18.785 Number theory I Fall 2025
Lecture #1 9/4/2025

1 Absolute values and discrete valuations

1.1 Introduction

At its core, number theory starts with the ring Z. By the fundamental theorem of arithmetic,
every element of Z can be written uniquely as a product of primes (up to multiplication by
a unit £1), so it is natural to focus on the prime elements of Z. If p is a prime, the ideal
(p) = pZ is a maximal ideal (Z has Krull dimension one), and the residue field Z/pZ is the
finite field F,, with p elements. The fraction field of Z is the field Q of rational numbers.
The field Q and the finite fields F,, together make up the prime fields: every field k contains
exactly one of them, according to its characteristic: k has characteristic zero if and only if
it contains @, and & has characteristic p if and only if k£ contains IF,,.

One can also consider finite extensions of Q, such as the field Q(4) := Q[z]/(2%+1). These
are called number fields, and each can be constructed as the quotient of the polynomial ring
Q[z] by one of its maximal ideals; the ring Q[z] is a principal ideal domain and its maximal
ideals can all be written as (f) for some monic irreducible f € Z[z].

Number fields are one of two types of global fields the others are global function fields.
Let F, denote the field with ¢ elements, where ¢ is any prime power. The polynomial ring
[Fy[t] has much in common with the integer ring Z. Like Z, it is a principal ideal domain
of dimension one, and the residue fields F,[t]/(f) one obtains by taking the quotient by a
maximal ideal (f), where f € [F,[t] is any irreducible polynomial, are finite fields F 4, where
d is the degree of f. In contrast to the situation with Z, the residue fields of F[t] all have
the same characteristic as its fraction field F,(¢), which plays a role analogous to Q. Global
function fields are finite extensions of Fy(t).

Associated to each global field k is an infinite collection of local fields corresponding to
the completions of k with respect to its absolute values; when k£ = Q, these completions are
the field of real numbers R and the p-adic fields Q, (as you will prove on Problem Set 1).

The ring Z is a principal ideal domain (PID), as is IF4[t], and in such fields every nonzero
prime ideal is maximal and thus has an associated residue field. For both Z and F[t] these
residue fields are finite, but the characteristics of the residue fields of Z are all different (and
distinct from the characteristic of its fraction field), while those of F,[t] are all the same.

Remark 1.1. All rings have a multiplicative identity that is preserved by ring homomor-
phisms. Except where noted otherwise, the rings we shall consider are all commutative.
1.2 Absolute values

A reference for much of this material in this section is |3, Chapter 1].

Definition 1.2. An absolute value on a field k is a map | |: & — R such that for all
x,y € k the following hold:

1. |z| = 0 if and only if z = 0;

2. |zy| = |z|]yl;
3. |z +y| < x|+ |yl

If the stronger condition
4. |z +yl < max(|zl, yl)

also holds, then the absolute value is nonarchimedean; otherwise it is archimedean.
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Example 1.3. The map | |: £ — R>¢ defined by
1 ifz #0,
|z| = .
0 ifx=0,
is the trivial absolute value on k. It is nonarchimedean.

Lemma 1.4. An absolute value | | on a field k is nonarchimedean if and only if

[14+---4+1|<1
| —

n

for alln > 1.
Proof. See Problem Set 1. O

Corollary 1.5. In a field of positive characteristic every absolute value is nonarchimedean,
and the only absolute value on a finite field is the trivial one.

Proof. Suppose k has positive characteristic p. Then every n =1+ ---+ 1 lies in the prime
field F), of k and satisfies n? = n. This implies |n|P = |n|, so |n| is either 0 or 1 and k is
nonarchimedean (by the lemma). If & is finite, say of cardinality ¢, then ¢ = z for all z € k
and |z|? = |z| is 0 or 1, with the former occurring only for x = 0. O

Definition 1.6. Two absolute values | | and | |" on the same field k are equivalent if there
exists an a € Ry for which |z|" = |z|® for all x € k.

1.3 Absolute values on

To avoid confusion we will denote the usual absolute value on Q (inherited from R) by | |oo;
it is an archimedean absolute value. But there are are infinitely many others. Recall that
any element of Q* may be written as =[] q q%1, where the product ranges over primes and
the exponents e, € Z are uniquely determined (as is the sign).

