18.785 Number theory I Fall 2025
Lecture #13 10/28/2025

13 Global fields and the product formula

Up to this point we have defined global fields as finite extensions of Q (number fields) or
of Fy(t) (global function fields). Our goal in this lecture is to prove a generalization of
the product formula that you proved on Problem Set 1 for K = Q and K = F,(t), which
will then allow us to give a more natural definition of global fields: they are fields whose
completions are local fields and which satisfy a suitable product formula.

13.1 Places of a field

Definition 13.1. Let K be a field. A place of K is an equivalence class of nontrivial
absolute values on K. Recall that the completion of K at an absolute value depends only
on its equivalence class, so there is a one-to-one correspondence between places of K and
completions of K. We may use Mg to denote the set of places of K, and for each place
v we use | |, to denote any representative absolute value and K, to denote the completion
of K with respect to | |, (this does not depend on the choice of | |,). We call a place v
archimedean when K, is archimedean and nonarchimedean otherwise.

Now let K be a global field. By Corollary 9.7, for any place v of K the completion K,
is a local field. From our classification of local fields (Theorem 9.9), if K, is archimedean
then K, ~ R or K, ~ C, and otherwise the absolute value of K, is induced by a discrete
valuation that we also denote v; note that while the absolute value |z|, == ¢ *(*) depends
on a choice of ¢ € (0, 1), the discrete valuation v: K, — Z is uniquely determined. We now
introduce the following terminology:

o if K, ~ R then v is a real place;
o if K, ~ C then v is a complex place;

e if | |, is induced by a discrete valuation v, corresponding to a prime p of K then v is
a finite place; otherwise v is an infinite place.

Every finite place is nonarchimedean. Infinite places are archimedean in characteristic
zero and nonarchimedean otherwise. Every archimedean place is an infinite place, but
nonarchimedean places may be finite or infinite (the latter only in positive characteristic).

Example 13.2. As you proved on Problem Set 1, the set Mg consists of finite places p
corresponding to p-adic absolute values | |,, and a single archimedean infinite place oo cor-
responding to the Euclidean absolute value | |o. The set M, (1) consists of finite places cor-
responding to irreducible polynomials in F,[t] and a single nonarchimedean infinite place oo
corresponding to the absolute value | - |o = q3°80).

Remark 13.3. There is nothing special about the infinite place of Fy(t), it is an artifact
of our choice of the transcendental element ¢, which we could change via an automorphism
t = (at +b)/(ct + d) of Fy(t). If we put z := 1/t and consider Fy(z) ~ Fy(t), the absolute
value | | on Fy(t) is the same as the absolute value | |, on Fy(z) corresponding to the
irreducible polynomial z € Fy[z] (or any degree 1 place). This is analogous to the situation
with the projective line P!, where we may distinguish the projective point (1 : 0) as the
“point at infinity", but this distinction is not invariant under automorphisms of P

Lecture by Andrew V. Sutherland


https://math.mit.edu/classes/18.785/2021fa/LectureNotes9.pdf#theorem.2.7
https://math.mit.edu/classes/18.785/2021fa/LectureNotes9.pdf#theorem.2.9

Definition 13.4. If L/K is an extension of global fields, for every place w of L, any absolute
value | |, that represents the equivalence class w restricts to an absolute value on K that
represents a place v of K that is independent of the choice of | |,,. We write w|v to indicate
this relationship and say that w eztends v or that w lies above v.

Theorem 13.5. Let L/K be a finite separable extension of global fields and let v be a place
of K. We have an isomorphism of finite étale K,-algebras

Lok Ky 5[] Lw

wlv
defined by ¢ @ x — (x, ..., lx).

For nonarchimedean places this follows from part (v) of Theorem 11.23, but here we give
a different proof that works for any place of K.

Proof. The separable extension L/K is a finite étale K-algebra, so the base change L ® i K,
is a finite étale K,-algebra, by Proposition 4.36, and is therefore isomorphic to a finite
product [],.; L; of finite separable extensions L; of K, each of which is a local field (any
finite extension of a local field is a local field). We just need to show that there is a one-to-one
correspondence between the sets of local fields {L; : ¢ € I} and {L,, : w|v}.

