18.785 Number theory I Fall 2025
Lecture #12 10/23/2025

12 The different and the discriminant

12.1 The different

We continue in our usual AK LB setup: A is a Dedekind domain, K is its fraction field, L/ K
is a finite separable extension, and B is the integral closure of A in L (a Dedekind domain
with fraction field L). We would like to understand the primes that ramify in L/K. Recall
that a prime g|p of L is unramified if and only if e, = 1 and B/q is a separable extension
of A/p, equivalently, if and only if B/q% is a finite étale A/p algebra (by Theorem 4.40).!
A prime p of K is unramified if and only if all the primes q|p lying above it are unramified,
equivalently, if and only if the ring B/pB is a finite étale A/p algebra.?

Our main tools for studying ramification are the different Dp,4 and discriminant Dpg 4.
The different is a B-ideal that is divisible by precisely the ramified primes q of L, and the
discriminant is an A-ideal divisible by precisely the ramified primes p of K. Moreover, the
valuation vq(Dp,4) will give us information about the ramification index eq (its exact value
when ¢ is tamely ramified).

Recall from Lecture 5 the trace pairing L x L — K defined by (z,y) — Tk (2y); under
our assumption that L/K is separable, it is a perfect pairing. An A-lattice M in L is a
finitely generated A-module that spans L as a K-vector space (see Definition 5.17). Every
A-lattice M in L has a dual lattice (see Definition 5.19)

M*:={x e L:Tp/g(xm) € AVm e M},

which is an A-lattice in L isomorphic to the dual A-module M := Homa (M, A) (see
Theorem 5.20). In our AK LB setting we have M** = M by Proposition 5.24.

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely
generated as an A module (since B is finite over A). If I is nonzero, it necessarily spans L,
since B does. It follows that every element of the group Zp of nonzero fractional ideals of B
is an A-lattice in L. We now show that Zp is closed under the operation of taking duals.

Lemma 12.1. Assume AKLB. If I € Ig then I* € Ip.

Proof. The dual lattice I* is a finitely generated A-module, thus to show that it is a finitely
generated B-module it is enough to show it is closed under multiplication by elements of B.
So consider any b € B and = € I*. For all m € I we have Ty, /i ((bx)m) = Ty, (z(bm)) € A,
since x € I* and bm € I, so bx € I* as desired. O

Definition 12.2. Assume AKLB. The different Dy i of L/K (and the different Dp/4
of B/A), is the inverse of B* in Zp. Explicitly, we have

B*:={x € L:Tr x(xb) € Aforall be B},
and we define
Drjx =Dpja=(B")"'=B+B*={zecL:2B"CB}.

Note that B C B*, since Tk (ab) € A for a,b € B (by Corollary 5.7), and this implies
Dpja = (B*)~! € B~! = B. Thus the different is an ideal, not just a fractional ideal.

!Note that B/q°e is reduced if and only if e; = 1; consider the image of a uniformizer in B/q9.
2As usual, by a prime of A or K we mean a nonzero prime ideal of A, and similarly for B and L. The
notation q|p means that q is a prime of B lying above p (so p =qN A and ¢ divides pB).
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The different respects localization and completion.

Proposition 12.3. Assume AKLB and let S be a multiplicative subset of A. Then

Sil'DB/A = 'DSAB/SAA.

Proof. This follows from the fact that inverses and duals are both compatible with localiza-
tion, by Lemmas 3.1 and 5.23. O

Proposition 12.4. Assume AKLB and let q|p be a prime of B. Then
Pp,/4, = Ppjaba;

where flp and Eq are the completions of A and B at p and q, respectively.

Proof. Let L := L ®k K, be the base change of the finite étale K-algebra L to K,. By (5)
of Theorem 11.23, we have L~ qup Ly. Note that even though L need not be a field, in
general, it is a free Ky-module of finite rank, and is thus equipped with a trace map that
necessarily satisfies TL/K (x) = qup Tp,/K,(x) that defines a trace pairing on L.

Now let. B:=B®y Ap, it is an Ap -lattice in the Kp -vector space L. By Corollary 11.26,
B~ [Tq Ba = Dypp Bq, and therefore B* ~ @D, By, by Corollary 5.21. It follows that

B*~ B*®4 Ap In particular, B* generates each fractlonal ideal B re I . Taking inverses,

Dp/a = (B*)~! generates the B -ideal (B;Ik) =Dg /A, -

12.2 The discriminant

Definition 12.5. Let S/R be a ring extension in which S is a free R-module of rank n. For

any ri,...,xr, € S we define the discriminant
disc(z1, ..., oy) = discg/r(21, . .., 75) = det[Tg/p(ziz))]i; € R.
Note that we do not require x1, ..., x, to be an R-basis for S, but if they satisfy a non-trivial

R-linear relation then the discriminant will be zero (by linearity of the trace).

