18.785 Number theory I Fall 2025
Lecture #15 11/4/2025

15 Dirichlet’s unit theorem

Let K be a number field. The two main theorems of classical algebraic number theory are:

e The class group cl O is finite.

e The unit group O is finitely generated.

We proved the first result in the previous lecture; in this lecture we will prove the second,
which is due to Dirichlet. Dirichlet (1805-1859) died five years before Minkowski (1864—
1909) was born, so he did not have Minkowski’s lattice point theorem (Theorem 14.13) to
work with. But we do, and this simplifies the proof considerably.

15.1 The group of Arakelov divisors of a global field

Let K be a global field. As in previous lectures, we use Mg to denote the set of places
(equivalence classes of absolute values) of K. For each place v € Mg we use K, to denote
the completion of K with respect to v (a local field), and we have a normalized absolute
value || ||y: K, — R>q defined by

w(@S)
n(S)’

where 4 is a Haar measure on K, and S is any measurable set of positive finite measure.
This definition does not depend on the particular choice of p or S; it is determined by the
topology of K, which is an invariant of the place v (see Definition 13.17).

When K, is nonarchimedean its topology is induced by a discrete valuation that we also
denote v, and we use k, to denote the residue field (the quotient of the valuation ring by its
maximal ideal), which is a finite field (see Proposition 9.6). In Lecture 13 we showed that

]|y =

|z|, = (#ky) U@ if v is nonarchimedean,
lzllo = § |2lr if Ky ~R,
|z |2 if K, ~C.

While || ||, is not always an absolute value (when K, ~ C it does not satisfy the triangle
inequality), it is always multiplicative and defines a continuous homomorphism K — RZ
of locally compact groups that is surjective precisely when v is archimedean.

Definition 15.1. Let K be a global field. A (multiplicative) Arakelov divisor is a sequence
of positive real numbers ¢ = (¢,) indexed by v € Mg with all but finitely many ¢, = 1
and ¢, € ||[KX|| = {||lz|l, : * € K}}.! The set of Arakelov divisors Div K forms an abelian
group under pointwise multiplication (¢,)(dy,) := (¢ydy). The multiplicative group K* is
canonically embedded in Div K via the map = — (||z||,), where it forms the subgroup
Princ K of principal Arakelov divisors.

Remark 15.2. Many authors define Div K as an additive group by taking logarithms (for
nonarchimedean places v, one replaces ¢, = (#k,) ") with the integer v(c)), as in [5] for
example. The multiplicative convention we use here is due to Weil [6] and is better suited
for our application to the multiplicative group (’)[X(.2

"When v is archimedean we have || K.} || = Rso and this constraint is automatically satisfied.
*Weil calls them K-divisors [6, p.422], while Lang uses Mg-divisors [2, Ch.2 §5]. Neukirch works with
additive Arakelov divisors that he also calls replete divisors [3, II1.1.8].
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Definition 15.3. Let K be a global field. The size of an Arakelov divisor c is

lell == J] ev € Rso.

veEMp

The map Div K — RZ defined by ¢ — ||c|| is a group homomorphism whose kernel contains
Princ K (by the product formula, Theorem 13.21). Corresponding to each Arakelov divisor ¢
is a subset L(c) of K defined by

L(c) ={rx € K:||z|l, < ¢, forall v e Mg}.

and a nonzero fractional ideal of O defined by

I. = H CIZ(C),

vfoo

where q, = {a € Ok : v(a) > 0} is the prime ideal corresponding to the discrete valuation v
that induces || ||, and v(c) == —logyy, (cy) € Z (so v(z) = v(c) if and only if [|z||, = ¢,).
We have L(c) C I. C K, and the map ¢ — I, defines a group homomorphism Div K — Zk.
Observe that to specify an Arakelov divisor ¢ it suffices to specify the fractional ideal I, and
the real numbers ¢, > 0 for v|oo (a finite set).

Remark 15.4. The quotient of Div K by the subgroup Princ K is denoted Pic K. The
homomorphism Div K — Tk sends principal Arakelov divisors to principal fractional ideals,
thus the ideal class group cl O is a quotient of Pic K. We have a commutative diagram

DivK —— Ig

! |

PicK —— clOg.

