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13 Global fields and the product formula

Up to this point we have defined global fields as finite extensions of Q (number fields) or
of Fq(t) (global function fields). Our goal in this lecture is to prove a generalization of
the product formula that you proved on Problem Set 1 for K = Q and K = Fq(t), which
will then allow us to give a more natural definition of global fields: they are fields whose
completions are local fields and which satisfy a suitable product formula.

13.1 Places of a field

Definition 13.1. Let K be a field. A place of K is an equivalence class of nontrivial
absolute values on K. Recall that the completion of K at an absolute value depends only
on its equivalence class, so there is a one-to-one correspondence between places of K and
completions of K. We may use MK to denote the set of places of K, and for each place
v we use | |v to denote any representative absolute value and Kv to denote the completion
of K with respect to | |v (this does not depend on the choice of | |v). We call a place v
archimedean when Kv is archimedean and nonarchimedean otherwise.

Now let K be a global field. By Corollary 9.7, for any place v of K the completion Kv

is a local field. From our classification of local fields (Theorem 9.9), if Kv is archimedean
then Kv ≃ R or Kv ≃ C, and otherwise the absolute value of Kv is induced by a discrete
valuation that we also denote v; note that while the absolute value |x|v := c−v(x) depends
on a choice of c ∈ (0, 1), the discrete valuation v : Kv → Z is uniquely determined. We now
introduce the following terminology:

• if Kv ≃ R then v is a real place;

• if Kv ≃ C then v is a complex place;

• if | |v is induced by a discrete valuation vp corresponding to a prime p of K then v is
a finite place; otherwise v is an infinite place.

Every finite place is nonarchimedean. Infinite places are archimedean in characteristic
zero and nonarchimedean otherwise. Every archimedean place is an infinite place, but
nonarchimedean places may be finite or infinite (the latter only in positive characteristic).

Example 13.2. As you proved on Problem Set 1, the set MQ consists of finite places p
corresponding to p-adic absolute values | |p, and a single archimedean infinite place ∞ cor-
responding to the Euclidean absolute value | |∞. The set MFq(t) consists of finite places cor-
responding to irreducible polynomials in Fq[t] and a single nonarchimedean infinite place∞
corresponding to the absolute value | · |∞ := qdeg(·).

Remark 13.3. There is nothing special about the infinite place of Fq(t), it is an artifact
of our choice of the transcendental element t, which we could change via an automorphism
t 7→ (at + b)/(ct + d) of Fq(t). If we put z := 1/t and consider Fq(z) ≃ Fq(t), the absolute
value | |∞ on Fq(t) is the same as the absolute value | |z on Fq(z) corresponding to the
irreducible polynomial z ∈ Fq[z] (or any degree 1 place). This is analogous to the situation
with the projective line P1, where we may distinguish the projective point (1 : 0) as the
“point at infinity", but this distinction is not invariant under automorphisms of P1.
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Definition 13.4. If L/K is an extension of global fields, for every place w of L, any absolute
value | |w that represents the equivalence class w restricts to an absolute value on K that
represents a place v of K that is independent of the choice of | |w. We write w|v to indicate
this relationship and say that w extends v or that w lies above v.

Theorem 13.5. Let L/K be a finite separable extension of global fields and let v be a place
of K. We have an isomorphism of finite étale Kv-algebras

L⊗K Kv
∼−→

∏
w|v

Lw

defined by ℓ⊗ x 7→ (ℓx, . . . , ℓx).

For nonarchimedean places this follows from part (v) of Theorem 11.23, but here we give
a different proof that works for any place of K.

Proof. The separable extension L/K is a finite étale K-algebra, so the base change L⊗KKv

is a finite étale Kv-algebra, by Proposition 4.36, and is therefore isomorphic to a finite
product

∏
i∈I Li of finite separable extensions Li of Kv, each of which is a local field (any

finite extension of a local field is a local field). We just need to show that there is a one-to-one
correspondence between the sets of local fields {Li : i ∈ I} and {Lw : w|v}.