In our AK LB setup, we have in mind the case where eq,...,e, € B is a basis for L as
a K-vector space, in which case disc(eq, ..., e,) = det[Ty k(eie;)]ij € A. Note that we do
not need to assume that B is a free A-module; L is certainly a free K-module. The fact
that the discriminant lies in A when ey, ..., e, € B follows immediately from Corollary 5.7.

Proposition 12.6. Let L/K be a finite separable extension of degree n, and let /K be a
field extension for which there are distinct o1, . ..,0, € Homg (L,Q). For anyes,...,e, € L
we have

disc(eq, ..., en) = det[ai(ej)]?j,

and for any x € L we have

disc(1,2,27,...,2" ") = [[ (oi(2) — 05(2))*.

i<j

Such a field extension /K always exists, since L/K is separable (2 = K works).

18.785 Fall 2025, Lecture #12, Page 2


https://math.mit.edu/classes/18.785/2021fa/LectureNotes3.pdf#theorem.2.1
https://math.mit.edu/classes/18.785/2021fa/LectureNotes5.pdf#theorem.2.23
https://math.mit.edu/classes/18.785/2021fa/LectureNotes11.pdf#theorem.2.23
https://math.mit.edu/classes/18.785/2021fa/LectureNotes11.pdf#theorem.2.26
https://math.mit.edu/classes/18.785/2021fa/LectureNotes5.pdf#theorem.2.21
https://math.mit.edu/classes/18.785/2021fa/LectureNotes5.pdf#theorem.2.7

Proof. For 1 <4,j <n we have Ty (eiej) = Y i, or(eiej), by Theorem 5.5. Therefore

disc(er, ..., en) = det[Tr x(eie;)]ij
= det ([ox(es)]ir]or(e))]k;)
= det ([ox(ei)]ik[ow(e;)]5x)

= det[oie;) P,

since the determinant is multiplicative and det M = det M* for any matrix M.
Now let z € L and put e; := 2! for 1 <4 < n. Then

disc(L,z,%,...,a"") = detfos(e )3 = detfos(x) )% = [ (04(2) — 0(2))?,
1<j
since [o;(z)77Y;; is a Vandermonde matrix (rows of the form 2°,...,2""1 for some z); see

[3, p.258] for a proof of this standard fact. dJ

Definition 12.7. For a polynomial f(x) = [[,(x — a;), the discriminant of f is
disc(f) = [ [ (e — a;)*.
i<j
Equivalently, if A is a Dedekind domain, f € Alz| is a monic separable polynomial, and «
is the image of x in A[z]/(f(x)), then
disc(f) = disc(1, a,a?,...,a" 1) € A.
Example 12.8. disc(z? + bx + ¢) = b? — 4c and disc(2® + azx + b) = —4a® — 270°.

Now assume AKLB and let M be an A-lattice in L. Then M is a finitely generated
A-module that contains a K-basis for L. We want to define the discriminant of M in a way
that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If eq,...,e, € M C L and
el,...,el, € M C L are two A-bases for M, then

disc(e],...,eh) = u?disc(er, . .., ep)

for some unit u € A*; this follows from the fact that the change of basis matrix P € A™*™ is
invertible and its determinant is therefore a unit w. This unit gets squared because we need
to apply the change of basis matrix twice in order to change T(e;e;) to T(ege;-). Explicitly,
writing bases as row-vectors, let e = (e1,...,e,) and €/ = (¢],..., ¢} satisfy ¢’ = eP. Then
disc(e') = det[TL/K(e;e;)]ij

= det[Tr,x ((eP)i(eP);)]i;

= det[P'[Tk (eie;)]i; P)

= (det P") disc(e)(det P)

= (det P)? disc(e),
where we have used the linearity of Ty i to go from the second equality to the third.

This actually gives us a basis independent definition when A = Z. In this case B is
always a free Z-lattice, and the only units in Z are u = +1, so u? = 1.
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Definition 12.9. Assume AKLB, let M be an A-lattice in L, and let n := [L: K]. The
discriminant D(M) of M is the A-module generated by {disc(z1,...,2n) : T1,...,2, € M}.