The Arakelov divisors of size 1 form a subgroup of Div K denoted Div? K that contains
Princ K and surjects onto Zx via the map Div K — Zg (we are free to choose any I. € Tx
because we can always choose the ¢, at infinite places to ensure |lc[| = 1). The quotient
of Div? K by Princ K is the Arakelov class group Pic® K, which also admits the ideal class
group cl Ok as a quotient.® As we shall see, Pic? K is a compact topological group that
is finite when K is a global function field. See [5] for more background on Arakelov class
groups and how to compute them.

Remark 15.5. The set L(c) associated to an Arakelov divisor ¢ is directly analogous to the
Riemann-Roch space

L(D) :={f € k(X) :vp(f) > —np for all closed points P € X},

associated to a divisor D € Div X of a smooth projective curve X/k, which is a k-vector
space of finite dimension. Recall that a divisor is a formal sum D = )" npP over the closed
points (Gal(k/k)-orbits) of the curve X with np € Z and all but finitely many np zero.

If k is a finite field then K = k(X)) is a global field and there is a one-to-one correspon-
dence between closed points of X and places of K, and a normalized absolute value || ||p for

3Neukirch uses CH*(Ox)° to denote the (additive) Arakelov class group [3, IT1.1.10].
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each closed point P (indeed, one can take this as a definition). The constraint vp(f) > —np
is equivalent to || f||p < (#kp)"F, where kp is the residue field corresponding to P. If we put
cp := (#kp)"P then ¢ = (cp) is an Arakelov divisor with L(c) = L(D). The Riemann-Roch
space L(D) is finite (since k is finite), and we will prove below that L(c) is also finite (but
note that when K is a number field the finite set L(c) is not a vector space).

In §6.3 we described the divisor group Div X as the additive analog of the ideal group
of the ring of integers A = Ok, equivalently, the coordinate ring A = k[X], of the global
function field K = k(X). When X is a smooth projective curve this is not a perfect analogy
because divisors in Div X may include terms corresponding to “points at infinity” which do
not correspond to a fractional ideal of A. The group of Arakelov divisors Div K takes these
infinite places into account and is a better analog of Div X than Zx when X is a smooth
projective curve over a finite field and K is its function field.

We now specialize to the case where K is a number field. Recall that the absolute norm
N(7) of a fractional ideal of Of is the unique ¢ € Q¢ for which No, /z(I) = (t). We have

N(L) = [[ N(a)"@ = [[#k)"@ =[] &,

vfoo vfoo vfoo

and therefore
llell = N(Ie) ™ [ ] ev- (1)
v]oo
We also define
R, ={z € Kg : |z|, < ¢, for all v|oo},

which we note is a compact, convex, symmetric subset of the real vector space
Kgr =K®yR~R"xC?

where 7 is the number of real places of K, and s is the number of complex places. If we
view I, and L(c) as subsets of Kg via the canonical embedding K — Kp, then

L(c) =I.NR..

Example 15.6. Let K = Q(4). The ideal (2+14) lying above 5 is prime and corresponds to
a finite place vy, and there is a unique infinite place va|oo which is complex. Let ¢,, = 1/5,
let ¢,, = 10, and set ¢, = 1 for all other v € M. We then have I. = (2 + i) and the image
of L(c) = {z € (2+1) : ||z||v, < 10} under the canonical embedding K — Kgr ~ C is the
set of lattice points in the image of the ideal I. that lie within the circle R, C Kr ~ C of
radius v/10. Note that || ||,, = | |2 is the square of the usual absolute value on C, which is
why the circle has radius v/10 rather than 10.
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The set L(c) is clearly finite; it contains exactly 9 points.
Lemma 15.7. Let ¢ be an Arakelov divisor of a global field K. The set L(c) is finite.

