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11 Totally ramified extensions and Krasner’s lemma

In the previous lecture we showed that in the AKLB setup, if A is a complete DVR with
maximal ideal p then B is a complete DVR with maximal ideal q and [L : K] = n = eqfq; see
Theorem 10.4 (note that the AKLB setup includes the assumption that L/K is separable).
In this setting we may unambiguously write eL/K for eq and fL/K for fq, since q is the
unique prime of L. Provided the residue field extension is separable (always the case if K is
a local field), we can decompose the extension L/K as a tower of field extensions L/E/K
in which E/K is unramified (so eE/K = 1 and fE/K = fL/K) and L/E is totally ramified
(so eL/E = eL/K and fL/E = 1), by Theorem 10.23.

In the previous lecture we classified unramified extensions of (fraction fields of) complete
DVRs, and showed that when the residue field is finite (always true for local fields), unram-
ified extensions are all cyclotomic extensions of the form K(ζn)/K for some n coprime to
the residue field characteristic; see Corollary 10.17. In this lecture we will classify totally
ramified extensions of complete DVRs.

11.1 Totally ramified extensions of a complete DVR

Definition 11.1. Let A be a DVR with maximal ideal p. A monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ A[x]

is Eisenstein (or an Eisenstein polynomial) if ai ∈ p for 0 ≤ i < n and a0 ̸∈ p2; equivalently,
vp(ai) ≥ 1 for 0 ≤ i < n and vp(a0) = 1. Note that this means a0 is a uniformizer.

Lemma 11.2 (Eisenstein irreducibility). Let A be a DVR with fraction field K and let
f ∈ A[x] be Eisenstein. Then f is irreducible in both A[x] and K[x].

Proof. Suppose not. Then f = gh has degree n ≥ 2 for some non-constant monic g, h ∈ A[x].
Put f =

∑
i fix

i, g =
∑

i gix
i, h =

∑
i hix

i. Then vp(f0) = vp(g0h0) = vp(g0) + vp(h0) = 1,
where p is the maximal ideal of A, and without loss of generality we may assume vp(g0) = 0
and vp(h0) = 1. Let i > 0 be the least i for which vp(hi) = 0; such an i < n exists since h is
monic and deg h < n. We have

fi = g0hi + g1hi−1 + · · ·+ gi−1h1 + gih0,

with vp(fi) ≥ 1 since f is Eisenstein and i < n, but the valuation of the RHS is zero,
since vp(g0hi) = 0 and vp(gjhi−j) ≥ 1 for 0 ≤ j < i, by the minimality of i, which is a
contradiction. Thus f is irreducible in A[x], and since A is a DVR, and therefore a PID and
thus a UFD, f is irreducible in K[x], by Gauss’s Lemma [1].

Remark 11.3. We can apply Lemma 11.2 to any polynomial f(x) over a Dedekind domain A
that is Eisenstein over a localization Ap; the rings Ap and A have the same fraction field
K and f is then irreducible in K[x], hence in A[x]; this gives the Eisenstein criterion for
irreducibility.

Lemma 11.4. Let A be a DVR and let f ∈ A[x] be an Eisenstein polynomial. Then
B = A[π] := A[x]/(f) is a DVR with uniformizer π, where π is the image of x in A[x]/(f).

Proof. Let p be the maximal ideal of A. We have f ≡ xn mod p, so by Corollary 10.11 the
ideal q = (p, x) = (p, π) is the only maximal ideal of B. Let f =

∑
fix

i; then p = (f0)
and q = (f0, π), and f0 = −f1π − f2π

2 − · · · − πn ∈ (π), so q = (π). The unique maximal
ideal (π) of B is nonzero and principal, so B is a DVR with uniformizer π.
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Theorem 11.5. Assume AKLB with A a complete DVR and π a uniformizer for B. The
extension L/K is totally ramified if and only if B = A[π] and the minimal polynomial of π
is Eisenstein.

Proof. Let n = [L : K], let p be the maximal ideal of A, let q be the maximal ideal of B
(which we recall is a complete DVR, by Theorem 10.4), and let π be a uniformizer for B
with minimal polynomial f . If B = A[π] and f is Eisenstein, then as in Lemma 11.4 we
have pB = qn, so vq extends vp with index eq = n and L/K is totally ramified.

