(ϵ)|) = (log |σ1(ϵ)|,− log |σ1(ϵ)|).

The 1 × 1 minors of the 2 × 1 transpose of Log(ϵ) have determinant ± log |σ1(ϵ)|; the ab-
solute value of the determinant is the same in both cases, and since we have required the
fundamental unit to satisfy ϵ > 1 (which forces a choice of embedding), the regulator of K
is simply RK = log ϵ.
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