
18.785 Number Theory Fall 2021

Problem Set #8

Description

These problems are related to the material in Lectures 16–18. Your solutions should be
written in latex and submitted as a pdf-file by midnight on the date due.

Collaboration is permitted/encouraged, but you must identify your collaborators or
the name of your group on, as well any references you consulted that are not listed in
the course syllabus. If there are none write “Sources consulted: none” at the top of
your solution. Note that each student is expected to write their own solutions; it is fine
to discuss the problems with others, but your work must be your own.

The first person to spot each typo/error in any of the problem sets or lecture notes
will receive 1–5 points of extra credit, depending on the severity of the error

Instructions: First do the warm up problems, then pick two of problems 1–5 to solve
and write up your answers in latex. Finally, complete the survey problem 6.

Problem 0.

These are warm up problems that do not need to be turned in.

(a) In class we gave an elementary proof that ϑ(x) = O(x). Give a similarly elementary
proof that x = O(ϑ(x)) (both bounds were proved by Chebyshev before the PNT).

(b) Prove the Möbius inversion formula, which states that if f and g are functions
Z≥1 → C that satisfy g(n) =

∑
d|n f(d) then f(n) =

∑
d|n µ(d)g(n/d), where

µ(n) := (−1)#{p|n} if n is squarefree and µ(n) = 0 otherwise.

(c) Verify that for all Schwartz functions f, g ∈ S(R) we have

f̂ ∗ g = f̂ ĝ, and f̂g = f̂ ∗ ĝ.

(the Fourier transform turns convolutions into products and vice versa).

Problem 1. The explicit formula (48 points)

Let Z(s) := π−s/2Γ( s2)ζ(s) denote the completed zeta function; we proved in class that
it has the integral representation

Z(s) =

∫ ∞
1

∞∑
n=1

e−πn
2x(xs/2 + x(1−s)/2)

dx

x
− 1

s
− 1

1− s
,

and extends to a meromorphic function on C with functional equation Z(s) = Z(1− s).
Recall Hadamard’s Factorization Theorem: if f(s) is an entire function and n is an

integer for which there exists a positive c < n+ 1 such that |f(s)| = O
(
exp(|s|c)) then

f(s) = smeg(s)
∏
ρ

(
1− s

ρ

)
En

(
s

ρ

)
, (1)

where m = ord0(f), g ∈ C[s] has degree at most n, the product ranges overs zeros ρ 6= 0

of f(s) (with multiplicity), and En(z) = exp(
∑n

k=1
zk

k ).
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(a) Prove that we can apply (1) to f(s) := s(s− 1)Z(s) with n = 1 and m = 0.

(b) Prove that we can apply (1) to f(s) := Γ(s)−1 with n = 1 and m = 1.

(c) Prove that

(s− 1)ζ(s) = ea+bs
∏
ρ

(
1− s

ρ

)
e
s
ρ

∞∏
n=1

(
1 +

s

2n

)
e−

s
2n

for some a, b ∈ C, where ρ ranges over the zeros of ζ(s) in the critical strip.

(d) Using (c) and the Euler product for ζ(s), show that b = ζ′(0)
ζ(0) − 1 and∑

p

∑
m≥1

p−ms log p =
s

s− 1
− ζ ′(0)

ζ(0)
−
∑
ρ

(
1

s− ρ
+

1

ρ

)
−
∑
n≥1

(
1

s+ 2n
− 1

2n

)
on Re(s) > 1.

We now recall the identity

1

2πi

∫ σ+i∞

σ−i∞

xs

s
ds =

{
1 if x > 1,

0 if 0 < x < 1,

valid for any x, σ > 0, and define the Perron integral transform

f 7→ lim
t→∞

1

2πi

∫ σ+it

σ−it
f(s) · x

s

s
ds.

We also define an alternative version of Chebyshev’s function

ψ(x) :=
∑
pn≤x

log p,

where the sum is over all prime powers pn ≤ x (but note that we take log p not log pn).

(e) Fix x > 1 not a prime power. By applying the Perron integral transform to both
sides of the equation in (d), and assuming that the RHS can be computed by applying
Cauchy’s residue formula term by term to the sums (and that the Perron integral
transform converges in each case), deduce the explicit formula

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
+
∑
n

x−2n

2n
,

where ρ ranges over the non-trivial zeros of ζ(s).