We now suppose L/K is totally ramified. Then vq extends vp with index n, which
implies vq(K) = nZ. The set {π0, π1, π2, . . . , πn−1} is linearly independent over K, since
the valuations of π0, . . . πn−1 are distinct modulo vq(K) = nZ (if

∑n−1
i=0 aiπ

i = 0 we must
have vq(aiπ

i) = vq(ajπ
j) for some nonzero ai and aj with i ̸= j, which is impossible). Thus

L = K(π).
Let f =

∑n
i=0 aix

i ∈ A[x] be the minimal polynomial of π. We have vq(f(π)) = ∞
and vq(aiπ

i) ≡ i mod n for 0 ≤ i ≤ n. The former implies that the minimum value of
the nonnegative integers vq(aiπ

i) cannot occur uniquely, and the latter implies that these
integers are distinct for distinct values of i mod n. We therefore must have

vq(a0) = vq(a0π
0) = vq(anπ

n) = vq(π
n) = n < vq(aiπ

i) for 0 < i < n,

This implies vp(a0) = 1, since vq extends vp with index n, and vp(ai) ≥ 1 for 0 ≤ i < n.
Thus f is Eisenstein A[π] ⊆ B is a DVR, by Lemma 11.4, hence maximal, so B = A[π].

Example 11.6. Let K = Q3. As shown in an earlier problem set, there are just three
distinct quadratic extensions of Q3: Q3(

√
2), Q3(

√
3), and Q3(

√
6). The extension Q3(

√
2)

is the unique unramified quadratic extension of Q3, and we note that it can be written as
a cyclotomic extension Q3(ζ8). The other two are both ramified, and can be defined by the
Eisenstein polynomials x2 − 3 and x2 − 6.

Definition 11.7. Assume AKLB with A a complete DVR and separable residue field
extension of characteristic p ≥ 0. The extension L/K is tamely ramified if p ̸ | eL/K (always
true if p = 0); note that unramified extensions are tamely ramified. Otherwise L/K is wildly
ramified if p|eL/K . A totally ramified extension L/K is totally tamely ramified if p ̸ | eL/K ,
and it is totally wildly ramified if eL/K is a power of p (a totally ramified extension that is
wildly ramified need not be totally wildly ramified).

Recall that ramification indices multiply in towers (Lemma 5.38), and separability is
transitive in towers (Corollary 4.14). This yields the following proposition, which we note
applies to all nonarchimedean local fields.

Proposition 11.8. The properties of being unramified, tamely ramified, wildly ramified,
totally ramified, totally tamely ramified, and totally wildly ramified are all transitive in towers
of extensions of fraction fields of complete DVRs with separable residue field extensions.

Proof. This follows immediately from the transitivity of separability and the multiplicativity
of ramification indices and degrees in towers.

Remark 11.9. A compositum of totally ramified extensions need not be totally ramified.
From Example 11.6 we see that the compositum of the totally ramified quadratic extensions
Q3(

√
3) and Q3(

√
6) of Q3 contains the unramified quadratic extension Q3(

√
2) of Q3.
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Theorem 11.10. Assume AKLB with A a complete DVR and separable residue field ex-
tension of characteristic p ≥ 0 not dividing n := [L : K]. The extension L/K is totally
tamely ramified if and only if L = K(π

1/n
A ) for some uniformizer πA of A.

Proof. If L = K(π
1/n
A ) then π = π

1/n
A has minimal polynomial xn − πA, which is Eisenstein,

so A[π] is a DVR by Lemma 11.4. This implies B = A[π], since DVRs are maximal, and
Theorem 11.5 implies that L/K is totally tamely ramified, since p ∤ n.

Now assume L/K is totally tamely ramified and let p and q be the maximal ideals of
A and B with uniformizers πA and πB respectively. Then vq extends vp with index eq = n
and vq(π

n
B) = n = vq(πA). This implies that πn

B = uπA for some unit u ∈ B×. We have
fq = 1, so B and A have the same residue field, and if we lift the image of u in B/q ≃ A/p
to a unit uA in A and replace πA with u−1

A πA, we can assume that u ≡ 1 mod q. Now define
g(x) := xn − u ∈ B[x] with reduction ḡ = xn − 1 in (B/q)[x]. We have ḡ′(1) = n ̸= 0 (since
p ̸ | n), so by Hensel’s Lemma 9.15 we can lift the root 1 of ḡ(x) in B/q to a root r of g(x)
in B. Now let π := πB/r. Then π is a uniformizer for B and B = A[π] by Theorem 11.5, so
L = K(π), and πn = πn

B/r
n = πn

B/u = πA, so L = K(π
1/n
A ) as desired.

Proposition 11.11. Let L be a totally ramified extension of the fraction field K of a com-
plete DV R. There is a unique intermediate field E such that E/K is totally tamely ramified
and L/E is totally wildly ramified.

Proof. Let e := eL/K be the ramification index and let p ≥ 0 be the characteristic of the
residue field. If p ̸ | e then the proposition holds with E = L, so we assume p|e, and put
e = mpa with p ∤ m (possibly m = 1).