Let us fix an absolute value | |, on K, representing the place v. Each L; is a local field
extending K, and therefore has a unique absolute value | |,, that restricts to | |,; this follows
from Theorem 10.4 when v is nonarchimedean and is obvious when v is archimedean, since
then either K, ~ L,, or K, ~ R C C ~ L,, and the Euclidean absolute value on R is the
restriction of the Euclidean absolute value on C. The map L — L ®x K, ~ [[, Li - L;
allows us to view L as a subfield of each L;, so the absolute value | |, on L; restricts to
an absolute value on L that uniquely determines a place w|v. This defines a map of sets
¢:{L; i €1} — {Ly, : wlv} that we will show is a bijection satisfying ¢(L;) ~ L;.

We may view L @ K, ~ [], L; as an isomorphism of topological rings, since both
sides are finite dimensional vector spaces over the complete field K, and thus have a unique
topology induced by the sup norm, by Proposition 10.3, and this topology agrees with the
product topology on [[; L;. The image of the canonical embedding L — L ® K, defined
by £ — £ ® 1 is dense because K C L is dense in K,: given any ¢ ® x in L Q K, with
¢ e L and x € K, we can choose y € K* arbitrarily close to  so that fy® 1 =/ ® y is an
element of the image of L arbitrarily close to { ® z (and similarly for sums of pure tensors).
The image of L is therefore also dense in [ [, L; and has dense image under the projections
Hz’Li —> Li and I_LLZ — Lz‘ X Lj (Z 75])

If ¢(L;) = Ly then L; ~ L, since L is dense in the complete field L;, and L,, is the
completion of L with respect to the restriction of the absolute value on L; to L, by the
universal property of completions (Proposition 8.4). To show that ¢ is injective, note that
if ¢(L;) = ¢(Lj) = Ly, for some i # j we obtain a contradiction because the image of the
diagonal embedding L — L., X Ly, is not dense in L, X L, (its closure is isomorphic to L),
but the image of L is dense in L; x L;.

It remains only to show that ¢ is surjective. For each w|v we may define a continuous
homomorphism of finite étale K,-algebras and topological rings:

ow: Lk Ky — Ly,
{Qx— L.
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The map ¢, is surjective because its image contains L and is complete, and L, is the
completion of L. It follows from Corollary 4.32 that ¢, factors through the projection of
L ®kg K, ~[], L; on to one of its factors L; and induces a homeomorphism from L; to L,,.
It follows that L; ~ L,, as topological fields, so ¢(L;) = L,, and ¢ is surjective. O

Corollary 13.6. Let L/K be a finite separable extension of global fields, v be a place of K,
and f € K|x] be a monic irreducible polynomial such that L ~ Kl[z]/(f(x)). There is a
one-to-one correspondence between the irreducible factors of f in K,[z] and the places of L
lying above v. If f = f1--- fy is the factorization of f in K,[z], then we can order the set
{wlv} ={wi,...,w} so that Ly, ~ K,[z]/(fi(x)) for 1 <i<r.

Proof. Note that the f; are distinct because f is separable over K and therefore separable
over every extension of K, including K,. The corollary then follows from Proposition 4.33,
Corollary 4.39, and Theorem 13.5. O

Given a finite separable extension of global fields L/K and a place v of K, if we fix an
algebraic closure K, of K, and consider the set Homyg (L,FU) of K-embeddings of L into
K,, the Galois group Gal(K,/K,) acts on the set Homg (L, K,) via composition: given
o € Gal(K,/K,) and 7 € Homg (L, K,), we have o0 o 7 € Homg (L, K,), and this clearly
defines a group action (composition is associative and the identity acts trivially).

Corollary 13.7. Let L/K be a finite separable extension of global fields and v a place of K.
We have a bijection
Homg (L, K,)/Gal(K,/K,) +— {w|v},

between Gal(K,/K,)-orbits of K-embeddings of L into K, and the places of L above v.

