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14 The geometry of numbers

14.1 Lattices in real vector spaces

Recall that for an integral domain A with fraction field K, an A-lattice in a finite dimensional
K-vector space V is a finitely generated A-submodule of V that contains a K-basis for V
(see Definition 5.17). We now want to specialize to the case A = Z, but rather than working
with the fraction field K = Q we will instead work with its completion R at the unique
infinite place of Q.

Remark 14.1. In this lecture we focus on number fields, but we will make remarks along
the way about how to similarly treat global function fields (where one would take A = Fq[t]
and work with its completion Fq(t)∞ ≃ Fq((

1
t )) at the unique infinite place of Fq(t)). You

will be able to explore the function field case in more detail on Problem Set 7.

Let V be an R-vector space of dimension n. Then V ≃ Rn is a locally compact group
with a Haar measure that is unique up to scaling, by Theorem 13.14.

Definition 14.2. A subgroup H of a topological group G is discrete if the subspace topology
on H is the discrete topology (every point is open), and cocompact if H is a normal subgroup
of G and the quotient G/H is compact (here G/H denotes the group G/H with the quotient
topology given by identifying elements of G that lie in the same coset of H).

Lemma 14.3. A subgroup G ⊆ V ≃ Rn is finitely generated if and only if it is discrete, in
which case G ≃ Zm for some m ≤ n and G is then cocompact if and only if m = n.

Proof. It follows from the structure theorem for finitely generated abelian groups that if G is
finitely generated it is a free Z-module, since it lies in the torsion-free abelian group V , and
the rank of G must be equal to the dimension m ≤ n of the subspace it spans. A subgroup
G ≃ Zm of V ≃ Rn is discrete (0 is an isolated point), and cocompact if and only if m = n.

Let v1, . . . , vm be a basis for the subspace W of V spanned by G, and let Λ ≃ Zm be
the subgroup of G generated by this basis. The quotient W/Λ ≃ Rm/Zm is compact (it is
isomorphic to the closed unit cube in Rm), so the image of the discrete group G under the
quotient map π : W → W/Λ must be finite. We can thus choose a finite S ⊆ G such that
π(S) = π(G), and then G is generated by v1, . . . , vm and S.

Definition 14.4. A (full) lattice in V ≃ Rn is a Z-submodule generated by an R-basis,
equivalently, a discrete cocompact subgroup.

Remark 14.5. A discrete subgroup of a Hausdorff topological group is always closed; see
[1, III.2.1.5] for a proof. This implies that the quotient of a Hausdorff topological group by
a normal discrete subgroup is Hausdorff (which is false for topological spaces in general);
see [1, III.2.1.18]. It follows that the quotient of a Hausdorff topological group (including
all locally compact groups) by a discrete cocompact subgroup is a compact group. These
facts are easy to see in the case of lattices: Z is closed in R (as the complement of a
union of open intervals), so Zn is closed in Rn. Given a lattice Λ in V , each Z-basis for Λ
determines an isomorphism of topological groups Λ ≃ Zn and V ≃ Rn, and the quotient
V/Λ ≃ Rn/Zn ≃ (R/Z)n (an n-torus) is compact Hausdorff and thus a compact group.

Remark 14.6. You might ask why we are using the archimedean completion R = Q∞
rather than some other completion Qp. The reason is Z is not a discrete subgroup of Qp

for any finite place p (elements of Z can be arbitrarily close to 0 under the p-adic metric).
Similarly, Fq[t] is a discrete subgroup of Fq(t)∞, but not of any other completion of Fq(t).
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Any basis v1, . . . , vn for V determines a parallelepiped

F (v1, . . . , vn) := {t1v1 + · · ·+ tnvn : t1, . . . , tn ∈ [0, 1)}

that we may view as the unit cube by fixing an isomorphism φ : V
∼−→ Rn that maps

(v1, . . . , vn) to the standard basis of unit vectors for Rn. It then makes sense to normalize
the Haar measure µ so that µ(F (v1, . . . , vn)) = 1, and we then have µ(S) = µRn(φ(S)) for
every measurable set S ⊆ V , where µRn denotes the standard Lebesgue measure on Rn.