(f) Fix c ∈ [1/2, 1) and suppose that ζ(s) has no zeros in the strip c < Re(s) < 1.
Assume that the number of zeros ρ with | Im(ρ)| ≤ T is bounded by O(T log T ).
Derive the following bounds: ψ(x) = x+O(xc+ε), ϑ(x) = x+O(xc+ε), and π(x) =
Li(x) +O(xc+ε), for any ε > 0 (in fact one can replace ε with o(1)).

Remark. The explicit formula you obtained in (e) is a slight variation of the one given
by Riemann (who also glossed over the somewhat delicate convergence issues you were
told to ignore — to make this rigorous you actually need to specify the order in which
the sum over ρ is computed, it does not converge absolutely). It is worth noting that
even with the explicit formula in hand, Riemann was unable to prove the prime number
theorem because he could not (and we still cannot) prove that one can take c < 1 in (f).
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Problem 2. The zeta function of Fq[t] (48 points)

Recall that for a number field K, the Dedekind zeta function ζK(s) is defined by

ζK(s) :=
∑
I

N(I)−s,

where I ranges over nonzero ideals of OK and N(I) is the absolute norm, which is just
the cardinality of the residue field OK/p when I is a prime ideal p.

The definition of N(p) := #OK/p as the cardinality of the residue field makes sense
in any global field and extends multiplicatively to all OK-ideals. In this problem you
will investigate the zeta function ζq(s) :=

∑
I N(I)−s, where I ranges over ideals of the

ring of integers OK := Fq[t] of the rational function field K = Fq(t).

Remark. The zeta function ζK of a global function field K defined in Problem 5 differs
from the zeta function of its ring of integers OK , which is what we are considering here.

(a) Show that every nonzero OK-ideal has the form I = (f), with f ∈ Fq[x] monic, and
then N(I) = #(OK/fOK) = qdeg f . Then prove that ζq(s) = 1

1−q1−s for Re(s) > 1.

(b) Prove that ζq(s) has the Euler product

ζq(s) =
∏
p

(1−N(p)−s)−1,

valid for Re(s) > 1.

(c) Prove that ζq(s) extends to a meromorphic function on C with a simple pole at
s = 1 and no zeros. Give the residue of the pole at s = 1.

(d) Define a completed zeta function Z(s) = G(s)ζq(s), where G(s) is some suitably
chosen meromorphic function, and prove that your completed zeta function satisfies
the functional equation

Z(s) = Z(1− s).

(e) Let ad denote the number of irreducible monic polynomials in Fq[x] of degree d.
Using (a) and (b), prove that ∑

d|n

dad = qn.

and use this to derive an explicit formula for an.

(f) Prove the prime number theorem for Fq[t], which states that

an =
qn

n
+O

(
1

n
qn/2

)
.

Remark. The error term in (f) is comparable to the error term in the PNT under the
Riemann hypothesis (replace qn with x); note that the analog of the Riemann hypothesis
for ζq(s) is (vacuously) true, by (c).
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(g) Let S(n) be the set of monic polynomials of degree n in Fq[t], and let I(n) be the
subset of polynomials in S(n) that are irreducible. Show that #I(n)/#S(n) ∼ 1

n .
Now let R(n) be the subset of polynomials in S(n) that have no roots in Fq. Give
an asymptotic estimate for #R(n)/#S(n).

(h) Let Q(n) denote the subset of S(n) consisting of squarefree polynomials. Prove
limn→∞#Q(n)/#S(n) = 1/ζq(2) and derive an asymptotic estimate for this limit.

(i) For nonzero f ∈ OK define Φ via Φ(f) := #(OK/fOK)×. Prove the following

1. Φ(f) = N(f)
∏
p|f (1−N(p)−1), where p ranges over the irreducible factors of f .

2. For all f, g ∈ OK with (f, g) = 1 we have gΦ(f) ≡ 1 mod f .

Problem 3. Bernoulli numbers (48 points)

For integers n ≥ 0, the Bernoulli polynomials Bn(x) ∈ Q[x] are defined as the coefficients
of the exponential generating function

E(t, x) :=
tetx

et − 1
=
∑
n≥0

Bn(x)

n!
tn.

The Bernoulli numbers Bn ∈ Q are defined by Bn = Bn(0).