Let A be the valuation ring of K with maximal ideal p, and let B be the valuation ring
of L (also a complete DVR) with maximal ideal q. As in the proof of Theorem 11.10, we can
choose uniformizers πA of A and πB of B such that πn

B = uπA with u ∈ B× and u ≡ 1 mod q.
Let g(x) = xm − u ∈ B[x]; as in the proof of the theorem we can construct a root r ∈ B
of g(x) by Hensel lifting the root 1 of ḡ ∈ (B/q)[x]. Now consider the field extension
E := K(π), where π := πpa

B /r. We have πm = πn
B/r

m = πn
B/u = πA, so E = K(π

1/m
A ) with

p ∤ m. The polynomial xm − πA of π is Eisenstein, hence irreducible, and has π as a root,
so E/K has degree m. By Theorem 11.10, the extension E/K is totally tamely ramified
(the residue field extension is trivial, so it is certainly separable), and the extension L/E
has degree pa and is thus totally wildly ramified.

To see that E is unique, suppose E′ ⊆ L is another totally tamely ramified extensions
of K such that L/E′ is totally wildly ramified. Then E′ = K(π

′1/m
A ) for some uniformizer

π′
A of A, by Theorem 11.10. Now π′

A/πA = u is a unit with u1/m ∈ L, and in fact u1/m ∈ K,
since L/K is totally ramified and K(u1/m) is unramified (by Corollary 10.16, since p ∤ m).
We can thus replace any mth root of π′

A with some mth root of πA, and it follows that
E and E′ are both generated by a root of xm − πA. The ratio of these roots is a (not
necessarily primitive) mth root of unity ζ ∈ L that must lie in K (as above, since L/K is
totally ramified and p ∤ m), therefore E′ = E.

Corollary 11.12. Let L be a finite separable extension of the fraction field K of a complete
DV R with separable residue field extension. There is a unique intermediate field E such
that E/K is tamely ramified and L/E is totally wildly ramified.

Proof. Let F be the maximal unramified extension of K in L. By Corollary 10.15 we can
assume L = F (α) where α is an integral element whose minimal polynomial g has separable
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image in k[x], where k is the residue field of K. Applying the previous proposition to the
totally ramified extension L/F yields a tamely ramified extension E/F with L/E totally
wildly ramified. Unramified extensions are tamely ramified, so E/F/K is a tower of tamely
ramified extensions, hence tamely ramified.

Any field E′ with L/E′ totally wildly ramified must contain α, otherwise E′(α) would
be a non-trivial unramified subextension L/E′ (here we are again applying Corollary 10.15
and the fact that the image of the minimal polynomial of α over E′ must divide g and thus
has separable image in k[x] and in k′[x], where k′ is the residue field of E′, since k′ is an
extension of k). Proposition 11.11 then implies E′ = E.

11.2 Krasner’s lemma

Let K be the fraction field of a complete DVR with absolute value | |. By Theorem 10.4
we can uniquely extend | | to any finite extension L/K by defining |x| := |NL/K(x)|1/n,
where n = [L : K]; as noted in Remark 10.5, this induces a unique absolute value on K that
restricts to the absolute value of K.

Lemma 11.13. Let K be the fraction field of a complete DVR with algebraic closure K and
absolute value | | extended to K. For all α ∈ K and σ ∈ AutK(K) we have |σ(α)| = |α|.

Proof. The elements α and σ(α) must have the same minimal polynomial f ∈ K[x], since
f(σ(α)) = σ(f(α)) = 0, so NK(α)/K(α) = (−1)n1f(0) = NK(σ(α))/K(σ(α)), by Proposi-
tion 5.6. It follows that |σ(α)| = |NK(σ(α))/K(σ(α))|1/n = |NK(α)/K(α)|1/n = |α|, where
n = deg f .

Definition 11.14. Let K be the fraction field of a complete DVR with absolute value | |
extended to an algebraic closure K. For α, β ∈ K, we say β belongs to α if |β−α| < |β−σ(α)|
for all σ ∈ AutK(K) with σ(α) ̸= α, that is, β is strictly closer to α than it is to any of
its conjugates. This is equivalent to requiring that |β − α| < |α − σ(α)| for all σ(α) ̸= α,
since every nonarchimedean triangle is isosceles (if one side is shorter than another, it is the
shortest of all three sides).

Lemma 11.15 (Krasner’s lemma). Let K be the fraction field of a complete DVR and
let α, β ∈ K, with α separable over K. If β belongs to α then K(α) ⊆ K(β).