For any other basis e1, . . . , en of V , if we let E = [eij ]ij be the matrix whose jth column
expresses ej =

∑
i eijvi, in terms of our normalized basis v1, . . . , vn, then

µ(F (e1, . . . , en)) = |detE| =
√
detEt detE =

√
det(EtE) =

√
det[⟨ei, ej⟩]ij , (1)

where ⟨ei, ej⟩ is the canonical inner product (the dot product) on Rn. Here we have used
the fact that the determinant of a matrix in Rn×n is the signed volume of the parallelepiped
spanned by its columns (or rows). This is a consequence of the following more general result,
which is independent of the choice of basis or the normalization of µ.

Proposition 14.7. Let T : V → V be a linear transformation of V ≃ Rn. For any Haar
measure µ on V and every measurable set S ⊆ V we have

µ(T (S)) = | detT |µ(S). (2)

Proof. See [11, Ex. 1.2.21].

If Λ is a lattice e1Z + · · · + enZ in V , the quotient V/Λ is a compact group that we
may identify with the parallelepiped F (e1, . . . , en) ⊆ V , which forms a set of unique coset
representatives. More generally, we make the following definition.

Definition 14.8. Let Λ be a lattice in V ≃ Rn. A fundamental domain for Λ is a measurable
set F ⊆ V such that

V =
⊔
λ∈Λ

(F + λ).

In other words, F is a measurable set of coset representatives for V/Λ. Fundamental domains
exist: if Λ = e1Z+ · · ·+ enZ we may take the parallelepiped F (e1, . . . , en).

Proposition 14.9. Let Λ be a lattice in V ≃ Rn and let µ be a Haar measure on V . Every
fundamental domain for Λ has the same measure, and this measure is finite and nonzero.

Proof. Let F and G be two fundamental domains for Λ. Using the translation invariance
and countable additivity of µ (note that Λ ≃ Zn is a countable set) along with the fact that
Λ is closed under negation, we obtain

µ(F ) = µ(F ∩ V ) = µ

(
F ∩

⊔
λ∈Λ

(G+ λ)

)
= µ

(⊔
λ∈Λ

(
F ∩ (G+ λ)

))
=
∑
λ∈Λ

µ
(
F ∩ (G+ λ)

)
=
∑
λ∈Λ

µ
(
(F − λ) ∩G

)
=
∑
λ∈Λ

µ
(
G ∩ (F + λ)

)
= µ(G),

where the last equality follows from the first four (swap F and G). If we fix a Z-basis
e1, . . . , en for Λ, the parallelepiped F (e1, . . . , en) is a fundamental domain for Λ, and its
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closure is compact, so µ(F (e1, . . . , en)) is finite, and it is nonzero because there is an iso-
morphism V ≃ Rn that maps the closure of F (e1, . . . , en) to the unit cube in Rn whose
Lebesgue measure is nonzero (whether a set has zero measure or not does not depend on
the normalization of the Haar measure and is therefore preserved by isomorphisms of locally
compact groups).

Definition 14.10. Let Λ be a lattice in V ≃ Rn and fix a Haar measure µ on V . The
covolume covol(Λ) ∈ R>0 of Λ is the measure µ(F ) of any fundamental domain F for Λ.

Note that covolumes depend on the normalization of µ, but ratios of covolumes do not.

Proposition 14.11. If Λ′ ⊆ Λ are lattices in V ≃ Rn, then covol(Λ′) = [Λ : Λ′] covol(Λ).

Proof. Fix a fundamental domain F for Λ and a set of coset representatives S for Λ/Λ′.
Then

F ′ :=
⊔
λ∈S

(F + λ)

is a fundamental domain for Λ′, and #S = [Λ : Λ′] = µ(F ′)/µ(F ) is finite. We then have

covol(Λ′) = µ(F ′) =
∑
λ∈S

µ(F + λ) = (#S)µ(F ) = [Λ : Λ′] covol(Λ),

since every translation F + λ of F is a fundamental domain for Λ.

Definition 14.12. Let S be a subset of a real vector space. The set S is symmetric if it is
closed under negation, and convex if for all x, y ∈ S we have {tx+ (1− t)y : t ∈ [0, 1]} ⊆ S.

Theorem 14.13 (Minkowski’s Lattice Point Theorem). Let Λ be a lattice in V ≃ Rn

and µ a Haar measure on V . If S ⊆ V is a symmetric convex measurable set that satisfies

µ(S) > 2n covol(Λ),

then S contains a nonzero element of Λ.

Proof. See Problem Set 6.

Note that the inequality in Theorem 14.13 bounds the ratio of the measures of two sets
(S and a fundamental domain for Λ), and is thus independent of the choice of µ.