Let us fix an absolute value | |v on Kv representing the place v. Each Li is a local field
extending Kv, and therefore has a unique absolute value | |w that restricts to | |v; this follows
from Theorem 10.4 when v is nonarchimedean and is obvious when v is archimedean, since
then either Kv ≃ Lw or Kv ≃ R ⊆ C ≃ Lw and the Euclidean absolute value on R is the
restriction of the Euclidean absolute value on C. The map L ↪→ L ⊗K Kv ≃

∏
i Li ↠ Li

allows us to view L as a subfield of each Li, so the absolute value | |w on Li restricts to
an absolute value on L that uniquely determines a place w|v. This defines a map of sets
ϕ : {Li : i ∈ I} → {Lw : w|v} that we will show is a bijection satisfying ϕ(Li) ≃ Li.

We may view L ⊗K Kv ≃
∏

i Li as an isomorphism of topological rings, since both
sides are finite dimensional vector spaces over the complete field Kv and thus have a unique
topology induced by the sup norm, by Proposition 10.3, and this topology agrees with the
product topology on

∏
i Li. The image of the canonical embedding L ↪→ L ⊗K Kv defined

by ℓ 7→ ℓ ⊗ 1 is dense because K ⊆ L is dense in Kv: given any ℓ ⊗ x in L ⊗K Kv with
ℓ ∈ L and x ∈ Kv, we can choose y ∈ K× arbitrarily close to x so that ℓy ⊗ 1 = ℓ⊗ y is an
element of the image of L arbitrarily close to ℓ⊗ x (and similarly for sums of pure tensors).
The image of L is therefore also dense in

∏
i Li and has dense image under the projections∏

i Li ↠ Li and
∏

i Li ↠ Li × Lj (i ̸= j).
If ϕ(Li) = Lw then Li ≃ Lw since L is dense in the complete field Li, and Lw is the

completion of L with respect to the restriction of the absolute value on Li to L, by the
universal property of completions (Proposition 8.4). To show that ϕ is injective, note that
if ϕ(Li) = ϕ(Lj) = Lw for some i ̸= j we obtain a contradiction because the image of the
diagonal embedding L→ Lw×Lw is not dense in Lw×Lw (its closure is isomorphic to Lw),
but the image of L is dense in Li × Lj .

It remains only to show that ϕ is surjective. For each w|v we may define a continuous
homomorphism of finite étale Kv-algebras and topological rings:

φw : L⊗K Kv → Lw

ℓ⊗ x 7→ ℓx.
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The map φw is surjective because its image contains L and is complete, and Lw is the
completion of L. It follows from Corollary 4.32 that φw factors through the projection of
L⊗K Kv ≃

∏
i Li on to one of its factors Li and induces a homeomorphism from Li to Lw.

It follows that Li ≃ Lw as topological fields, so ϕ(Li) = Lw and ϕ is surjective.

Corollary 13.6. Let L/K be a finite separable extension of global fields, v be a place of K,
and f ∈ K[x] be a monic irreducible polynomial such that L ≃ K[x]/(f(x)). There is a
one-to-one correspondence between the irreducible factors of f in Kv[x] and the places of L
lying above v. If f = f1 · · · fr is the factorization of f in Kv[x], then we can order the set
{w|v} = {w1, . . . , wr} so that Lwi ≃ Kv[x]/(fi(x)) for 1 ≤ i ≤ r.

Proof. Note that the fi are distinct because f is separable over K and therefore separable
over every extension of K, including Kv. The corollary then follows from Proposition 4.33,
Corollary 4.39, and Theorem 13.5.