Proof. Suppose not. Then β belongs to α but α ̸∈ K(β). The extension K(α, β)/K(β) is
separable and non-trivial, so there is an automorphism σ ∈ AutK(β)(K) for which σ(α) ̸= α
(let σ send α to a different root of the minimal polynomial of α over K(β)). Applying
Lemma 11.13 to β − α ∈ K, we have

|β − α| = |σ(β − α)| = |σ(β)− σ(α)| = |β − σ(α)|,

since σ fixes β. But this contradicts the hypothesis that β belongs to α, since σ(α) ̸= α.

Remark 11.16. Krasner’s lemma is another “Hensel’s lemma" in the sense that it char-
acterizes Henselian fields (fraction fields of Henselian rings); although the lemma is named
after Krasner [2], it was proved earlier by Ostrowski in [3].

Definition 11.17. For a field K with absolute value | | the L1-norm of f =
∑

fix
i ∈ K[x] is

∥f∥1 :=
∑
i

|fi|,

18.785 Fall 2025, Lecture #11, Page 4

https://math.mit.edu/classes/18.785/2021fa/LectureNotes10.pdf#theorem.2.15
https://math.mit.edu/classes/18.785/2021fa/LectureNotes10.pdf#theorem.2.4
https://math.mit.edu/classes/18.785/2021fa/LectureNotes10.pdf#theorem.2.5
https://math.mit.edu/classes/18.785/2021fa/LectureNotes5.pdf#theorem.2.6


It is easy to check that ∥ ∥1 satisfies all the properties of Definition 10.1 and is thus a norm
on the K-vector space K[x].

Lemma 11.18. Let K be a field with absolute value | | and let f :=
∏n

i=1(x−αi) ∈ K[x] be
a monic polynomial with roots α1, . . . , αn ∈ L, where L/K is a field with an absolute value
that extends | |. Then |α| < ∥f∥1 for every root α of f .

Proof. The lemma is clear for n ≤ 1, so assume n ≥ 2. If ∥f∥1 = 1 then we must have
f = xn and α = 0, in which case |α| = 0 < 1 = ∥f∥1 and the lemma holds. Otherwise
∥f∥1 > 1, and if |α| ≤ 1 the lemma holds, so let α is a root of f with |α| > 1. We have

0 = |f(α)| =

∣∣∣∣∣αn +
n−1∑
i=0

fiα
i

∣∣∣∣∣ ≥ |α|n −
n−1∑
i=0

|fi||α|i ≥ |α|n − |α|n−1
n−1∑
i=0

|fi| ≥ |α| − (∥f∥1 − 1),

where we have used |a| = |a + b − b| ≤ |a + b| + | − b| = |a + b| + |b| to get the general
inequality |a + b| ≥ |a| − |b| which we applied repeatedly to get the first inequality above,
we used |α| > 1 to get the second (replacing |α|i with |α|n−1 in each term) and the third
(dividing by |α|n−1 ≥ 1). Thus ∥f∥1 − 1 ≥ |α|, and therefore ∥f∥1 ≥ |α|+ 1 > |α|.

Theorem 11.19 (Continuity of roots). Let K be the fraction field of a complete DVR
and f ∈ K[x] a monic irreducible separable polynomial. There exists δ = δ(f) ∈ R>0 such
that for every monic polynomial g ∈ K[x] with ∥f − g∥1 < δ the following holds:

Every root β of g belongs to a root α of f for which K(β) = K(α).
In particular, every such g is separable, irreducible, and has the same splitting field as f .

Proof. We first note that we can always pick δ < 1, in which case any monic g ∈ K[x] with
∥f − g∥1 < δ must have the same degree as f , so we can assume deg g = deg f . Let us fix
an algebraic closure K of K with absolute value | | extending the absolute value on K. Let
α1, . . . , αn be the roots of f in K, and write

f(x) =
∏
i

(x− αi) =

n∑
i=0

fix
i.

Let ϵ be the lesser of 1 and the minimum distance |αi − αj | between any two distinct roots
of f . We now define

δ := δ(f) :=

(
ϵ

2(∥f∥1 + 1)

)n

> 0,

and note that δ < 1, since ∥f∥1 ≥ 1 and ϵ ≤ 1. Let g(x) =
∑

i gix
i be a monic polynomial

of degree n with ∥f − g∥1 < δ. We then have

∥g∥1 ≤ ∥f∥1 + ∥g − f∥1 = ∥f∥1 + ∥f − g∥1 < ∥f∥1 + δ,

and for any root β ∈ K of g we have

|f(β)| = |f(β)− g(β)| = |(f − g)(β)| =

∣∣∣∣∣
n∑

i=0

(fi − gi)β
i

∣∣∣∣∣ ≤
n∑

i=0

|fi − gi||β|i.