Proof. We assume K is a number field; see Problem Set 7 for the function field case. The
fractional ideal I. is a lattice in Kg (under the canonical embedding K — Kg), and is thus
a closed discrete subset of Kg (recall from Remark 14.5 that lattices are closed). In Ky
we may view L(c) = I. N R, as the intersection of a discrete closed set with a compact set,
which is a compact discrete set and therefore finite. O

Corollary 15.8. Let K be a global field, and let pux denote the torsion subgroup of K*
(equivalently, the roots of unity in K ). The group pug is finite and equal to the kernel of the
map K* — Div K defined by x — (||z||,); it is also the torsion subgroup of Ok.

Proof. Each ¢ € pg satisfies (™ = 1 for some positive integer n. For every place v € Mg we
have ||[¢"|l, = |I<||# = 1, and therefore ||(||, = 1. It follows that ux C ker(K* — Div K).
Let ¢ be the Arakelov divisor with ¢, = 1 for all v € M. Then ker(K* — Div K) C L(c)
is a finite subgroup of K* and is therefore contained in the torsion subgroup px. Every
element of puf is an algebraic integer (in fact a root of 2™ — 1), so ux € Of. O

It follows from Corollary 15.8 that for any global field K we have the following exact
sequence of abelian groups

1— pug — K* — DivK — PicK — 1.

Proposition 15.9. Let K be a number field with s complex places, define
2 S
BK = <7‘(‘) \/ ‘DK’

If ¢ is an Arakelov divisor of size ||c|| > Bg then L(c) contains an element of K*.
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Proof. Our strategy is to apply Minkowski’s lattice point theorem (see Theorem 14.13) to
the convex symmetric set R. and the lattice I, € K C Kp; we just need to show that
if ||¢|| > Bk then the ratio of the Haar measure of R, to the covolume of I. exceeds 27,
where n = r + 2s is the degree of K (which is the real dimension of Kg). As defined in
§14.2, we normalize the Haar measure p on the locally compact group Kg ~ R" x C* ~ R"
so that u(S) = 2°ugn(S) for measurable S C Kg. For each real place v, the constraint
l|z]ls = |z|r < ¢, contributes a factor of 2¢, to pu(R.), and for each complex place v the
constraint ||z, = |z|% < ¢, contributes a factor of 7c, (the area of a circle of radius \/cy).
We may then compute

p(Re) 25upn (Re) 2 (Hv real 2Cv) (Hv complex 7ch>

covol(I.)  covol(l.) covol(1,)

27 (2m)* c T (97)S
_ 2@ [lyjoo 0 _ 27 (2m) ||C||:M2n>2n
[DkIN(Le)  /|Dkl Bk

where we have used Corollary 14.17 and (1) in the second line. Theorem 14.13 implies that
L(c¢) = R.N1I, contains a nonzero element (which lies in K* C Kp, since I, C K C Kg). O

Remark 15.10. The bound in Proposition 15.9 can be turned into an asymptotic, that is,
for ¢ € Div K, as ||c|| — oo we have

[ 27(2n)®
#L(c) = (\/W +0(1)> el (2)

This can be viewed as a multiplicative analog of the Riemann-Roch theorem for function
fields, which states that for divisors D = > npP, as deg D := > ,np — oo we have

dimL(D) =1— g+ degD. (3)

The nonnegative integer g is the genus, an important invariant of a function field that is
often defined by (3); one could similarly use (2) to define the nonnegative integer |Dg].
For all sufficiently large ||c|| the o(1) error term will be small enough so that (2) uniquely
determines |Dg|. Conversely, with a bit more work one can adapt the proofs of Lemma 15.7
and Proposition 15.9 to give a proof of the Riemann-Roch theorem for global function fields.

15.2 The unit group of a number field

Let K be a number field with ring of integers O . The multiplicative group O is the unit
group of Ok, and may also be called the unit group of K. Of course the unit group of K
(as a ring) is K, but this is typically referred to as the multiplicative group of K.