Lemma 12.10. Assume AKLB and let M' C M be free A-lattices in L. The discriminants
D(M') C D(M) are nonzero principal fractional ideals. If D(M') = D(M) then M’ = M.

Proof. Let e := (e1,...,e,) be an A-basis for M. Then disc(e) € D(M), and for any row
vector x = (z1,...,Ty) with entries in M there is a matrix P € A™*" for which = = eP,
and we then have disc(z) = (det P)? disc(e) as above. It follows that

D(M) = (disc(e))

is principal, and it is nonzero because e is a basis for L and the trace pairing is nondegenerate.
If we now let ¢/ := (e],...,e),) be an A-basis for M’ then D(M’) = (disc(e’)) is also a
nonzero and principal. Our assumption that M’ C M implies that ¢ = eP for some matrix
P € A" and we have disc(e’) = (det P)2disc(e). If D(M’) = D(M) then det P must be
a unit, in which case P is invertible and e = ¢/ P~!. This implies M C M’, so M' =M. O

Proposition 12.11. Assume AKLB and let M be an A-lattice in L. Then D(M) € Z4.

Proof. The A-module D(M) C K is nonzero because M contains a K-basis e = (eq,...,ey)
for L and disc(e) # 0 because the trace pairing is nondegenerate. To show that D(M) is a
finitely generated A-module (and thus a fractional ideal), we use the usual trick: make it a
submodule of a noetherian module. So let IV be the free A-lattice in L generated by e and
then pick a nonzero a € A such that M C a~!N (write each generator for M in terms of
the K-basis e and let a be the product of all the denominators that appear; note that M is
finitely generated). We then have D(M) C D(a~!N), and D(a~!N) is a principal fractional
ideal of A, hence a noetherian A-module (since A is noetherian), so its submodule D(M)
must be finitely generated. O

Definition 12.12. Assume AKLB. The discriminant Dy, of L/K (and the discriminant
Dpja of B/A) is the discriminant of B as an A-module:

DL/K . DB/A . D(B) S IA,
which is an A-ideal, since disc(x1, ..., 2,) = det[Tp/a(ziz;)]i; € A for all zy,..., 2, € B.

Example 12.13. Consider the case A =7Z, K = Q, L = Q(i), B = Z[i]. Then B is a free
A-lattice with basis (1,7) and we can compute Dy, /K 1n three ways:

. L Trr(1-1) Trg(-i)| 2 0 _
e disc(1,4) = det [TL/K(i'l) Ty (i -1) = det 0 _o| = 4.

e The non-trivial automorphism of L/K fixes 1 and sends i to —i, so we could instead

2
compute disc(1,7) = <det E _11}) = (—2i)? = —4.
e We have B = Z[i] = Z[z]/(2? + 1) and can compute disc(z? + 1) = —4.

In every case the discriminant Dy g is the ideal (—4) = (4).
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Remark 12.14. If A = Z then B is the ring of integers of the number field L, and B is a
free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In
this situation it is customary to define the absolute discriminant Dy, of the number field L
to be the integer disc(ey, ..., e,) € Z, for any basis (e, ..., e,) of B, rather than the ideal it
generates. As noted above, this integer is independent of the choice of basis because u? = 1
for all w € Z*; in particular, the sign of Dy, is well defined (as we shall see, the sign of Dy,
carries information about L). In the example above, the absolute discriminant is Dy, = —4.

Like the different, the discriminant respects localization.

Proposition 12.15. Assume AKLB and let S be a multiplicative subset of A. Then

S_IDB/A — Ds—lB/S—lA.

Proof. Let x = s~ tdisc(eq,...,e,) € SilDB/A for some s € S and eq,...,e, € B. Then
r = s>""ldisc(s7ley,..., s te,) lies in Dg-15/5-14. This proves the forward inclusion.
Conversely, for any ey, ..., e, € S™'B we can choose a single s € S C A so that each se;
lies in B. We then have disc(eq, . ..,e,) = s 2" disc(sey, ..., se,) € S_IDB/A, which proves
the reverse inclusion. O

Proposition 12.16. Assume AKLB and let p be a prime of A. Then

Dpjady = [ Dp, 4,
qlp

where flp and Bq are the completions of A and B at p and q, respectively.

Proof. After localizing at p we can assume A is a DVR and B is a free A-module of rank n.
As in the proof of Prop081t10n 12.4, we have a trace pamng on the finite étale Kp- algebra
L=1L ®r Kp and B =B R4 Ap ~ ®qlp q 1S an Ap -lattice in the Ky-vector space L
that is a direct sum of free Ap—modules, and thus a free Ap—module of rank n =) eq fq; see
Corollary 11.26.