We have |β| < ∥g∥1 by Lemma 11.18, and ∥g∥1 ≥ 1, so |β|i < ∥g∥i1 ≤ ∥g∥n1 . Thus

|f(β)| < ∥f − g∥1 · ∥g∥n1 < δ(∥f∥1 + δ)n < δ(∥f∥1 + 1)n ≤ (ϵ/2)n,
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and therefore
n∏

i=1

|β − αi| = |f(β)| < (ϵ/2)n.

It follows that |β − αi| < ϵ/2 for at least one αi, and the triangle inequality implies that
this αi must be unique since |αi − αj | ≥ ϵ for i ̸= j. Therefore β belongs to α := αi.

By Krasner’s lemma, K(α) ⊆ K(β), and we have n = [K(α) : K] ≤ [K(β) : K] ≤ n, so
K(α) = K(β). It follows that g is the minimal polynomial of β, since deg(g) = [K(β) : K].
Thus g is irreducible, and it is also separable, since β ∈ K(β) = K(α) lies in a separable
extension of K. We now observe that if a root β of g belongs to a root α of f , then for any
τ ∈ AutK(K) and all σ ∈ AutK(K) such that σ(α) ̸= α we have

|τ(β)− τ(α)| = |τ(β − α)| = |β − α| < |α− σ(α)| = |τ(α− σ(α))| = |τ(α)− τ(σ(α))|.

Noting that σ(α) ̸= α ⇐⇒ τ(σ(α)) ̸= τ(α), this implies that τ(β) belongs to τ(α). Now
AutK(K) acts transitively on the roots of f and g, so every root β of g belongs to a distinct
root α of f for which K(β) = K(α). Therefore g has the same splitting field as f .

11.3 Local extensions come from global extensions

Let L̂ be a local field. From our classification of local fields (Theorem 9.9), we know that L̂
is (isomorphic to) a finite extension of K̂ = Qp (some p ≤ ∞) or K̂ = Fq((t)) (some q).
We also know that the completion of a global field at any of its nontrivial absolute values
is a local field (Corollary 9.7). It is thus reasonable to ask whether L̂ is the completion of a
corresponding global field L that is a finite extension of K = Q or K = Fq(t).

More generally, for any fixed global field K and local field K̂ that is the completion of K
with respect to one of its nontrivial absolute values | |, we may ask whether every finite
extension of local fields L̂/K̂ necessarily corresponds to an extension of global fields L/K,
where L̂ is the completion of L with respect to one of its absolute values (whose restriction
to K must be equivalent to | |). The answer is yes. In order to simplify matters we restrict
our attention to the case where L̂/K̂ is separable, but this is true in general.

Theorem 11.20. Let K be a global field with a nontrivial absolute value | |, and let K̂ be the
completion of K with respect to | |. Every finite separable extension L̂ of K̂ is the completion
of a finite separable extension L of K with respect to an absolute value that restricts to | |.
One can choose L so that [L :K] = [L̂ :K̂], in which case L̂ = K̂ · L.

Proof. Let L̂/K̂ be a separable extension of degree n. If | | is archimedean then K is a
number field and K̂ is either R or C; the only nontrivial case is K̂ ≃ R and n = 2, and
we may then assume that L̂ = K̂(

√
d) ≃ C where d ∈ Z<0 is any nonsquare in K (such

a d exists because K/Q is finite). We may assume without loss of generality that | | is the
Euclidean absolute value on K̂ ≃ R (it must be equivalent to it), and uniquely extend | | to
L := K(

√
d) by requiring |

√
d| =

√
−d. Then L̂ is the completion of L with respect to | |,

and clearly [L :K] = [L̂ :K̂] = 2, and L̂ is the compositum of K̂ and L.
We now suppose that | | is nonarchimedean, in which case the valuation ring of K̂ is a

complete DVR and | | is induced by its discrete valuation. By the primitive element theorem
(Theorem 4.12), we may assume L̂ = K̂[x]/(f) where f ∈ K̂[x] is monic, irreducible, and
separable. The field K is dense in its completion K̂, so we can find a monic g ∈ K[x] ⊆ K̂[x]
such that ∥g−f∥1 < δ for any δ > 0. It then follows from Theorem 11.19 that L̂ = K̂[x]/(g)
(and that g is separable). The field L̂ is a finite separable extension of the fraction field of
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a complete DVR, so by Theorem 10.4 it is itself the fraction field of a complete DVR and
has a unique absolute value that extends the absolute value | | on K̂.