Remark 14.14. In the function field analog of Theorem 14.13 the convexity assumption is
not needed and the factor of 2n can be removed.

14.2 The canonical inner product

Let K/Q be a number field of degree n with r real places and s complex places; then
n = r + 2s, by Corollary 13.9. We now want to consider the base change of K to R and C:

KR := K ⊗Q R ≃ Rr × Cs,

KC := K ⊗Q C ≃ Cn.

The isomorphism KR ≃ Rr ×Cs follows from Theorem 13.5 and the isomorphism KC ≃ Cn

follows from the fact that C is separably closed; see Example 4.31. We note that KR is an
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R-vector space of dimension n, thus KR ≃ Rn, but this is an isomorphism of R-vector spaces
and is not an R-algebra isomorphism unless s = 0.

We have a sequence of injective homomorphisms of topological rings

OK ↪→ K ↪→ KR ↪→ KC, (3)

which are defined as follows:

• the map OK ↪→ K is inclusion;

• the map K ↪→ KR = K ⊗Q R is the canonical embedding α 7→ α⊗ 1;

• the map KR ≃ Rr×Cs ↪→ Cr×C2s ≃ KC embeds each factor of Rr in a corresponding
factor of Cr via inclusion and each C in Cs is mapped to C×C in C2s via z 7→ (z, z̄).

To better understand the last map, note that each C in Cs arises as R[α] = R[x]/(f) ≃ C
for some monic irreducible f ∈ R[x] of degree 2, but when we base-change to C the field
R[α] splits into the étale algebra C[x]/(x − α) × C[x]/(x − ᾱ) ≃ C × C. The composition
K ↪→ KR ↪→ KC is given by the map

x 7→ (σ1(x), . . . , σn(x)),

where HomQ(K,C) = {σ1, . . . , σn}. If we put K = Q(α) := Q[x]/(f) and let α1, . . . , αn ∈ C
be the roots of f in C, each σi is the Q-algebra homomorphism K → C defined by α 7→ αi.

If we fix a Z-basis for OK , its image under the maps in (3) is a Q-basis for K, an R-basis
for KR, and a C-basis for KC, all of which are vector spaces of dimension n = [K : Q]. We
may thus view the injections in (3) as inclusions of topological groups (but not rings!)

Zn ↪→ Qn ↪→ Rn ↪→ Cn.

The ring of integers OK is a lattice in the real vector space KR ≃ Rn, which inherits an
inner product from the canonical Hermitian inner product on KC ≃ Cn defined by

⟨z, z′⟩ :=
n∑

i=1

ziz̄
′
i ∈ C.

For elements x, y ∈ K ↪→ KR ↪→ KC the Hermitian inner product can be computed as

⟨x, y⟩ :=
∑

σ∈HomQ(K,C)

σ(x)σ(y) ∈ R, (4)

which is a real number because the non-real embeddings in HomQ(K,C) come in complex
conjugate pairs. The inner product defined in (4) agrees with the restriction of the Hermitian
inner product on KR ↪→ KC. The metric space topology it induces on KR is the same as
the Euclidean topology on KR ≃ Rn induced by the usual dot product on Rn, but it has a
different normalization, as we now explain.

If we write elements z ∈ KC ≃ Cn as vectors (zσ) indexed by the set σ ∈ HomQ(K,C)
in some fixed order, we may identify KR with its image in KC as the set

KR = {z ∈ KC : z̄σ = zσ̄ for all σ ∈ HomQ(K,C)}.
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For real embeddings σ = σ̄ we have zσ ∈ R ⊆ C, and for pairs of conjugate complex
embeddings (σ, σ̄) we get the embedding z 7→ (zσ, zσ̄) = (zσ, z̄σ) of C into C × C used to
define the map KR ↪→ KC above. Each z ∈ KR can be uniquely written in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1, . . . , xs + iys, xs − iys), (5)

with wi, xj , yj ∈ R. Each wi corresponds to a zσ with σ = σ̄, and each (xj + iyj , xj − iyj)
corresponds to a complex conjugate pair (zσ, zσ̄) with σ ̸= σ̄. The canonical inner product
on KR can then be written as

⟨z, z′⟩ =
r∑

i=1

wiw
′
i + 2

s∑
j=1

(xjx
′
j + yjy

′
j).