We can choose flp bases for each B using elements in B; this follows from weak approx-
imation (Theorem 8.5) and the fact that B is dense in B, (or see |2, Thm. 2.3|). From these

bases we can construct an Ap basis € for the direct sum @ B ~ B whose elements each

alp
have nonzero projections to exactly one of the Bq, along with a corresponding A-basis e

for B obtained from é as the union of these projections.
The matrix [T} /K, (é:€;)] is block diagonal; each block corresponds to a matrix whose

determinant is the discriminant of the Ap -basis we chose for one of the B It follows that
Dg i, = =1, D Ba/Ay (here we are using the fact that B ~ Dyp B is both an isomorphism

of rings and an isomorphism of Ay,-modules, hence it preserves traces to Ap). We now observe
that

discga(er, ... en) = diSC(B@)AAp)/A,,(el ®1,...,e,®1)
generates Dp/ 4 as an A-ideal, and also generates D /A4, 8 an Ap—ideal (note that B is a free
Ap-module, so D /A, is the principal ideal generated by the discriminant of any Ap-basis
for B). It follows that DB/AAp = DB/Ap = Hq\p DBq/Ap‘ O
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We now have two ideals associated to a finite separable extension of Dedekind domains
B/A in the AKLB setup. We have the different ideal Dp/4, which is a fractional ideal
of B, and the discriminant ideal Dp,4, which is a fractional ideal of A. We now relate
these two ideals in terms of the ideal norm Np,4: Zp — Z4, which for I € Tp is defined as
Npya(I) == [B: I]a, where [B : I]4 is the module index (see Definitions 6.1 and 6.5).

Theorem 12.17. Assume AKLB. Then Dg/a = Np/a(Dp/a)-

Proof. The different and discriminant are both compatible with localization, by Proposi-
tions 12.3 and 12.15, and the A-modules Dp 4 and Ng/4(Dp/a) of A are both determined
by the intersections of their localizations at maximal ideals (Proposition 2.6), so it suffices
to prove that the theorem holds when we replace A by its localization at a prime of A. Then
Ais a DVR and B is a free A-lattice in L; let us fix an A-basis (eq,...,e,) for B.

The dual A-lattice

B*={zeL:Tyk(xb)c AVbe B} €1p

is also a free A-lattice in L, with basis (], ..., e;,) uniquely determined by Ty, /k (efe;) = 51]7

’rn
where ¢;; is the Kronecker delta function; see Corollary 5.22. If we write e; = ) aj;e’ e; in

terms of the K-basis (e}, ...,e}) for L then

’ ’Vl

TL/K(eiej) = TL/K (Z aike};ej> ZaszL/K ekej Z alkékj
k

It follows that P := [Ty k(eie;)]ij is the change-of-basis matrix from e* = (e],...,¢€})
to e = (e1,...,e,) (as row vectors we have e = e*P). If we let ¢ denote the K-linear
transformation with matrix P (or its transpose, if you prefer to work with column vectors),
then ¢ is an isomorphism of free A-modules and

Dpja = (det[Ty, g (eiej)lij) = (det ¢) = [B*: Bla,

where [B*: B] 4 is the module index (see Definition 6.1). Applying Corollary 6.8 yields

Dpja = [B*:Bla = Np/4(B+ B*) = Ng/a((B*)™") = Np,a(Dp/a)-

(the last three equalities each hold by definition). O

12.3 Ramification

Having defined the different and discriminant ideals we now want to understand how they
relate to ramification. Recall that in our AKLB setup, if p is a prime of A then we can
factor the B-ideal pB as

pB =qi -y

The Chinese remainder theorem implies
BJ/pB ~B/q{' x -+ x BJqc".

This is a commutative A/p-algebra of dimension ) e;f;, where f; = [B/q; : A/p] is the
residue degree (see Theorem 5.43). It is a product of fields if and only if we have e; = 1 for
all 7, and it is a finite étale-algebra if and only if it is a product of fields that are separable
extensions of A/p. The following lemma relates the discriminant to the property of being a
finite étale algebra.
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Lemma 12.18. Let k be a field and let R be a commutative k-algebra with k-basis ri,...,7Ty.
Then R is a finite étale k-algebra if and only if disc(ry,...,ry) # 0.