Now let L := K[x]/(g). The polynomial g is irreducible in K̂[x], hence in K[x], so
[L : K] = deg g = [L̂ : K̂]. The field L̂ contains both K̂ and L, and it is clearly the smallest
field that does (since g is irreducible in K̂[x]), so L̂ is the compositum of K̂ and L. The
absolute value on L̂ restricts to an absolute value on L extending the absolute value | | on K,
and L̂ is complete, so L̂ contains the completion of L with respect to | |. On the other hand,
the completion of L with respect | | contains L and K̂, so it must be L̂.

In the preceding theorem, when the local extension L̂/K̂ is Galois one might ask whether
the corresponding global extension L/K is also Galois, and whether Gal(L̂/K̂) ≃ Gal(L/K).
As shown by the following example, this need not be the case.

Example 11.21. Let K = Q, K̂ = Q7 and L̂ = K̂[x]/(x3 − 2). The extension L̂/K̂ is
Galois because K̂ = Q7 contains ζ3 (we can lift the root 2 of x2 + x + 1 ∈ F7[x] to a root
of x2 + x + 1 ∈ Q7[x] via Hensel’s lemma), and this implies that x3 − 2 splits completely
in L̂. But L = K[x]/(x3 − 2) is not a Galois extension of K because it contains only
one root of x3 − 2. However, we can replace K with Q(ζ3) without changing K̂ (take the
completion of K with respect to the absolute value induced by a prime above 7) or L̂, but
now L = K[x]/(x3 − 2) is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing
the local fields extension L̂/K̂ in a way that ensures that L̂/K̂ and L/K have the same
automorphism group. Indeed, this is always possible.

Corollary 11.22. For every finite Galois extension L̂/K̂ of local fields there is a finite
Galois extension of global fields L/K and an absolute value | | on L such that L̂ is the
completion of L with respect to | |, K̂ is the completion of K with respect to the restriction
of | | to K, and Gal(L/K) ≃ Gal(L̂/K̂).

Proof. The archimedean case is already covered by Theorem 11.20 (take K = Q), so we
assume L̂ is nonarchimedean and note that we may take | | to be the absolute value on both
K̂ and on L̂, by Theorem 10.4. The field K̂ is an extension of either Qp or Fq((t)), and by
applying Theorem 11.20 to this extension we may assume K̂ is the completion of a global
field K with respect to the restriction of | |. As in the proof of the theorem, let g ∈ K[x]
be a monic separable polynomial irreducible in K̂[x] such that L̂ = K̂[x]/(g) and define
L := K[x]/(g) so that L̂ is the compositum of K̂ and L.

Now let M be the splitting field of g over K, the minimal extension of K that contains
all the roots of g (which are distinct because g is separable). The field L̂ also contains these
roots (since L̂/K̂ is Galois) and L̂ contains K, so L̂ contains a subextension of K isomorphic
to M (by the universal property of a splitting field), which we now identify with M ; note
that L̂ is also the completion of M with respect to the restriction of | | to M .

We have a group homomorphism φ : Gal(L̂/K̂) → Gal(M/K) induced by restriction,
and φ is injective (each σ ∈ Gal(L̂/K̂) is determined by its action on any root of g in M). If
we now replace K by the fixed field of the image of φ and replace L with M , the completion
of K with respect to the restriction of | | is still equal to K̂, and similarly for L and L̂, and
now Gal(L/K) ≃ Gal(L̂/K̂) as desired.
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11.4 Completing a separable extension of Dedekind domains

We now return to our general AKLB setup: A is a Dedekind domain with fraction field K
with a finite separable extension L/K, and B is the integral closure of A in L, which is also
a Dedekind domain. Recall from Theorem 8.20 that if p is a prime of K (a nonzero prime
ideal of A), each prime q|p induces a valuation vq of L that extends the valuation vp of K
with index eq, meaning that vq|K = eqvp (and every valuation of L that extends vp arises in
this way). We now want to look at what happens when we complete K with respect to the
absolute value | |p induced by vp to obtain a complete field Kp, and similarly complete L
with respect to | |q for some q|p to obtain Lq. This includes the case where L/K is an
extension of global fields, in which case we get a corresponding extension Lq/Kp of local
fields for each q|p; as proved below, the embedding K ↪→ L induces an embedding Kp ↪→ Lq

of topological fields in which the absolute value | |p on Kp is equivalent to the restriction of
| |q to Kp (if we define | |q as in Theorem 10.4, | |p will be the restriction of | |q).

In general the extension Lq/Kp may have smaller degree than L/K. If L ≃ K[x]/(f), the
irreducible polynomial f ∈ K[x] need not be irreducible over Kp. Indeed, this will necessarily
be the case if there is more than one prime q lying above p; the Dedekind-Kummer theorem
gives a one-to-one correspondence between irreducible factors of f in Kp[x] and primes q|p
(via Hensel’s Lemma). The following theorem gives a complete description of the situation.