Proof. By the primitive element theorem, we may assume L ~ K(«a) = K[z]/(f) for some
« € L with minimal polynomial f € K[x]. We then have a bijection between Homg (L, K )
and the roots a; of f in K, that is compatible with the action of Gal(K,/K,) on both
sets. If f = fi1--- f, is the factorization of f in K,[x], each f; corresponds to an orbit of

the action of Gal(K,/K,) on the roots of f, and by the previous corollary, these are in
one-to-one correspondence with the places of L above v. O

For K = Q and v = oo, Corollary 13.7 implies that Homg(L, C)/Gal(C/R) is in bijection
with the set {w|oo} of infinite places of the number field L; note that Gal(C/R) is the cyclic
group of order 2 generated by complex conjugation, so the orbits of Homg(L, C) all have size
1 or 2, depending on whether the embedding of L into C is fixed by complex conjugation or
not. Each real place w corresponds to a Gal(C/R)-orbit of size 1; this occurs for the elements
of Homg(L, C) whose image lies in R and may also be viewed as elements of Homg(L,R).
Each complex place corresponds to a Gal(C/R)-orbit of size two in Homg(L, C); these are
conjugate pairs whose images do not lie in R.

Definition 13.8. Let K be a number field. Elements of Homq (K, R) are real embeddings,
and elements of Homg (K, C) whose image does not lie in R are complex embeddings.

There is a one-to-one correspondence between real embeddings and real places, but
complex embeddings come in conjugate pairs; each pair of complex embeddings corresponds
to a single complex place.

Corollary 13.9. Let K be a number field with r real places and s complex places. Then

(K :Q] =71+ 2s.
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Proof. We may write K ~ Q[z]/(f) for some irreducible separable f € Q[z], and we then
have [K : Q] = deg f = # Homg (X, C), since there is a one-to-one correspondence between
Homg (K, C) and the roots of f. The action of Gal(C/R) on Homg(kK,C) has r orbits of

size 1, and s orbits of size 2, and the corollary follows. O

Example 13.10. Let K = Q[z]/(z® — 2). There are three embeddings K < C, one for
each root of 23 — 2; explicitly:

)z V2, (2 am P92, (3)am Y

The first embedding is real, while the second two are complex and conjugate to each other.
Thus K has r = 1 real place and s = 1 complex place, and we have [K : Q] =1-1+2-1=3.

We conclude this section with a result originally due to Brill [2] that relates the parity
of the number of complex places to the sign of the absolute discriminant of a number field.

Proposition 13.11. Let K be a number field with s complex places. The sign of the absolute
discriminant Dy € Z is (—1)°.

Proof. Let aq, ..., oy be a Z-basis for Ok, let Homg(K,C) = {071, ..., 0,} and consider the
matrix A = [0;(c;)];; with determinant det A =: = + yi € C; recall that Dg = (det A)?,
by Proposition 12.6. Each real embedding o; corresponds to a row of A fixed by complex
conjugation, while each pair of complex conjugate embeddings o;,d; corresponds to a pair
of rows of A that are interchanged by complex conjugation. Swapping a pair of rows negates
the determinant, thus det A = (—1)* det A, and we have

r+yi=det A= (—1)°det A= (-1)°(z — yi).
Either (—1)® = 1, in which case y = 0 and D = z? has sign +1 = (—1)*, or (—1)* = —1,
in which case z = 0 and Dg = —y? has sign —1 = (—1)%. O
13.2 Haar measures

Definition 13.12. Let X be a locally compact Hausdorff space. The o-algebra ¥ of X is
the collection of subsets of X generated by the open and closed sets under countable unions,
countable intersections, and complements. Its elements are Borel sets, or measurable sets.
A Borel measure on X is a countably additive function

M ¥ = RZO @] {OO}
A Radon measure on X is a Borel measure on X that additionally satisfies

1. u(S) < oo if S is compact,
2. u(S) =inf{u(U): S C U, U open},
3. u(S) =sup{u(C):C C S, C compact},

for all Borel sets S.t

!Some authors additionally require X to be o-compact (a countable union of compact sets). Local fields
are o-compact so this distinction will not concern us.
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Definition 13.13. A locally compact group is a topological group that is Hausdorff and
locally compact.? A (left) Haar measure p on a locally compact group G is a nonzero
Radon measure that is translation invariant, meaning that

u(S) = plx + )

for all z € G and measurable S C G (we write the group operation additively because we
have in mind the additive group of a local field). A compact group is a locally compact
group that is compact; in compact groups every measurable set has finite measure.

One defines a right Haar measure analogously, but in most cases they coincide and in
our situation we are working with an abelian group (the additive group of a field), in which
case they necessarily do. The key fact we need about Haar measures is that they exist and
are unique up to scaling. For compact groups existence was proved by Haar and uniqueness
by von Neumann; the general result for locally compact groups was proved by Weil.