Definition 1.7. For a prime p the p-adic valuation v,: Q — Z is defined by

Up (:I:Hq6q> = ep,
q
and we define v,(0) := co. The p-adic absolute value on Q is defined by
|2y = p_vp(m)v

where 0], = p~>° is understood to be 0.

Theorem 1.8 (OSTROWSKI’S THEOREM). Every nontrivial absolute value on Q is equiva-
lent to | |, for some p < oco.

Proof. See Problem Set 1. O

Theorem 1.9 (PrRODUCT FORMULA). For every x € Q* we have

H |z|p = 1.

p<oo

Proof. See Problem Set 1. O
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1.4 Discrete valuations

Definition 1.10. A wvaluation on a field k is a group homomorphism k* — R such that for
all x,y € k we have

v(z +y) > min(v(z),v(y)).

We may extend v to a map k — RU{oo} by defining v(0) := co. For any 0 < ¢ < 1, defining
||y = ¢(®) yields a nonarchimedean absolute value. The image of v in R is the value group
of v. We say that v is a discrete valuation if its value group is equal to Z (every discrete
subgroup of R is isomorphic to Z, so we can always rescale a valuation with a discrete value
group so that this holds). Given a field k with valuation v, the set

A= {zek:v(x)>0},

is the valuation ring of k (with respect to v). A discrete valuation ring (DVR) is an integral
domain that is the valuation ring of its fraction field with respect to a discrete valuation;
such a ring A cannot be a field, since v(Frac A) = Z # Z>o = v(A).

It is easy to verify that every valuation ring A is a in fact a ring, and even an integral
domain (if z and y are nonzero then v(zy) = v(z) + v(y) # oo, so zy # 0), with k as its
fraction field. Notice that for any z € k* we have v(1/z) = v(1) —v(x) = —v(x), so at least
one of z and 1/z has nonnegative valuation and lies in A. It follows that x € A is invertible
(in A) if and only if v(x) = 0, hence the unit group of A is

A" ={x €k :v(zx) =0},

We can partition the nonzero elements of k£ according to the sign of their valuation. Elements
with valuation zero are units in A, elements with positive valuation are non-units in A, and
elements with negative valuation do not lie in A, but their multiplicative inverses are non-
units in A. This leads to a more general notion of a valuation ring.

Definition 1.11. A wvaluation ring is an integral domain A with fraction field k with the
property that for every x € k, either x € A or z7! € A.

Let us now suppose that the integral domain A is the valuation ring of its fraction
field with respect to some discrete valuation v (which we shall see is uniquely determined).
Any element m € A for which v(7w) = 1 is called a uniformizer. Uniformizers exist, since
v(A) = Z>o. If we fix a uniformizer 7, every x € k™ can be written uniquely as

Tz =ur"

where n = v(z) and u = /7" € A* and uniquely determined. It follows that A is a unique
factorization domain (UFD), and in fact A is a principal ideal domain (PID). Indeed, every
nonzero ideal of A is equal to

(7") ={a € A:v(a) > n},

for some integer n > 0. Moreover, the ideal (7") depends only on n, not the choice of
uniformizer 7: if 7’ is any other uniformizer its unique representation 7/ = wun! differs
from 7 only by a unit. The ideals of A are thus totally ordered, and the ideal

m=(7)={a€ A:v(a) >0}

is the unique maximal ideal of A (and also the only nonzero prime ideal of A).
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Definition 1.12. A local ring is a commutative ring with a unique maximal ideal.
Definition 1.13. The residue field of a local ring A with maximal ideal m is the field A/m.

We can now see how to determine the valuation v corresponding to a discrete valuation
ring A. Given a discrete valuation ring A with unique maximal ideal m, we may define
v: A — Z by letting v(a) be the unique integer n for which (a) = m™ and v(0) = oc.
Extending v to the fraction field k of A via v(a/b) = v(a) —v(b) gives a discrete valuation v
on k for which A = {x € k: v(z) > 0} is the corresponding valuation ring.

Notice that any discrete valuation v on k with A as its valuation ring must satisfy
v(m) = 1 for some m € m (otherwise v(k) # Z), and we then have v(w) = 1 if and only if
m = (7). Moreover, v must then coincide with the discrete valuation we just defined: for
any DVR A, the discrete valuation on the fraction field of A that yields A as its valuation
ring is uniquely determined. It follows that we could have defined a uniformizer to be any
generator of the maximal ideal of A without reference to a valuation.