Theorem 11.23. Assume AKLB, let p be a prime of A, and let pB =
∏

q|p q
eq be the

factorization of pB in B. Let Kp be the completion of K with respect to | |p, and let p̂ be
the maximal ideal of its valuation ring. For each q|p, let Lq denote the completion of L with
respect to | |q, and q̂ the maximal ideal of its valuation ring. The following hold:

(1) Each Lq is a finite separable extension of Kp with [Lq :Kp] ≤ [L : K].

(2) Each q̂ is the unique prime of Lq lying over p̂.

(3) Each q̂ has ramification index eq̂ = eq and residue field degree fq̂ = fq.

(4) [Lq : Kp] = eqfq;

(5) The map L ⊗K Kp →
∏

q|p Lq defined by ℓ ⊗ x 7→ (ℓx, . . . , ℓx) is an isomorphism of
finite étale Kp-algebras.

(6) If L/K is Galois then each Lq/Kp is Galois and we have isomorphisms of decomposi-
tion groups Dq ≃ Dq̂ = Gal(Lq/Kp) and inertia groups Iq ≃ Iq̂.

Proof. We first note that the Kp and the Lq are all fraction fields of complete DVRs; this
follows from Proposition 8.11 (note that we are not assuming they are local fields).

(1) For each q|p the embedding K ↪→ L induces an embedding Kp ↪→ Lq via the map
[(xn)] 7→ [(xn)] on equivalence classes of Cauchy sequences; a sequence (xn) that is Cauchy
in K with respect to | |p, is also Cauchy in L with respect to | |q because vq extends vp. We
may thus view Kp as a topological subfield of Lq, and it is clear that [Lq :Kp] ≤ [L :K], since
any K-basis b1, . . . , bm for L ⊆ Lq spans Lq as a Kp-vector space: given a Cauchy sequence
y := (yn) of elements in L, if we write each yn as x1,nb1+· · ·+xm,nbm with xi,n ∈ K we obtain
Cauchy sequences x1 := (x1,n), · · · , xm := (xm,n) of elements in K (linear maps of finite
dimensional normed spaces are uniformly continuous and thus preserves Cauchy sequences),
and we can write [y] = [x1]b1 + · · · [xm]bm as a Kp-linear combination of b1, . . . , bm.

The field L is a finite étale K-algebra, since L/K is a separable extension, so its base
change L⊗K Kp to Kp is a finite étale Kp-algebra, by Proposition 4.36. Let us now consider
the Kp-algebra homomorphism ϕq : L ⊗K Kp → Lq defined by ℓ ⊗ x 7→ ℓx. We have
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ϕq(bi⊗1) = bi for each of our K-basis elements bi ∈ L, and as noted above, b1, . . . bm span Lq

as Kp-vector space, thus ϕq is surjective. As a finite étale Kp-algebra, L⊗KKp is by definition
isomorphic to a finite product of finite separable extensions of Kp; by Proposition 4.32, Lq

is isomorphic to a subproduct and thus also a finite étale Kp-algebra; in particular, Lq/Kp

is separable.
(2) As noted above, the valuation rings of Kp and the Lq are complete DVRs, so this

follows immediately from Theorem 9.22.
(3) The valuation vq̂ extends vq with index 1, which in turn extends vp with index eq.

The valuation vp̂ extends vp with index 1, and it follows that vq̂ extends vp̂ with index eq and
therefore eq̂ = eq. The residue field of p̂ is the same as that of p: for any Cauchy sequence
(an) over K the an will eventually all have the same image in the residue field at p (since
vp(an − am) > 0 for all sufficiently large m and n). Similar comments apply to each q̂ and
q, and it follows that fq̂ = fq.

(4) It follows from (2) that [Lq : Kp] = eq̂fq̂, since q̂ is the only prime above p̂, and (3)
then implies [Lq : Kp] = eqfq, by Theorem 5.43.

(5) Let ϕ :=
∏

q|p ϕq, where ϕq : L ⊗K Kp → Lq is the surjective Kp-algebra homomor-
phism defined in the proof of (1). Then ϕ : L ⊗K Kp →

∏
q|p Lq is a Kp-algebra homomor-

phism. Applying (4) and the fact that taking the base change of a finite étale algebra does
not change its dimension (see Proposition 4.36), we have

dimKp (L⊗K Kp) = dimK L = [L : K] =
∑
q|p

eqfq =
∑
q|p

[Lq : Kp] = dimKp

∏
q|p

Lq.