As a ring, the finite étale R-algebra Kr = K ®g R also has a unit group, and we have
an isomorphism of topological groups*

Kp~][ES~ J] R [ ©=@®)" x(C*).

v]oo real v|oo  complex v|oco

4The additive group of Kp is isomorphic to R™ as a topological group (and R-vector space), a fact we
have used in our study of lattices in Kg. But as topological rings Kgr >~ R" x C* 22 R™ unless s = 0.
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Writing elements of K as vectors = (z,) indexed by the infinite places v of K, we now
define a surjective homomorphism of locally compact groups
Log: K — R™**
(0) > (log o ).

It is surjective and continuous because each of the maps x, — log||zy||, is, and it is a group
homomorphism because

Log(zy) = (log [|zvyollv) = (log ||z l» +log [|yu]ls) = (log [|zv][») + (log [|yu]l») = Log x + Log y;

here we have used the fact that the normalized absolute value || ||, is multiplicative.

Recall from Corollary 13.7 that there is a one-to-one correspondence between the infinite
places of K and the Gal(C/R)-orbits of Homg(K,C). For each v|oo let us now pick a
representative o, of its corresponding Gal(C/R)-orbit in Homg(K, C); for real places v
there is a unique choice for o,, while for complex places there are two choices, o, and its
complex conjugate 7,. Regardless of our choices, we then have

low ()R if v|oo is real
lzllo = _ : .
low(z)ay(z)|r  if v|oo is complex.

The absolute norm N: K* — QX extends naturally to a continuous homomorphism of
locally compact groups

N: KX - R%,
(zv) — H [

v]oo

which is compatible with the canonical embedding K* < Ky . Indeed, we have

[To@)| =11zl

R wloo

N(z) = [Ng/q(z)| =

We thus have a commutative diagram

Lo
KX e KX 2% R

log
X
Q>O R>0 R,

where T: R™"* — R is defined by T(x) = }_, x;. We may view Log as a map from K* to
R™** via the embedding K* < K, and similarly view N as a map from K* to RZ,,.
We can succinctly summarize the commutativity of the above diagram by the identity

T(Logx) = log N(x),
which holds for all z € K, and all 2 € K. The norm of a unit in Ok must be a unit in

Z, hence have absolute value 1. Thus Oy lies in the kernel of the map z — log N(z) and
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therefore also in the kernel of the map x — T(Log ). It follows that Log(O}) is a subgroup
of the trace zero hyperplane

Ryt i= {z e R""* : T(z) = 0},

which we note is both a subgroup of R™* and an R-vector subspace of dimension 7 + s — 1.
The proof of Dirichlet’s unit theorem amounts to showing that Log(O) is a lattice in Ry™.

Proposition 15.11. Let K be a number field with r real and s complex places, and let Ag
be the image of the unit group OF in R6+s under the Log map. The following hold:

(1) We have a split ezact sequence of finitely generated abelian groups
1—>MK—>OIX(£AK—>O;

(2) Ak is a lattice in the trace zero hyperplane R},

Here px is not a Haar measure, it denotes the group of roots of unity in K, all of which
are clearly torsion elements of O, and any torsion element of O is clearly a root of unity.

Proof. (1) We first show exactness. Let Z be the kernel of Oy Log Ag. Clearly ug C Z,
since A C R6+S is torsion free. Let ¢ be the Arakelov divisor with I, = Ok and ¢, = 2 for
v]oo, so that

L(c) ={z € Ok : ||z]|, <2 for all v|oco}.

For z € O we have
z € L(c) <= Log(z) € {z e R""* : 2; < log 2}.

The set on the RHS includes the zero vector, thus Z C L(c), which by Lemma 15.7 is a
finite set. As a finite subgroup of O, we must have Z C ug, so Z = pug and the sequence
is exact (the map from O to A is surjective by the definition of Ag).

We now show the sequence splits. Note that Ag N Log(R.) = Log (O} N L(c)) is finite,
since L(c) is finite. It follows that 0 is an isolated point of Ax in R""* and in Ry, so A
is a discrete subgroup of R6+S ~ R"*~1 and must be finitely generated, by Lemma 14.3.
It follows that O is finitely generated, since it lies in a short exact sequence whose left
and right terms are finitely generated (recall that pg is finite, by Corollary 15.8). By the
structure theorem for finitely generated abelian groups, the sequence must split, since ux
is the torsion subgroup of OF.