Example 1.14. For the p-adic valuation v,: Q — Z U {oo} we have the valuation ring

Ly = {%:a,beZ,pkb},

with maximal ideal m = (p); this is the localization of the ring Z at the prime ideal (p). The
residue field is Z ) /pZy) ~ Z/pZ ~ T).

Example 1.15. For any field k, the valuation v: k((t)) — Z U {oo} on the field of Laurent
series over k defined by

v E ant” | = ng,
n>ng

where ap, # 0, has valuation ring k[[¢]], the power series ring over k. For f € k((t))*, the
valuation v(f) € Z is the order of vanishing of f at zero. For every « € k one can similarly
define a valuation v, on k as the order of vanishing of f at a by taking the Laurent series
expansion of f about a.

1.5 Discrete Valuation Rings

Discrete valuation rings are in many respects the nicest rings that are not fields. In addition
to being an integral domain, every discrete valuation ring A enjoys the following properties:

e noetherian: Every increasing sequence I; C I» C --- of ideals eventually stabilizes;
equivalently, every ideal is finitely generated.

e principal ideal domain: Every ideal is principal (generated by a single element).

e Jocal: There is a unique maximal ideal m.

e dimension one: The (Krull) dimension of a ring R is the supremum of the lengths n
of all chains of prime ideals pg € p; € -+ € p,, (which need not be finite, in general).
For DVRs, (0) C m is the longest chain of prime ideals, with length 1.

e regular: The dimension of the A/m-vector space m/m? is equal to the dimension of A.
Non-local rings are regular if this holds for every localization at a prime ideal.

e integrally closed (or normal): Every element of the fraction field of A that is the root
of a monic polynomial in A[z] lies in A.
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e mazimal: There are no intermediate rings strictly between A and its fraction field.

Various combinations of these properties can be used to uniquely characterize discrete
valuation rings (and hence give alternative definitions).

Theorem 1.16. For an integral domain A, the following are equivalent:

e Aisa DVR.

e A is a noetherian valuation ring that is not a field.

o A is a local PID that is not a field.

o A is an integrally closed noetherian local ring of dimension one.

e A is a reqular noetherian local ring of dimension one.

e A is a noetherian local ring whose mazximal ideal is nonzero and principal.

o A is a maximal noetherian ring of dimension one.

Proof. See [1, §23] or [2, §9]. O

1.6 Integral extensions
Integrality plays a key role in number theory, so it is worth discussing it in more detail.

Definition 1.17. Given a ring extension A C B, an element b € B is integral over A if is a
root of a monic polynomial in A[z]. The ring B is integral over A if all its elements are.

Proposition 1.18. Let o, 8 € B be integral over A C B. Then a4+ 8 and af are integral
over A.

Proof. Let f € A[z] and g € AJy] be such that f(a) = g(8) = 0, where

flx)=ap+arz+ - +ap_12m™ "t + 2™,

9(y) = bo+bry+ -+ buo1y" Ty

It suffices to consider the case
Alz, y]
(f(x),9(y)’

with o and 3 equal to the images of z and y in B, respectively, since given any A’ C B’
we have homomorphisms A — A’ defined by a; — a; and b; — b; and B — B’ defined by
z+— «aand y — (3, and if x + y,xy € B are integral over A then a + 3,8 € B’ must be
integral over A’.

Let k be the algebraic closure of the fraction field of A, and let aq, ..., a;, be the roots
of fin k and let B1,..., 3, be the roots of g in k. The polynomial

n(z) =TI (5~ (i + )

.3

A:Z[ao,...,am_l,bg,...,bn_l], and B =

has coefficients that may be expressed as polynomials in the symmetric functions of the «;
and f3;, equivalently, the coefficients a; and b; of f and g, respectively. Thus h € A[z|, and
h(z+y) = 0, so x+y is integral over A. Applying the same argument to h(z) = []; ;(z—a: ;)
shows that xy is also integral over A. O
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Definition 1.19. Civen a ring extension B/A, the ring A = {b € B : b is integral over A}
is the integral closure of A in B. When A = A we say that A is integrally closed in B. For
a domain A, its integral closure (or normalization) is its integral closure in its fraction field,
and A is integrally closed (or normal) if it is integrally closed in its fraction field.