Thus if we take w1, . . . , wr, x1, y1, . . . , xx, ys as coordinates for KR ≃ Rn (as R-vector
spaces), in order to normalize the Haar measure µ on KR so that it is consistent with the
Lebesgue measure µRn on Rn we define

µ(S) := 2sµRn(S) (6)

for any measurable set S ⊆ KR that we may view as a subset of Rn by expressing it in
wi, xj , yj coordinates as above. With this normalization, the identity (1) still holds when
we replace µRn with µ and the dot product on Rn with the Hermitian inner product on KR,
that is, for any R-basis e1, . . . , en of KR we still have

µ(F (e1, . . . , en)) =
√

|det[⟨ei, ej⟩]ij | (7)

Using the Hermitian inner product on KR ⊆ KC rather than the dot product on KR ≃ Rn

multiplies 2s of the columns in the matrix [⟨ei, ej⟩]ij by 2, and thus multiplies the RHS by√
22s = 2s; our normalization of µ = 2sµRn multiplies the LHS by 2s so that (7) still holds.

Remark 14.15. In the function field case one replaces the separable closure C of R with a
separable closure Fq(t)

sep
∞ of Fq(t)∞. The situation is slightly more complicated, since unlike

C/R, the extension Fq(t)
sep
∞ /Fq(t)∞ is not finite, but for any finite separable extension

K/Fq(t) (a finite étale Fq(t)-algebra) one can base change K to Fq(t)∞ and Fq(t)
sep
∞ ; these

play the role of KR and KC.

14.3 Covolumes of fractional ideals

Having fixed a normalized Haar measure µ for KR, we can now compute covolumes of lattices
in KR ≃ Rn. This includes not only (the image of) the ring of integers OK , but also any
nonzero fractional ideal I of OK : every such I contains a nonzero principal fractional ideal
aOK , and if e1, . . . , en is a Z-basis for OK then ae1, . . . , aen is a Z-basis for aOK that is an
R-basis for KR that lies in I.

Recall from Remark 12.14 that the discriminant of a number field K is the integer

DK := discOK := disc(e1, . . . , en) ∈ Z.

Proposition 14.16. Let K be a number field. Using the normalized Haar measure on KR
defined in (6),

covol(OK) =
√
|DK |.
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Proof. Let e1, . . . , en ∈ OK be a Z-basis for OK , let HomQ(K,C) = {σ1, . . . , σn}, and define
A := [σi(ej)]ij ∈ Cn×n. Then DK = disc(e1, . . . , en) = (detA)2, by Proposition 12.6

Viewing OK ↪→ KR as a lattice in KR with basis e1, . . . , en, we may use (7) to compute
covol(OK) = µ(F (e1, . . . , en)) =

√
|det[⟨ei, ej⟩]ij |. Applying (4) yields

det[⟨ei, ej⟩]ij = det
[∑

k σk(ei)σk(ej)
]
ij
= det(AtA) = (detA)(detA).

Noting that detA is the square root of an integer (hence either real or purely imaginary),
we have covol(OK)2 = |(detA)2| = |DK |, and the proposition follows.

Recall from Remark 6.13 that for number fields K we view the absolute norm

N: IOK
→ IZ

I 7→ [OK : I]Z

as having image in Q>0 by identifying N(I) ∈ IZ with a positive generator for N(I) (note
that Z is a PID). Recall that [OK : I]Z is a module index of Z-lattices in the Q-vector
space K (see Definitions 6.1 and 6.5), and for ideals I ⊆ OK this is just the positive integer
[OK :I]Z = [OK :I]. When I = (a) is a principal fractional ideal with a ∈ K, we may simply
write N(a) := N((a)) = |NK/Q(a)|.

Corollary 14.17. Let K be a number field and let I be a nonzero fractional ideal of OK .
Then

covol(I) = N(I)
√
|DK |

Proof. Let n = [K :Q]. Since covol(bI) = bn covol(I) and N(bI) = bnN(I) for any b ∈ Z>0,
without loss of generality we may assume I ⊆ OK (replace I with a suitable bI if not).
Applying Propositions 14.11 and 14.16, we have

covol(I) = [OK :I] covol(OK) = N(I) covol(OK) = N(I)
√
|DK |

as claimed.

14.4 The Minkowski bound

Theorem 14.18 (Minkowski bound). Let K be a number field of degree n with s complex
places. Define the Minkowski constant mK for K as the positive real number

mK :=
n!

nn

(
4

π

)s√
|DK |.