Theorem 13.14 (Weil). Every locally compact group G has a Haar measure. If pn and i/
are two Haar measures on G, then there is a positive real number X such that p'(S) = Au(S)
for all measurable sets S.

Proof. See (3, §7.2]. O

Example 13.15. The standard Lebesgue measure p on R™ with p([,[as, bi]) = [, |6; — ail

is the unique Haar measure on R™ for which the unit cube has measure 1.3

The additive group of a local field K is a locally compact group (it is a metric space,
hence Hausdorff). For compact groups G, it is standard to normalize the Haar measure so
that u(G) = 1, but local fields are never compact, and we will always have p(K) = co. For
nonarchimedean local fields the valuation ring A = B<;(0) is a compact group, and it is
then natural to normalize the Haar measure on K so that p(A) = 1. The key point is that
there is a unique absolute value on K that is compatible with every Haar measure y on K,
no matter how it is normalized.

Proposition 13.16. Let K be a local field with discrete valuation v, residue field k, and
absolute value

o= (#E) 70,

and let p be a Haar measure on K. For every x € K and measurable set S C K we have

u(@S) = |zfopn(S).

Moreover, the absolute value | |, is the unique absolute value compatible with the topology on
K for which this is true.

Proof. Let A be the valuation ring of K with maximal ideal p. The proposition clearly holds
for x = 0, so let x # 0. The map ¢,: y — xy is an automorphism of the additive group
of K, and it follows that the composition u, = p o ¢, is a Haar measure on K, hence a

ZNote that the Hausdorff assumption is part of the definition. Some authors include it in the definition of
locally compact, and some also include it in the definition of compact (Bourbaki, for example); the convention
varies by field and with geography. But everyone agrees that locally compact groups are Hausdorff.

3Strictly speaking, the Haar measure on R is the restriction of the Lebesgue measure to the o-algebra.
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multiple of p, say p; = Agp, for some \; € Rsg. Define the function x: K* — Ry¢ by
X(x) == Ay = pz(A)/u(A). Then p, = x(z)p, and for all z,y € K* we have

_ tay(A)  pe(yA)  x(@)py(A)  x(@)x(y)u(4)

EZN@ T ) T e )

Thus y is multiplicative, and we claim that in fact x(x) = |z|, for all z € K*. Since
both x and |- |, are multiplicative, it suffices to consider x € A — {0}. For any such z,
the ideal zA is equal to p*(®), since A is a DVR. The residue field k := A/p is finite, hence
A/zA is also finite; indeed it is a k-vector space of dimension v(z) and has cardinality
[A: 2A] = (#k)*®). Writing A as a finite disjoint union of cosets of zA, we have

u(A) = [A: zAlu(zA) = (#k)" O x(@)u(A),

and therefore x(z) = (#k) ") = |z|, as claimed. It follows that
p(aS) = pa(5) = x(2)p(S) = |zlop(S),

for all x € K and measurable S C K. To prove uniqueness, if | | is an absolute value on K
that induces the same topology as | |, then for some 0 < ¢ < 1 we have |z| = |z|¢ for all
x € K*. Let us fix ¢ € K* with |z], # 1 (take any = with v(z) # 0). If | | also satisfies

pu(zS) = |z|p(S) then
1(A) ! n(4) )’

which implies ¢ = 1, meaning that | | and | |, are the same absolute value. O

13.3 The product formula for global fields

Definition 13.17. Let K be a global field. For each place v of K the normalized absolute
value || ||y: Ky — R>q on the completion of K at v is defined by

p(xS)
u(S)

where p is a Haar measure on K, and S C K, is a measurable set with finite nonzero
measure (such as the set {x € K,, : |z|, < 1}, for example).

This definition is independent of the choice of g and S (by Theorem 13.14). If v is
nonarchimedean then the normalized absolute value || ||, is precisely the absolute value | |,
defined in Proposition 13.16. If v is a real place then the normalized absolute value || ||, is
just the usual Euclidean absolute value | [g on R, since for the Euclidean Haar measure ug
on R we have ugr(zS) = |z|rpr(S) for every measurable set S. But when v is a complex
place the normalized absolute value || ||, is the square of the Euclidean absolute value | |¢
on C, since in C we have uc(zS) = |z|2uc(9).