Proposition 1.20. If C/B/A is a tower of ring extensions in which B is integral over A
and C' is integral over B then C' is integral over A.

Proof. See [1, Thm. 10.27] or [2, Cor. 5.4]. O

Corollary 1.21. If B/A is a ring extension, then the integral closure of A in B is integrally
closed in B.

Proof. Let A’ be the integral closure of A in B and let A” be the integral closure of A’
in B. Proposition 1.20 implies that A” is integral over A. Every element of B D A” that is
integral over A lies in A’ (by definition), so A’ C A” C A’. Thus A’ is equal to its integral
closure (hence integrally closed) in B. O

Proposition 1.22. The ring Z 1is integrally closed.

Proof. We apply the rational root test: suppose r/s € Q is integral over Z, where r and s
are coprime integers. Then

r\"T r\n—1 r
(*) +an_1( ) +---a1(7>+a0:0
S S S

for some ag,...,a,—1 € Z. Clearing denominators yields
P4 st 4 a8 4 ags™ = 0,

thus ™ = —s(ay_17" "'+ -a1s" " 2r + ags" ') is a multiple of s. But r and s are coprime,
so s = £1 and therefore r/s € Z. O

Corollary 1.23. Every unique factorization domain is integrally closed. In particular, every
PID is integrally closed.

Proof. The proof of Proposition 1.22 works for any UFD. O

Example 1.24. The ring Z[v/5] is not a UFD (nor a PID) because it is not integrally closed:
consider ¢ = (1 + +/5)/2 € FracZ[/5], which is integral over Z (and hence over Z[v/5]),
since ¢> — ¢ — 1 = 0. But ¢ ¢ Z[\/5], so Z[/5] is not integrally closed.

It follows that every discrete valuation ring is integrally closed. In fact, more is true.
Proposition 1.25. FEvery valuation ring is integrally closed.

Proof. Let A be a valuation ring with fraction field k£ and let o € k be integral over A. Then
A"+ ap_10" M+ an_0a" 24+ +aat+ap=0

for some ag,ai,...,a,—1 € A. Suppose o ¢ A. Then ™! € A, since A is a valuation ring.
Multiplying the equation above by o~ ("1 e A and moving all but the first term on the
LHS to the RHS yields

1 2

a=—ap 1 —ap_1a P — —aa® " —agal ™" € A,

contradicting our assumption that o & A. It follows that A is integrally closed. O
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Definition 1.26. A number field K is a finite extension of Q. The ring of integers O is
the integral closure of Z in K.

Remark 1.27. The notation Zg is also sometimes used to denote the ring of integers of K.
The symbol O emphasizes the fact that O is an order in K; in any Q-algebra K of finite
dimension r, an order is a subring of K that is also a free Z-module of rank r, equivalently,
a Z-lattice in K that is also a ring. In fact, O is the mazimal order of K: it contains every
order in K.

Proposition 1.28. Let A be an integrally closed domain with fraction field K. Let o be
an element of a finite extension L/K, and let f € K[x] be its minimal polynomial over K.
Then « is integral over A if and only if f € Alx].

Proof. The reverse implication is immediate: if f € A[z] then certainly « is integral over A.
For the forward implication, suppose « is integral over A and let ¢ € A[x] be a monic
polynomial for which g(a) = 0. In K[z] we may factor f(x) as

f(@) = [Jtw—an.

For each a; we have a field embedding K(a) — K that sends o to o; and fixes K. As
elements of K we have g(a;) = 0 (since f(a;) =0 and f must divide g), so each a; € K is
integral over A and lies in the integral closure A of A in K. Each coefficient of f € K [x]
can be expressed as a sum of products of the «;, and is therefore an element of the ring A
that also lies in K. But A = AN K, since A is integrally closed in its fraction field K. O

Example 1.29. We saw in Example 1.24 that (1 + +/5)/2 is integral over Z. Now consider
a = (1++/7)/2. Its minimal polynomial 22 — x — 3/2 ¢ Z[z], so « is not integral over Z.
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