(a) Prove that B0(x) = 1, B′n(x) = nBn−1(x), and Bn(1) = Bn(0) for n 6= 1, and that
these properties uniquely determine the Bernoulli polynomials.

(b) Prove that Bn(x+ 1)−Bn(x) = nxn−1 and

Bn(x+ y) =

n∑
k=0

(
n

k

)
Bk(x)yn−k.

Use this to show that Bk can alternatively be defined by the recurrence B0 = 1 and

Bn = − 1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
Bk

for all n > 0, and show that Bn = 0 for all odd n > 1.

(c) Recall the hyperbolic cotangent function coth z := ez+e−z

ez−e−z . Prove that

z coth z =
∑
n≥0

B2n
(2z)2n

(2n)!
.

(d) Show that cot z = i coth iz and then derive (as Euler did) the identity

z cot z = 1− 2
∑
k≥1

z2

k2π2 − z2
.
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(e) Use (c) and (d) to prove that for all n ≥ 1 we have

ζ(2n) = (−1)n−1 (2π)2nB2n

2 · (2n)!
,

and then use the functional equation to prove that for all n ≥ 1 we have

ζ(−n) = −Bn+1

n+ 1
.

(f) Prove (rigorously!) that for any integer n > 1 the asymptotic density of integers
that are n-power free (not divisible by pn for any prime p) is 1/ζ(n) and compute
this density explicitly for n = 2, 4, 6.

(g) Prove that for all integer n,N > 1 we have

N−1∑
m=0

(m+ x)n−1 =
Bn(N + x)−Bn(x)

n
.

Use this to deduce Faulhaber’s formula

Pn(N) :=
N−1∑
m=1

mn =
1

n+ 1

n∑
k=0

(
n+ 1

k

)
BkN

n+1−k

for summing nth powers. Compute the polynomials Pn(N) explicitly for n = 2, 3, 4.

Problem 4. Arithmetic functions and Dirichlet series (48 points)

Recall that an arithmetic function is a function a : Z≥1 → C; we say that a 6= 0 is
multiplicative if a(mn) = a(m)a(n) holds for all relatively prime m,n, and totally multi-
plicative if this holds for all m,n. Below are some examples; as usual, p denotes a prime,
pe denotes a (nontrivial) prime power, and d|n indicates that d is a positive divisor of n.

• 0(n) = 0, 1(n) = 1, id(n) := n, e(n) := 0n−1;

• τ(n) := #{d|n}, σ(n) :=
∑

d|n d;

• ω(n) := #{p|n}, Ω(n) := #{pe|n}, φ(n) := #(Z/nZ)×;

• λ(n) := (−1)Ω(n), µ(n) := (−1)ω(n) · 0Ω(n)−ω(n), µ2(n) := µ(n)2.

The set of all arithmetic functions forms a C-vector space that we denote A. Associated
to each arithmetic function is a Dirichlet series

∑
n≥1 cnn

−s defined by

Da(s) :=
∑
n≥1

a(n)n−s

The Dirichlet convolution a ∗ b of arithmetic functions a and b is defined by

(a ∗ b)(n) :=
∑
d|n

a(d)b(n/d),

We use f∗n to denote the n-fold convolution f ∗ · · · ∗ f .
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(a) Prove that for any arithmetic functions we have Da∗b = DaDb and that endowing A
with a multiplication defined by Dirichlet convolution makes A a C-algebra that is
isomorphic to the C-algebra of Dirichlet series (with the usual multiplication).

(b) Show that A is a local ring with unit group A× = {f ∈ A : f(1) 6= 0} and maximal
ideal A0 = {f ∈ A : f(1) = 0}. Prove that the set of multiplicative functions M
forms a subgroup of A1 := {f ∈ A : f(1) = 1} ⊆ A×. Is this also true of the set of
totally multiplicative functions?

(c) Prove the following identities µ ∗ 1 = e, φ ∗ 1 = id, µ ∗ id = φ, 1 ∗ 1 = τ , id ∗1 = σ.
Use µ ∗ 1 = e to give a one-line proof of the Möbius inversion formula.

(d) Define the exponential map exp: A → A by

exp(f) :=
∞∑
n=0

f∗n

n!
= e+ f +

f ∗ f
2

+ · · ·

Prove that exp defines a group isomorphism from (A0,+) to (A1, ∗) with inverse

log(f) :=

∞∑
n=1

(−1)n−1(f − e)∗n

n
.