Given a finite separable extension of global fields L/K and a place v of K, if we fix an
algebraic closure Kv of Kv and consider the set HomK(L,Kv) of K-embeddings of L into
Kv, the Galois group Gal(Kv/Kv) acts on the set HomK(L,Kv) via composition: given
σ ∈ Gal(Kv/Kv) and τ ∈ HomK(L,Kv), we have σ ◦ τ ∈ HomK(L,Kv), and this clearly
defines a group action (composition is associative and the identity acts trivially).

Corollary 13.7. Let L/K be a finite separable extension of global fields and v a place of K.
We have a bijection

HomK(L,Kv)/Gal(Kv/Kv)←→ {w|v},

between Gal(Kv/Kv)-orbits of K-embeddings of L into Kv and the places of L above v.

Proof. By the primitive element theorem, we may assume L ≃ K(α) = K[x]/(f) for some
α ∈ L with minimal polynomial f ∈ K[x]. We then have a bijection between HomK(L,Kv)
and the roots αi of f in Kv that is compatible with the action of Gal(Kv/Kv) on both
sets. If f = f1 · · · fr is the factorization of f in Kv[x], each fi corresponds to an orbit of
the action of Gal(Kv/Kv) on the roots of f , and by the previous corollary, these are in
one-to-one correspondence with the places of L above v.

For K = Q and v =∞, Corollary 13.7 implies that HomQ(L,C)/Gal(C/R) is in bijection
with the set {w|∞} of infinite places of the number field L; note that Gal(C/R) is the cyclic
group of order 2 generated by complex conjugation, so the orbits of HomQ(L,C) all have size
1 or 2, depending on whether the embedding of L into C is fixed by complex conjugation or
not. Each real place w corresponds to a Gal(C/R)-orbit of size 1; this occurs for the elements
of HomQ(L,C) whose image lies in R and may also be viewed as elements of HomQ(L,R).
Each complex place corresponds to a Gal(C/R)-orbit of size two in HomQ(L,C); these are
conjugate pairs whose images do not lie in R.

Definition 13.8. Let K be a number field. Elements of HomQ(K,R) are real embeddings,
and elements of HomQ(K,C) whose image does not lie in R are complex embeddings.

There is a one-to-one correspondence between real embeddings and real places, but
complex embeddings come in conjugate pairs; each pair of complex embeddings corresponds
to a single complex place.

Corollary 13.9. Let K be a number field with r real places and s complex places. Then

[K : Q] = r + 2s.
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Proof. We may write K ≃ Q[x]/(f) for some irreducible separable f ∈ Q[x], and we then
have [K : Q] = deg f = #HomQ(K,C), since there is a one-to-one correspondence between
HomQ(K,C) and the roots of f . The action of Gal(C/R) on HomQ(K,C) has r orbits of
size 1, and s orbits of size 2, and the corollary follows.

Example 13.10. Let K = Q[x]/(x3 − 2). There are three embeddings K ↪→ C, one for
each root of x3 − 2; explicitly:

(1) x 7→ 3
√
2, (2) x 7→ e2πi/3 · 3

√
2, (3) x 7→ e4πi/3 · 3

√
2.

The first embedding is real, while the second two are complex and conjugate to each other.
Thus K has r = 1 real place and s = 1 complex place, and we have [K : Q] = 1 ·1+2 ·1 = 3.

We conclude this section with a result originally due to Brill [2] that relates the parity
of the number of complex places to the sign of the absolute discriminant of a number field.

Proposition 13.11. Let K be a number field with s complex places. The sign of the absolute
discriminant DK ∈ Z is (−1)s.

Proof. Let α1, . . . , αn be a Z-basis for OK , let HomQ(K,C) = {σ1, . . . , σn} and consider the
matrix A := [σi(αj)]ij with determinant detA =: x + yi ∈ C; recall that DK = (detA)2,
by Proposition 12.6. Each real embedding σi corresponds to a row of A fixed by complex
conjugation, while each pair of complex conjugate embeddings σi, σ̄i corresponds to a pair
of rows of A that are interchanged by complex conjugation. Swapping a pair of rows negates
the determinant, thus det Ā = (−1)s detA, and we have

x+ yi = detA = (−1)s det Ā = (−1)s(x− yi).