Proof. By Theorem 5.28, R is a finite étale k-algebra if and only if the trace pairing on R
is a perfect pairing, which is equivalent to being nondegenerate, since k is a field.

If the trace pairing is degenerate then for some nonzero x € R we have T/, (zy) = 0
for all y € R. If we write x = ), x;r; with x; € k then Tgy(ar)) = > 2T/ (rir;) = 0
for all r; (take y = r;), and this implies that the columns of the matrix [Tg/;(rir;)]i; are
linearly dependent and disc(r1, ...,m,) = det[T g/ (rir;)]i; = 0.

Conversely, if disc(r1,...,7,) = 0 then the columns of det[Tg/,(r;7;)]i; are linearly de-
pendent and for some x; € k not identically zero we must have ), 2;T g (rir;) = 0 for all j.
For z := 3, xir; and any y = 3, y;r; € R we have Tg)p(2y) =32, y; 22 2 TRy (rir;) =0,
which shows that the trace pairing is degenerate. O

Theorem 12.19. Assume AKLB, let q be a prime of B lying above a prime p of A such
that B/q is a separable extension of A/p. The extension L/K is unramified at q if and only
if q does not divide Dp,4, and it 1s unramified at p if and only if p does not divide Dp 4.

Proof. We first consider the different Dp,4. By Proposition 12.4, the different is compatible
with completion, so it suffices to consider the case that A and B are complete DVRs (com-
plete K at p and L at q and apply Theorem 11.23). We then have [L : K| = eqfy, where ¢4
is the ramification index and f; is the residue field degree, and pB = g°.

Since B is a DVR with maximal ideal q, we must have Dg,4 = q" for some m > 0. By
Theorem 12.17 we have

Dpja = Np/a(Dpja) = Npja(q™) = phm.

Thus q|Dp/a if and only if p|Dp 4. Since A is a PID, B is a free A-module and we may
choose an A-module basis ey, ..., e, for B that is also a K-basis for L. Let k := A/p, and
let €; be the reduction of e; to the k-algebra R := B/pB. Then (ej,...,€,) is a k-basis for
R: it clearly spans, and we have [R: k| = [B/q% : A/p] =eqfq=[L: K] =n.

Since B has an A-module basis, we may compute its discriminant as

Dpja = (disc(er, ..., en)).

Thus p|Dp/4 if and only if disc(er,...,e,) € p, equivalently, disc(éy,...,€,) = 0 (note
that disc(ei,...,en) is a polynomial in the Ty i (eie;) and Tg/i(€:€;) is the trace of the
multiplication-by-€;€; map, which is the same as the reduction to & = A/p of the trace of
the multiplication-by-e;e; map Ty k(eiej) € A). By Lemma 12.18, disc(éy, ..., e,) = 0 if
and only if the k-algebra B/pB is not finite étale, equivalently, if and only if p is ramified.
Thus p|Dpg,4 if and only if p is ramified. There is only one prime g above p, so we also have
q/Dp/4 if and only if q is ramified. O]

We now note an important corollary of Theorem 12.19.
Corollary 12.20. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. A and B are Dedekind domains, so the ideals Dp/4 and Dp,4 both have unique
factorizations into prime ideals in which only finitely many primes appear. O
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12.4 The discriminant of an order

Recall from Lecture 6 that an order O is a noetherian domain of dimension one whose
conductor is nonzero (see Definitions 6.16 and 6.19), and the integral closure of an order
is always a Dedekind domain. In our AK LB setup, the orders with integral closure B are
precisely the A-lattices in L that are rings (see Proposition 6.22); if L = K(a) with a € B,
then Ala] is an example. The discriminant Dy,4 of such an order O is its discriminant
D(O) as an A-module. The fact that O C B implies that D(O) C Dp/4 is an A-ideal.

If O is an order of the form Ala], where o € B generates L = K(«) with minimal
polynomial f € A[z], then O is a free A-lattice with basis 1,c,...,a" !, where n = deg f,
and we may compute its discriminant as

Dpja = (disc(1, a, . ... o™ ) = (disc(f)),

which is a principal A-ideal contained in Dp/4. If B is also a free A-lattice, then as in the
proof of Lemma 12.10 we have

Doy = (det P)’Dp/q = [B: O3 D4,

where P is the matrix of the A-linear map ¢: B — O that sends an A-basis for B to an
A-basis for O and [B:0]4 is the module index (a principal A-ideal).