For every nonzero fractional ideal I of OK there is a nonzero a ∈ I for which

N(a) ≤ mKN(I).

To prove this theorem we need the following lemma.

Lemma 14.19. Let K be a number field of degree n with r real and s complex places. For
each t ∈ R>0, the measure of the convex symmetric set

St :=
{
(zσ) ∈ KR :

∑
|zσ| ≤ t

}
⊆ KR

with respect to the normalized Haar measure µ on KR is

µ(St) = 2rπs t
n

n!
.

18.785 Fall 2025, Lecture #14, Page 6

https://math.mit.edu/classes/18.785/2021fa/LectureNotes12.pdf#theorem.2.6
https://math.mit.edu/classes/18.785/2021fa/LectureNotes6.pdf#theorem.2.13
https://math.mit.edu/classes/18.785/2021fa/LectureNotes6.pdf#theorem.2.1
https://math.mit.edu/classes/18.785/2021fa/LectureNotes6.pdf#theorem.2.5


Proof. As in (5), we may uniquely write each z = (zσ) ∈ KR in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1 . . . , xs + iys, xs − iys)

with wi, xj , yj ∈ R. We will have
∑

σ |zσ| ≤ t if and only if

r∑
i=1

|wi|+
s∑

j=1

2
√
|xj |2 + |yj |2 ≤ t. (8)

We now compute the volume of this region in Rn by relating it to the volume of the simplex

Ut :=
{
(u1, . . . , un) ∈ Rn

≥0 : u1 + · · ·+ un ≤ t
}
⊆ Rn,

which is µRn(Ut) = tn/n! (volume of the standard simplex in Rn scaled by a factor of t).
If we view all the wi, xj , yj as fixed except the last pair (xs, ys), then (xs, ys) ranges over

a disk of some radius d ∈ [0, t/2] determined by (8). If we replace (xs, ys) with (un−1, un)
ranging over the triangular region bounded by un−1 + un ≤ 2d and un−1, un ≥ 0, we need
to incorporate a factor of π/2 to account for the difference between (2d)2/2 = 2d2 and πd2;
repeat this s times. Similarly, if we hold everything but wr fixed and replace wr ranging
over [−d, d] for some d ∈ [0, t] with ur ranging over [0, d], we need to incorporate a factor
of 2 to account for this change of variable; repeat r times. We then have

µ(St) = 2sµRn(St) = 2s
(π
2

)s
2rµRn(Ut) = 2rπs t

n

n!
.

Proof of Theorem 14.18. Let I be a nonzero fractional ideal of OK . By Theorem 14.13, if we
choose t so that µ(St) > 2n covol(I), then St will contain a nonzero a ∈ I. By Lemma 14.19
and Corollary 14.17, it suffices to choose t so that(

t

n

)n

=
n!µ(St)

nn2rπs
>

n!2n

nn2rπs
covol(I) =

n!

nn

(
4

π

)s√
|DK |N(I) = mKN(I).

Let us now pick t so that
(
t
n

)n
> mKN(I). Then St contains a ∈ I with

∑
σ |σ(a)| ≤ t.

Recalling that the geometric mean is bounded above by the arithmetic mean, we then have

N(a) =
(
N(a)1/n

)n
=

(∏
σ

|σ(a)|1/n
)n

≤

(
1

n

∑
σ

|σ(a)|

)n

≤
(
t

n

)n

,

Taking the limit as
(
t
n

)n → mKN(I) from above yields N(a) ≤ mKN(I).

14.5 Finiteness of the class group

Recall that the ideal class group clOK is the quotient of the ideal group IK of OK by its
subgroup of principal fractional ideals. We now use the Minkowski bound to prove that
every ideal class [I] ∈ clOK can be represented by an ideal I ⊆ OK of small norm. It will
then follow that the ideal class group is finite.

Theorem 14.20. Let K be a number field. Every ideal class in clOK contains an ideal
I ⊆ OK of absolute norm N(I) ≤ mK , where mK is the Minkowski constant for K.
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Proof. Let [J ] be an ideal class of OK represented by the nonzero fractional ideal J . By
Theorem 14.18, the fractional ideal J−1 contains a nonzero element a for which

N(a) ≤ mKN(J−1) = mKN(J)−1,

and therefore N(aJ) = N(a)N(J) ≤ mK . We have a ∈ J−1, thus aJ ⊆ J−1J = OK , so
I = aJ is an OK-ideal in the ideal class [J ] with N(I) ≤ mK as desired.