Either (−1)s = 1, in which case y = 0 and DK = x2 has sign +1 = (−1)s, or (−1)s = −1,
in which case x = 0 and DK = −y2 has sign −1 = (−1)s.

13.2 Haar measures

Definition 13.12. Let X be a locally compact Hausdorff space. The σ-algebra Σ of X is
the collection of subsets of X generated by the open and closed sets under countable unions,
countable intersections, and complements. Its elements are Borel sets, or measurable sets.
A Borel measure on X is a countably additive function

µ : Σ→ R≥0 ∪ {∞}.

A Radon measure on X is a Borel measure on X that additionally satisfies

1. µ(S) <∞ if S is compact,

2. µ(S) = inf{µ(U) : S ⊆ U, U open},
3. µ(S) = sup{µ(C) : C ⊆ S, C compact},

for all Borel sets S.1

1Some authors additionally require X to be σ-compact (a countable union of compact sets). Local fields
are σ-compact so this distinction will not concern us.
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Definition 13.13. A locally compact group is a topological group that is Hausdorff and
locally compact.2 A (left) Haar measure µ on a locally compact group G is a nonzero
Radon measure that is translation invariant, meaning that

µ(S) = µ(x+ S)

for all x ∈ G and measurable S ⊆ G (we write the group operation additively because we
have in mind the additive group of a local field). A compact group is a locally compact
group that is compact; in compact groups every measurable set has finite measure.

One defines a right Haar measure analogously, but in most cases they coincide and in
our situation we are working with an abelian group (the additive group of a field), in which
case they necessarily do. The key fact we need about Haar measures is that they exist and
are unique up to scaling. For compact groups existence was proved by Haar and uniqueness
by von Neumann; the general result for locally compact groups was proved by Weil.

Theorem 13.14 (Weil). Every locally compact group G has a Haar measure. If µ and µ′

are two Haar measures on G, then there is a positive real number λ such that µ′(S) = λµ(S)
for all measurable sets S.

Proof. See [3, §7.2].

Example 13.15. The standard Lebesgue measure µ on Rn with µ(
∏

i[ai, bi]) =
∏

i |bi− ai|
is the unique Haar measure on Rn for which the unit cube has measure 1.3

The additive group of a local field K is a locally compact group (it is a metric space,
hence Hausdorff). For compact groups G, it is standard to normalize the Haar measure so
that µ(G) = 1, but local fields are never compact, and we will always have µ(K) =∞. For
nonarchimedean local fields the valuation ring A = B≤1(0) is a compact group, and it is
then natural to normalize the Haar measure on K so that µ(A) = 1. The key point is that
there is a unique absolute value on K that is compatible with every Haar measure µ on K,
no matter how it is normalized.

Proposition 13.16. Let K be a local field with discrete valuation v, residue field k, and
absolute value

| · |v := (#k)−v(·),

and let µ be a Haar measure on K. For every x ∈ K and measurable set S ⊆ K we have

µ(xS) = |x|vµ(S).

Moreover, the absolute value | |v is the unique absolute value compatible with the topology on
K for which this is true.

Proof. Let A be the valuation ring of K with maximal ideal p. The proposition clearly holds
for x = 0, so let x ̸= 0. The map ϕx : y 7→ xy is an automorphism of the additive group
of K, and it follows that the composition µx = µ ◦ ϕx is a Haar measure on K, hence a

2Note that the Hausdorff assumption is part of the definition. Some authors include it in the definition of
locally compact, and some also include it in the definition of compact (Bourbaki, for example); the convention
varies by field and with geography. But everyone agrees that locally compact groups are Hausdorff.