Pick a Kp-basis {βi} for
∏

q|p Lq, fix ϵ > 0, and for each basis element βi = (βi,q)q|p use
the weak approximation theorem proved in Problem Set 4 to construct αi ∈ L such that
|αi − βi,q|q < ϵ for all q|p. In the metric space

∏
q|p Lq (with the sup norm), each ϕ(αi ⊗ 1)

is close to βi. The Kp-matrix whose jth column expresses ϕ(αj ⊗ 1) in terms of the basis
{βi} is then close to the identity matrix (with respect to | |p), and the determinant D of
this matrix is close to 1 (the determinant is continuous). For sufficiently small ϵ we must
have D ̸= 0, and then {ϕ(αi ⊗ 1)} is a basis for

∏
q|p Lq. It follows that ϕ is surjective and

therefore an isomorphism, since its domain and codomain have the same dimension.
(6) We now assume L/K is Galois. Each σ ∈ Dq acts on L and respects the valuation vq,

since it fixes q (if x ∈ qn then σ(x) ∈ σ(qn) = σ(q)n = qn). It follows that if (xn) is a Cauchy
sequence in L, then so is (σ(xn)), thus σ is an automorphism of Lq, and it fixes Kp. We
thus have a group homomorphism φ : Dq → AutKp(Lq).

If σ ∈ Dq acts trivially on Lq then it acts trivially on L ⊆ Lq, so kerφ is trivial. Also,

eqfq = |Dq| ≤ #AutKp(Lq) ≤ [Lq : Kp] = eqfq,

by Theorem 11.23, so #AutKp(Lq) = [Lq : Kp] and Lq/Kp is Galois, and this also shows
that φ is surjective and therefore an isomorphism. There is only one prime q̂ of Lq, and it
is necessarily fixed by every σ ∈ Gal(Lq/Kp), so Gal(Lq/Kp) ≃ Dq̂. The inertia groups Iq
and Iq̂ both have order eq = eq̂, and φ restricts to a homomorphism Iq → Iq̂, so the inertia
groups are also isomorphic.

Corollary 11.24. Assume AKLB and let p be a prime of A. For every α ∈ L we have

NL/K(α) =
∏
q|p

NLq/Kp
(α) and TL/K(α) =

∑
q|p

TLq/Kp
(α).
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where we view α as an element of Lq and NL/K(α) as an element of Kp via the canonical
embeddings L ↪→ Lq and K ↪→ Kp.

Proof. The norm and trace are defined as the determinant and trace of K-linear maps
L

×α−→ L that are unchanged upon tensoring with Kp; the corollary then follows from the
isomorphism in part (5) of Theorem 11.23, which commutes with the norm and trace.

Remark 11.25. Theorem 11.23 can be stated more generally in terms of equivalence classes
of absolute values, or places. Rather than working with a prime p of K and primes q|p of L,
one works with an absolute value | |v of K (for example, | |p) and inequivalent absolute
values | |w of L that extend | |v. Places will be discussed further in the next lecture.

Corollary 11.26. Assume AKLB and let p be a prime of A. Let pB =
∏

qeq be the
factorization of pB in B. Let Âp denote the completion of A with respect to | |p, and for
each q|p, let B̂q denote the completion of B with respect to | |q. Then B ⊗A Âp ≃

∏
q|p B̂q,

as Âp-algebras.

Proof. After replacing A with Ap and B with Bp (localizing B as an A-module), we may
assume that A is a DVR and B/A is a free A module of rank n := [L : K] =

∑
q|p eqfq.

Then B ⊗A Âp is a free Âp-module of rank n. Viewing Âp and the B̂q as valuation rings
of Kp and Lq, it follows from part (4) of Theorem 11.23 that

∏
B̂q is a free Âp-module of

rank
∑

q|p[Lq : Kp] =
∑

q|p eqfq = n. These isomorphic Âp-modules lie in isomorphic finite
étale Kp-algebras L ⊗K Kp ≃

∏
Lq, by part (5) of Theorem 11.23, and this Kp-algebra

isomorphism restricts to an Âp-algebra isomorphism.

Remark 11.27. Let A be a Dedekind domain with fraction field K. If we localize A at
a prime p we obtain a DVR Ap with the same fraction field K. We can then complete Ap

with respect to | |p to obtain a complete DVR Âp whose fraction field Kp is the completion
of K with respect to | |p, and Âp is then the valuation ring of Kp. Alternatively, we could
first complete A with respect to the absolute value | |p induced by p and then localize. But
as explained in Lecture 8, completing A with respect to | |p is the same thing as taking the
valuation ring of Kp, so the completion of A is already the complete DVR Âp we obtained
by localizing and completing; there is no need to localize and nothing would change if we
did. Completion not only commutes with localization, it makes localization unnecessary.
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