Lemma 14.21. Let K be a number field of degree n and let M ∈ R>0. The number of
OK-ideals of norm N(I) ≤ M is bounded by (nM)log2 M (and in particular, finite).

Proof. Let I be an ideal of absolute norm N(I) ≤ M and let I = p1 · · · pk be its factorization
into (not necessarily distinct) prime ideals. We have N(pi) ≥ 2 for each pi so k ≤ log2M .
There are less than M primes p ≤ M and at most n primes p of OK above each p ≤ M . It
follows that the there are less than (nM)log2 M OK-ideals with norm N(I) ≤ M .

Corollary 14.22. Let K be a number field. The ideal class group of OK is finite.

Proof. By Theorem 14.20, each ideal class is represented by an ideal of norm at most mK ,
and by Lemma 14.21, the number of such ideals is finite.

More generally, we have the following result, which can be applied to the analog of the
ring of integers in any global field.

Theorem 14.23. Let A be the ring Z or Fq[t] and let B be the integral closure of A in a
finite separable extension of its fraction field. The ideal class group of B is finite.

Proof. See Problem Set 7.

Remark 14.24. The geometry of numbers is not a necessary ingredient to Corollary 14.22,
there are purely algebraic proofs that apply to any global field; see [9] for an example.

Remark 14.25. For imaginary quadratic fields K = Q(
√
−d) it is known that the class

number hK := #clOK tends to infinity as d → ∞ ranges over square-free integers. This was
conjectured by Gauss in his Disquisitiones Arithmeticae [3] and proved by Heilbronn [5] in
1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [7]. This implies
that there are only a finite number of imaginary quadratic fields with any particular class
number. It was conjectured by Gauss that there are exactly 9 imaginary quadratic fields
with class number one, but this was not proved until the 20th century by Stark [10] and
Heegner [4].1 Complete lists of imaginary quadratic fields for each class number hK ≤ 100
are now available [12]. By contrast, Gauss predicted that infinitely many real quadratic
fields should have class number 1, however this question remains completely open.2

Corollary 14.26. Let K be a number field of degree n with s complex places. Then

|DK | ≥
(
nn

n!

)2 (π
4

)2s
>

1

e2n

(
πe2

4

)n

.

1Heegner’s 1952 result [4] was essentially correct but contained some gaps that prevented it from being
generally accepted until 1967 when Stark gave a complete proof in [10].

2In fact it is conjectured that hK = 1 for approximately 75.446% of real quadratic fields with prime
discriminant; this follows from the Cohen-Lenstra heuristics [2].
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Proof. If I is an ideal and a ∈ I is nonzero, then N(a) ≥ N(I), so Theorem 14.20 implies

mK =
n!

nn

(
4

π

)s√
|DK | ≥ 1,

the first inequality follows. The second uses an explicit form of Stirling’s approximation,

n! ≤ e
√
n
(n
e

)n
,

and the fact that 2s ≤ n.

We note that πe2/4 ≈ 5.8 > 1, so the minimum value of |DK | increases exponentially
with n = [K :Q]. The lower bounds for n ∈ [2, 7] given by the corollary are listed below,
along with the least value of |DK | that actually occurs. As can be seen in the table, |DK |
appears to grow much faster than the corollary suggests. Better lower bounds can be proved
using more advanced techniques, but a significant gap still remains.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

lower bound from Corollary 14.26 3 13 44 259 986 6267
minimum value of |DK | 3 23 275 4511 92799 2306599

Corollary 14.27. If K is a number field other than Q then |DK | > 1; equivalently, there
are no nontrivial unramified extensions of Q.

Theorem 14.28. For every real M the set of number fields K with |DK | < M is finite.

Proof. It follows from Corollary 14.26 that it suffices to prove this for fixed n := [K : Q],
since for all sufficiently large n we will have |DK | > M for all number fields K of degree n.

Case 1: Let K be a totally real field (so every place v|∞ is real) with |DK | < M . Then
r = n and s = 0, so KR ≃ Rr × Cs = Rn. Consider the convex symmetric set

S := {(x1, . . . , xn) ∈ KR ≃ Rn : |x1| ≤
√
M and |xi| < 1 for i > 1}

with measure

µ(S) = 2
√
M2n−1 = 2n

√
M > 2n

√
|DK | = 2n covol(OK).