(2) Having proved (1) it remains only to show that A spans Ry ™. Let V be the subspace
of Ry spanned by A and suppose for the sake of contradiction that dim V' < dimR{".
The orthogonal subspace V- then contains a unit vector u, and for every A € R+ the open
ball B.y(Au) does not intersect Ax. Thus R{"® contains points arbitrarily far away from
every point in Ag (with respect to any norm on Rj*® C R"#). To obtain a contradiction
it is enough to show that there is a constant M € R~ such that for every h € Ry there
is an ¢ € Ag for which ||h — ¢|| == max; |h; — ¢;] < M (here we are using || || to denote the
sup norm on the R-vector space R"T%).

Let us fix a real number B > By, where By is as in Proposition 15.9, so that for every
¢ € Div K with ||¢|| > B the set L(c) contains a nonzero element, and fix a vector b € R"*#
with nonnegative components b; such that T(b) = >, b; =log B. Let (o), ..., () be the
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list of all nonzero principal ideals with N(«;) < B (by Lemma 14.21 this is a finite list). Let
M be twice the maximum of (r + s)B and max; || Log(a;)]|.

Now let h € Ry, and define ¢ € Div K by I. := Ok and ¢, := exp(h; + b;) for v|oo,
where i is the coordinate in R"** corresponding to v under the Log map. We have

lell = [T ew = exp(Z(hi—i—bi)) = exp T(h+b) = exp(T(h) + T(b)) = expT(b) = B > B,

thus L(c) contains a nonzero v € I.NK = Ok, and g = Log(y) satisfies g; < log ¢, = h; +b;.
We also have T(g) = T(Log~) = logN() > 0, since N(vy) > 1 for all nonzero v € Og. The
vector w := g —h € R""% satisfies ), w; = T(w) = T(g9) —T(h) = T(g9) > 0 and w; < b; < B

which together imply |w;| < (r + s)B, so ||g — h[| = [|w|| < M/2. We also have
log N(v) = T(Log(7)) < T(h+b) = T(b) = log B,
so N(7) < B and () = (cj) for one of the ¢ fixed above. Thus v/a; € O is a unit, and
¢ := Log(v/a;) = Log(v) — Log(a;) € Ak
satisfies ||g — || = || Log(c;)|| < M/2. We then have
[h =Ll < llh =gl +llg =€l < M
as desired (by the triangle inequality for the sup-norm). O]
Dirichlet’s unit theorem follows immediately from Proposition 15.11.

Theorem 15.12 (DIRICHLET’S UNIT THEOREM). Let K be a number field with r real and s
complex places. Then O ~ pg X 77571 s a finitely generated abelian group.

Proof. The image of the torsion-free part of the unit group Oy under the Log map is the
lattice Ag in the trace-zero hyperplane Ry, which has dimension 7 + s — 1. O]

We can restate this theorem in a more general form so that it applies to all global fields.
As usual, when we consider global function fields we view them as extensions of F,(t), with ¢
chosen so that K NI, = F, and ¢ chosen so that K /F,(t) is separable.

Theorem 15.13 (UNIT THEOREM FOR GLOBAL FIELDS). Let K/F be a finite separable
extension, with F' = Q or F' =TF4(t), let S € Mg be the set of places of K lying above the
unique infinite place of F', and define OIX(,S ={x e K* :v(x) =0 forallv € Mg — S}.
Then O;(,S ~ g X Z#5~1 is a finitely generated abelian group.

Proof. For F = Q we have #S = r 4+ s and this is Dirichlet’s unit theorem; for F' = F(t),
see [4, Prop. 14.1]. O]

Remark 15.14. We should be careful how we interpret 15.13 in the case F' = F,(t). By
applying an automorphism of F, () (replace t by t —a for some a € F,, say) we can move any
degree-one place to infinity. This will change the group O and may change the number of
places of K above our new point at infinity. In contrast to the number field setting (where
the place of Q at infinity is invariant because it is the only archimedean place) the ring O
and the set S are not intrinsic to K in the function field setting; they depend on the choice
of the separating element ¢ used to construct the separable extension K /F,(t).
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Example 15.15. Let K = Q(v/d) be a quadratic field with d # 1 squarefree. If d < 0 then
r =0 and s = 1, in which case the unit group O has rank 0 and O = ug is finite.