]l =

Remark 13.18. When v is a complex place the normalized absolute value || ||, is not an
absolute value, because it does not satisfy the triangle inequality. For example, if K = Q(%)
and v|oo is the complex place of K then ||1]|, = [1|2 =1 but

11+ 1l = [12]lo = 212 = 4 > 2 = [1[lo + 1]

Nevertheless, the normalized absolute value || ||, is always multiplicative and compatible
with the topology on K, in the sense that the open balls Bo,(z) :={y € K, : [|[y—z|l, < r}
are a basis for the topology on K,; these are the properties that we care about for the
product formula (and for the topology on the ring of adéles A that we will see later).
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Lemma 13.19. Let L/ K be a finite separable extension of global fields, let v be a place of K
and let w|v be a place of L. Then

@]l = [INL,, /., (2)]]o-

Proof. The lemma is trivially true if [L,, : K,] = 1 so assume [L,, : K,] > 1. If v is
archimedean then L,, ~ C and K, ~ R, in which case for any x € L,, we have

Izl = p(2S)/u(S) = |2l = |2Z|r = [Neyr(@)lr = [Nz, /5, (2)]o;

where | |[g and | |¢ are the Euclidean absolute values on R and C.
We now assume v is nonarchimedean. Let 7, and 7, be uniformizers for the local fields
K, and L, respectively, and let f be the degree of the corresponding residue field extension

(=)

kuw/k,. Without loss of generality, we may assume x = m, , since ||x|l, = |z|, depends

only on w(z). Theorem 6.10 and Proposition 13.16 imply
INL, i, () o = Il llo = (#h0) 7,

so [Nz, /k, (2)|lv = (#k,)~7*(®) Proposition 13.16 then implies

2]l = (#kw) " = (Fk,) @) = INL /K, (@) O

Remark 13.20. Note that if v is a nonarchimedean place of K extended by a place w|v
of L/K, the absolute value || ||, is not the unique absolute value on L, that extends the
absolute value || ||, on K, given by Theorem 10.4, it differs by a power of n = [L,, : K,],
but it is equivalent to it. It might seem strange to use a normalization here that does
not agree with the one we used when considering extensions of local fields in Lecture 9.
The difference is that here we are thinking about a single global field K that has many
different completions K, and we want the normalized absolute values on the various K,
to be compatible (so that the product formula will hold). By contrast, in Lecture 9 we
considered various extensions L,, of a single local field K, and wanted to normalize the
absolute values on the L,, compatibly so that we could work in K, and any of its extensions
(all the way up to K,) using the same absolute value. These two objectives cannot be met
simultaneously and it is better to use the ‘right" normalization in each setting.

Theorem 13.21 (PropUCT FORMULA). Let L be a global field. For all x € L* we have

IT llel = 1.

’UGML
where || ||, denotes the normalized absolute value for each place v € M.

Proof. The global field L is a finite separable extension of K = Q or K = Fq(t).4 Let p be
a place of K. By Theorem 13.5, any basis for L as a K-vector space is also a basis for

Lok K, :HLv
vlp

“Here we are using the fact that if F, is the field of constants of L (the largest finite field in L), then L
is a finite extension of F4(z) and we can choose some t € Fq(z) — Fq so that Fq(z) ~ Fq(¢t) and L/Fq(¢) is
separable (such a t is called a separating element).
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as a Kp-vector space. Thus

Np/k(®) = Nraogk,) /K, (@) = H N, k, (@)
v|p

Taking normalized absolute values on both sides yields
INLyx @), = TTINL, /e, @)l = TT 1]l
vlp vlp

We now take the product of both sides over all places p € Mg to obtain

IT Nex@lls= TT TTlelo=TI lzle-

PEMK PEMK vlp veMy,
The LHS is equal to 1, by the product formula for K proved on Problem Set 1. O

With the product formula in hand, we can now give an axiomatic definition of a global
field, which up to now we have simply defined as a finite extension of Q or Fy(t), due to
Emil Artin and George Whaples [1].

Definition 13.22. A global field is a field K with at least one place whose completion at
each of its places v € Mg is a local field K, and which has a product formula of the form

IT Nzl = 1.

'UGMK

where each normalized absolute value || ||,: K, — R satisfies || ||, = | [’ for some
absolute value | |, representing v and some fixed m,, € Rg.

Theorem 13.23 (Artin-Whaples). Every global field is a finite extension of Q or Fg(t).

Proof. See Problem Set 7. O
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