By Theorem 14.13, the set S contains a nonzero a ∈ OK ⊆ K ↪→ KR that we may write as
a = (a1, . . . , an) = (σ1(a), . . . , σn(a)), where the σi are the n embeddings of K into C, all
of which are real embeddings. We have

N(a) =

∣∣∣∣∣∏
i

σi(a)

∣∣∣∣∣ ≥ 1,

since N(a) must be a positive integer, and |a2|, . . . , |an| < 1, so |a1| > 1 > |ai| for all i ̸= 1.
We claim that K = Q(a). If not, each ai = σi(a) would be repeated [K : Q(a)] > 1

times in the vector (a1, . . . , an), since there must be [K : Q(a)] elements of HomQ(K,C)
that fix Q(a), namely, those lying in the kernel of the map HomQ(K,C) → HomQ(Q(a),C)
induced by restriction. But this is impossible since ai ̸= a1 for i ̸= 1.

The minimal polynomial f ∈ Z[x] of a is a monic irreducible polynomial of degree n. The
roots of f(x) in C are precisely the ai = σi(a) ∈ R, all of which are bounded by |ai| ≤

√
M .
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Each coefficient fi of f(x) is an elementary symmetric functions of its roots, hence also
bounded in absolute value (certainly |fi| ≤ 2nMn/2 for all i). The fi are integers, so there
are only finitely many possibilities for f(x), hence only finitely many totally real number
fields K of degree n.

Case 2: K has r real and s > 0 complex places, and KR ≃ Rr × Cs. Now let

S := {(w1, . . . , wr, z1, . . . , zs) ∈ KR : |z1|2 < cM and |wi|, |zj | < 1 (j > 1)}

with c chosen so that µ(S) > 2n covol(OK) (the exact value of c depends on s and n). The
argument now proceeds as in case 1: we get a nonzero a ∈ OK ∩S for which K = Q(a), and
only a finite number of possible minimal polynomials f ∈ Z[x] for a.

Lemma 14.29. Let K be a number field of degree n. For each prime number p we have

vp(DK) ≤ n⌊logp n⌋+ n− 1.

In particular, vp(DK) ≤ n⌊log2 n⌋+ n− 1 for all p.

Proof. We have
vp(DK) = vp(NK/Q(DK/Q)) =

∑
q|p

fqvq(DK/Q)

where DK/Q is the different ideal and fq is the residue degree of q|p. Using Theorem 12.27
to bound vq(DK/Q) yields

vp(DK) ≤
∑
q|p

fq(eq − 1 + vq(eq)) = n−
∑
q|p

fq +
∑
q|p

fqeqvp(eq) ≤ n− 1 + n⌊logp n⌋,

where we have used −1 as an upper bound on −
∑

q|p fq and ⌊logp n⌋ as an upper bound on
each vp(eq) (since eq ≤ n), and the fact that

∑
q|p eqfq = n (by Theorem 5.43).

Remark 14.30. The bound in Lemma 14.29 is tight; it is achieved by K = Q[x]/(xp
e − p),

for example.

Theorem 14.31 (Hermite). Let S be a finite set of places of Q, and let n be an integer.
The number of extensions K/Q of degree n unramified outside of S is finite.

Proof. By Lemma 14.29, since n is fixed, the valuation vp(DK) is bounded for each p ∈ S
and must be zero for p ̸∈ S. Thus |DK | is bounded, and the theorem then follows from
Thoerem 14.28.

Remark 14.32. In the function field analogs of Theorem 14.28 and Theorem 14.31 one
requires K to be a separable extension of Fq(t) with constant field Fq (so K ∩ Fq = Fq).
This is not really a restriction in the sense that every global function field K contains a
subfield Fq(t) for which this is true, but one needs to take q = #(K ∩ Fq) and to choose t
to be a separating element (such a t exists by [6, Thm. 7.20]). Unlike the number field
setting where the embedding of the rational numbers Q in a number field K is unique, there
are many ways to embed the rational function field Fq(t) in a global function field K. The
notion of an absolute discriminant DK doesn’t really make sense in this setting, one can
speak of the discriminant DK/Fq(t) only after fixing a suitable choice of Fq(t). As you showed
on Problem Set 6, the valuation of the discriminant of an extension of global function fields
is not bounded as a function of the degree, in general, and this means that the function field
analog of Lemma 14.29 only holds when we use the discriminant of a separable extension.
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