If d > 0 then K = Q(v/d) C R is a real quadratic field with » = 2 and s = 0, and the
unit group O has rank 1. The only torsion elements of O C R are £1, thus

O ={%e" :n e 7},

for some € € O of infinite order. We may assume € > 1: if € < 0 then replace € by —¢, and
if € < 1 then replace € by ¢! (we cannot have ¢ = 1 € ).

The assumption € > 1 uniquely determines e. This follows from the fact that for e > 1
we have [€"| > |e| for all n > 1 and |¢"| < 1 for all n < 0.

This unique € is the fundamental unit of Ok (and of K). To explicitly determine ¢, let
D = discOk (so D =d if d = 1mod 4 and D = 4d otherwise). Every element of O can

be uniquely written as
z+yvD
Y

2

where x and Dy are integers of the same parity. In the case of a unit we must have
N (M) = =1, equivalently,

22 — Dy? = +4. (4)

Conversely, any solution (x,y) € Z? to the above equation has z and Dy with the same
parity and corresponds to an element of Oy. The constraint € = %ﬁ > 1 forces x,y > 0.

This follows from the fact that ¢! = % <1,s0 =2 < 2 —yvV/D < 2, and adding and
subtracting = + yv/D > 2 shows z > 0 and y > 0 (respectively).

Thus we need only consider positive integer solutions (z,y) to (4). Among such solutions,
T+ yl\/ﬁ < x9+ yz\/ﬁ implies £1 < x2, so the solution that minimizes x will give us the
fundamental unit e.

Equation (4) is a (generalized) Pell equation. Solving the Pell equation is a well-studied
problem and there are a number of algorithms for doing so. The most well known uses
continued fractions and is explored on Problem Set 7; this is not the most efficient method,
but it is dramatically faster than an exhaustive search; see [1] for a comprehensive survey. A
remarkable feature of this problem is that even when D is quite small, the smallest solution
to (4) may be very large. For example, when D = d = 889 the fundamental unit is

26463949435607314430 + 887572376826907008+/889
€= .
2

15.3 The regulator of a number field

Let K be a number field with r real places and s complex places, and let R6+S be the
trace-zero hyperplane in R"**. Choose any coordinate projection m: R™™* — R"+5~1 and
use the induced isomorphism R{™® = R™"57! to endow R ™ with a Euclidean measure.
By Proposition 15.11, the image Ag of the unit group Oy is a lattice in R6+5, and we can

measure its covolume using the Euclidean measure on R(T]H.

Definition 15.16. The regulator of a number field K is

Rk := covol(m(Log(0F))) € Rxo,
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where 7: R™ — R™5~! is any coordinate projection; the value of Rx does not depend
on the choice of 7, since we use 7 to normalize the Haar measure on RSJrS ~ R If
€1, -, €r4s—1 is a fundamental system of units (a Z-basis for the free part of O ), then Rx
can be computed as the absolute value of the determinant of any (r +s—1) x (r+s—1)
minor of the (r 4+ s) X (r + s — 1) matrix whose columns are the vectors Log(e;) € R"5.

Example 15.17. If K is a real quadratic field with absolute discriminant D and funda-

mental unit € = %, then r + s = 2 and the product of the two real embeddings
o1(€),02(€) € R is N(e) = £1. Thus log |o2(€)| = —log |o1(€)| and

Log(e) = (log |o1(€)], log |o2(e)[) = (log |o1(e)], —log |a1(€)])-

The 1 x 1 minors of the 2 x 1 transpose of Log(e) have determinant 4 log |01 (€)|; the ab-
solute value of the determinant is the same in both cases, and since we have required the
fundamental unit to satisfy € > 1 (which forces a choice of embedding), the regulator of K
is simply Rx = loge.
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