3Strictly speaking, the Haar measure on Rn is the restriction of the Lebesgue measure to the σ-algebra.
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multiple of µ, say µx = λxµ, for some λx ∈ R>0. Define the function χ : K× → R>0 by
χ(x) := λx = µx(A)/µ(A). Then µx = χ(x)µ, and for all x, y ∈ K× we have

χ(xy) =
µxy(A)

µ(A)
=

µx(yA)

µ(A)
=

χ(x)µy(A)

µ(A)
=

χ(x)χ(y)µ(A)

µ(A)
= χ(x)χ(y).

Thus χ is multiplicative, and we claim that in fact χ(x) = |x|v for all x ∈ K×. Since
both χ and | · |v are multiplicative, it suffices to consider x ∈ A − {0}. For any such x,
the ideal xA is equal to pv(x), since A is a DVR. The residue field k := A/p is finite, hence
A/xA is also finite; indeed it is a k-vector space of dimension v(x) and has cardinality
[A : xA] = (#k)v(x). Writing A as a finite disjoint union of cosets of xA, we have

µ(A) = [A : xA]µ(xA) = (#k)v(x)χ(x)µ(A),

and therefore χ(x) = (#k)−v(x) = |x|v as claimed. It follows that

µ(xS) = µx(S) = χ(x)µ(S) = |x|vµ(S),

for all x ∈ K and measurable S ⊆ K. To prove uniqueness, if | | is an absolute value on K
that induces the same topology as | |v then for some 0 < c ≤ 1 we have |x| = |x|cv for all
x ∈ K×. Let us fix x ∈ K× with |x|v ̸= 1 (take any x with v(x) ̸= 0). If | | also satisfies
µ(xS) = |x|µ(S) then

µ(xA)

µ(A)
= |x| = |x|cv =

(
µ(xA)

µ(A)

)c

,

which implies c = 1, meaning that | | and | |v are the same absolute value.

13.3 The product formula for global fields

Definition 13.17. Let K be a global field. For each place v of K the normalized absolute
value ∥ ∥v : Kv → R≥0 on the completion of K at v is defined by

∥x∥v :=
µ(xS)

µ(S)
,

where µ is a Haar measure on Kv and S ⊆ Kv is a measurable set with finite nonzero
measure (such as the set {x ∈ Kv : |x|v ≤ 1}, for example).

This definition is independent of the choice of µ and S (by Theorem 13.14). If v is
nonarchimedean then the normalized absolute value ∥ ∥v is precisely the absolute value | |v
defined in Proposition 13.16. If v is a real place then the normalized absolute value ∥ ∥v is
just the usual Euclidean absolute value | |R on R, since for the Euclidean Haar measure µR
on R we have µR(xS) = |x|RµR(S) for every measurable set S. But when v is a complex
place the normalized absolute value ∥ ∥v is the square of the Euclidean absolute value | |C
on C, since in C we have µC(xS) = |x|2CµC(S).

Remark 13.18. When v is a complex place the normalized absolute value ∥ ∥v is not an
absolute value, because it does not satisfy the triangle inequality. For example, if K = Q(i)
and v|∞ is the complex place of K then ∥1∥v = |1|2C = 1 but

∥1 + 1∥v = ∥2∥v = |2|2C = 4 > 2 = ∥1∥v + ∥1∥v.

Nevertheless, the normalized absolute value ∥ ∥v is always multiplicative and compatible
with the topology on Kv in the sense that the open balls B<r(x) := {y ∈ Kv : ∥y−x∥v < r}
are a basis for the topology on Kv; these are the properties that we care about for the
product formula (and for the topology on the ring of adéles AK that we will see later).
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Lemma 13.19. Let L/K be a finite separable extension of global fields, let v be a place of K
and let w|v be a place of L. Then

∥x∥w = ∥NLw/Kv
(x)∥v.