In the important special case where A = Z and L is a number field, the integer (det P)?
is uniquely determined and it necessarily divides disc(f), the generator of the principal ideal
D(O) = D(A|a]). It follows that if disc(f) is squarefree then we must have B = O = Ala].
More generally, any prime p for which v,(disc(f)) is odd must be ramified, and any prime
that does not divide disc(f) must be unramified. Another useful observation that applies
when A = Z: the module index [B: O]z = ([B:0)]) is the principal ideal generated by the
index of O in B (as Z-lattices), and we have the relation

Do = [B:0]*Dp
between the absolute discriminant of the order O and its integral closure B.

Example 12.21. Consider A = Z, K = Q with L = Q(«), where a® — a — 1 = 0. We can
compute the absolute discriminant of Z[a] as

disc(1, a, o?) = disc(z® — 2 — 1) = —4(—1)% — 27(-1)? = —23.

The fact that —23 is squarefree immediately implies that 23 is the only prime of A that
ramifies, and we have Dy, = —23 = [Of : Z[o]]* Dy, which forces [Of : Z[o]] = 1, so
Dy, = —23 and Of, = Z|a].

More generally, we have the following theorem.

Theorem 12.22. Assume AKLB and let O be an order with integral closure B and con-
ductor ¢. Then Dpsa = Np/a(¢)Dp/a-

Proof. See Problem Set 6. O

In the example above the fact that the discriminant of Z[a] was squarefree immediately
told us the discriminant of Q(«). But it will often happen that disc(Z[a]) is not squarefree;
indeed this is necessarily the case if the discriminant of Q(«) is not squarefree. Computing
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the discriminant of a number field is not an easy task in general. The standard approach is
to begin by factoring the discriminant of a given order Z[a] and then for each prime divisor
of this discriminant determine whether p divides the index of Z[a] in the ring of integers
and if so constructing a larger order O for which this is not the case. This approach is due
to Pohst and Zassenhaus and is described in [1, §6]. The details are somewhat involved,
but let us note the following result due to Dedekind that can often be used to determine
whether or not a prime dividing the discriminant of Z[a] divides the discriminant of Q(«).

Theorem 12.23 (Dedekind). Let K = Q(«) be a number field, let f be the minimal poly-
nomial of «, let p be a prime, let
r=11r
i=1

be the factorization of f = f mod p in Fp[z]. Let f; be any monic lift of fi to Z[x], let
u =[] fi, let v be any monic lift of f/u to Z[x], and let w = (uv — f)/p € Z[x]. Then p
dwides [Ok : Z[a]] if and only if u,v,w have a nonconstant common factor in Fp[z].

Proof. See |1, Thm. 6.1.4]. O

12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant
and different in many cases.

Proposition 12.24. Assume AKLB. If B = Ala] for some a € L and f € Alz] is the
minimal polynomial of o, then
Dpja = (f'(a))

is the B-ideal generated by f'(«).
Proof. See Problem Set 6. O

The assumption B = A[a] in Proposition 12.24 does not always hold, but if we want to
compute the power of q that divides Dg,4 we can complete L at g and K at p = qN A so that
A and B become complete DVRs, in which case B = A[¢/] for some o (by Lemma 10.12),
so long as the residue field extension is separable (always true if K and L are global fields,
since the residue fields are then finite, hence perfect).

The following definition and proposition give an alternative approach.

Definition 12.25. Assume AKLB and let o € B have minimal polynomial f € A[z]. The
different of « is defined by

[ f(a) if L=K(a),
0B/A (@) = {0 otherwise.

Proposition 12.26. Assume AKLB. Then Dp/g = (5B/A(a) fa € B).
Proof. See [4, Thm. IT1.2.5]. O

We can now more precisely characterize the ramification information given by the dif-
ferent ideal.
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Theorem 12.27. Assume AKLB and let q be a prime of L lying above p = qN A for which
the residue field extension (B/q)/(A/p) is separable. Then

eq =1 < vq(Dpja) < eq— 1+ vgleq),
and the lower bound is an equality if and only if q is tamely ramified.

Proof. See Problem Set 6. O

We also note the following proposition, which shows how the discriminant and different
behave in a tower of extensions.

Proposition 12.28. Assume AKLB and let M/L be a finite separable extension and let C
be the integral closure of A in M. Then

Dcja =Deyp - Dpya
(where the product on the right is taken in C), and
Deya = (Dp/a)M* N a(Deyp).
Proof. See |5, Prop. IIL.§]. O

If M/L/K is a tower of finite separable extensions, we note that the primes p of K that
ramify are precisely those that divide either Dy, /i or Np g (Dar/r)-
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