Proof. The lemma is trivially true if [Lw : Kv] = 1 so assume [Lw : Kv] > 1. If v is
archimedean then Lw ≃ C and Kv ≃ R, in which case for any x ∈ Lw we have

∥x∥w = µ(xS)/µ(S) = |x|2C = |xx|R = |NC/R(x)|R = ∥NLw/Kv
(x)∥v,

where | |R and | |C are the Euclidean absolute values on R and C.
We now assume v is nonarchimedean. Let πv and πw be uniformizers for the local fields

Kv and Lw, respectively, and let f be the degree of the corresponding residue field extension
kw/kv. Without loss of generality, we may assume x = π

w(x)
w , since ∥x∥w = |x|w depends

only on w(x). Theorem 6.10 and Proposition 13.16 imply

∥NLw/Kv
(πw)∥v = ∥πf

v ∥v = (#kv)
−f ,

so ∥NLw/Kv
(x)∥v = (#kv)

−fw(x). Proposition 13.16 then implies

∥x∥w = (#kw)
−w(x) = (#kv)

−fw(x) = ∥NLw/Kv
(x)∥v.

Remark 13.20. Note that if v is a nonarchimedean place of K extended by a place w|v
of L/K, the absolute value ∥ ∥w is not the unique absolute value on Lw that extends the
absolute value ∥ ∥v on Kv given by Theorem 10.4, it differs by a power of n = [Lw : Kv],
but it is equivalent to it. It might seem strange to use a normalization here that does
not agree with the one we used when considering extensions of local fields in Lecture 9.
The difference is that here we are thinking about a single global field K that has many
different completions Kv, and we want the normalized absolute values on the various Kv

to be compatible (so that the product formula will hold). By contrast, in Lecture 9 we
considered various extensions Lw of a single local field Kv and wanted to normalize the
absolute values on the Lw compatibly so that we could work in Kv and any of its extensions
(all the way up to Kv) using the same absolute value. These two objectives cannot be met
simultaneously and it is better to use the “right" normalization in each setting.

Theorem 13.21 (Product Formula). Let L be a global field. For all x ∈ L× we have∏
v∈ML

∥x∥v = 1,

where ∥ ∥v denotes the normalized absolute value for each place v ∈ML.

Proof. The global field L is a finite separable extension of K = Q or K = Fq(t).4 Let p be
a place of K. By Theorem 13.5, any basis for L as a K-vector space is also a basis for

L⊗K Kp ≃
∏
v|p

Lv

4Here we are using the fact that if Fq is the field of constants of L (the largest finite field in L), then L
is a finite extension of Fq(z) and we can choose some t ∈ Fq(z) − Fq so that Fq(z) ≃ Fq(t) and L/Fq(t) is
separable (such a t is called a separating element).
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as a Kp-vector space. Thus

NL/K(x) = N(L⊗KKp)/Kp
(x) =

∏
v|p

NLv/Kp
(x).

Taking normalized absolute values on both sides yields∥∥NL/K(x)
∥∥
p
=

∏
v|p

∥NLv/Kp
(x)∥p =

∏
v|p

∥x∥v.

We now take the product of both sides over all places p ∈MK to obtain∏
p∈MK

∥NL/K(x)∥p =
∏

p∈MK

∏
v|p

∥x∥v =
∏

v∈ML

∥x∥v.

The LHS is equal to 1, by the product formula for K proved on Problem Set 1.

With the product formula in hand, we can now give an axiomatic definition of a global
field, which up to now we have simply defined as a finite extension of Q or Fq(t), due to
Emil Artin and George Whaples [1].

Definition 13.22. A global field is a field K with at least one place whose completion at
each of its places v ∈MK is a local field Kv, and which has a product formula of the form∏

v∈MK

∥x∥v = 1,

where each normalized absolute value ∥ ∥v : Kv → R≥0 satisfies ∥ ∥v = | |mv
v for some

absolute value | |v representing v and some fixed mv ∈ R>0.

Theorem 13.23 (Artin-Whaples). Every global field is a finite extension of Q or Fq(t).

Proof. See Problem Set 7.
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