(e) Define κ(n) to be 1/k if n = pk is a prime power and 0 otherwise (for us 1 is not a
prime power). Prove that expκ = 1, and deduce that exp(−κ) = µ and exp(2κ) = τ .

(f) Prove that each f ∈ A1 has a unique square-root g ∈ A1 for which g∗2 = f that we
denote f∗1/2. Prove that 1∗1/2 = exp(κ/2) and compute exp(κ/2)(n) for n up to 10.

Problem 5. The Weil conjectures for global function fields (48 points)

Let K/Fq(t) be a global function field, with Fq algebraically closed in K. The divisor
group DivK is the free abelian group generated by the places of K; it consists of formal
sums

∑
P nPP over P ∈ MK in which only finitely many nP ∈ Z are nonzero. This is

the same as the group of MK-divisors we defined in Lecture 15, but here we view DivK
as an additive group and use P to denote a place rather than v.

Corresponding to each f ∈ K× we have a principal divisor

div(f) :=
∑
P

ordP (f)P,

where ordP : K× → Z is the discrete valuation corresponding to P , which we extend to
DivK by defining ordP (

∑
Q nQQ) = nP . Two divisors D1 and D2 are linearly equivalent

if D1 −D2 is a principal divisor, and we write D1 ∼ D2 to indicate this; this defines an
equivalence relation on DivK and we use [D] to denote the equivalence class of D.

The degree of a place P is the dimension of the residue field of the local field KP as
an Fq-vector space; it extends to a group homomorphism deg : DivK → Z whose kernel
contains the subgroup of principal divisors (by the product formula); the corresponding
quotient is denoted Pic0K. The norm of a divisor D is defined by N(D) := qdegD; when
D = P this is the cardinality of the residue field and if D is supported only on finite
places this agrees with the absolute norm defined in Problem 2.
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We partially order divisors by defining

D1 ≤ D2 ⇐⇒ ordP (D1) ≤ ordP (D2) for all P ∈MK .

A divisor D ≥ 0 is said to be effective. The zeta function of K is defined as a sum over
effective divisors

ζK(s) :=
∑
D≥0

N(D)−s =
∑
D≥0

q−s deg(D)

The Weil conjectures (for global function fields) concern three properties of ζK(s):

• ζK(s) is a rational function of q−s.

• There is a functional equation that relates ζK(1− s) and ζK(s).

• The zeros of ζK(s) all lie on the line Re(s) = 1/2.

In this problem you will prove the first two; Weil proved the third in the 1940s, and a
generalization to algebraic varieties of higher dimension conjectured by Weil was proved
by Deligne in the 1970s.

Associated to each divisor D ∈ DivK is a Riemann-Roch space

L(D) := {f ∈ K× : div(f) ≥ −D} ∪ {0},

which is an Fq-vector space whose finite dimension we denote `(D) ∈ Z≥0. The degree
degD and dimension `(D) of a divisor D depend only on the divisor class [D] and are
related by the following theorem (which you are not asked to prove).

Theorem (Riemann-Roch). Let K be a global function field. There is an integer g ≥ 0
and divisor C ∈ DivK such that for all divisors D ∈ DivK we have

`(D) = deg(D)− g + 1 + `(C −D).

(a) Prove that `(C) = g and deg(C) = 2g − 2, and that for deg(D) ≥ 2g − 2 we have
`(D) = deg(D)− g+ 1 unless D ∼ C. Conclude that both the integer g (the genus)
and the divisor class [C] (the canonical class) are uniquely determined.

(b) Prove that for any n ≥ 0 the number of effective divisors of degree n is finite, and
the number of divisor classes of degree n is finite (so in particular, the group Pic0K
of divisor classes of degree 0, is finite).

(c) Prove that for any divisor D the number of effective divisors in [D] is q`(D)−1
q−1 .

(d) Prove that the sum defining ζK(s) converges on Re(s) > 1 and we have an Euler
product

ζK(s) =
∏
P

(1−N(P )−s)−1.

(e) Let an be the number of effective divisors of degree n. Prove that

an =
∑

deg([D])=n

q`(D) − 1

q − 1
,

where the sum is over the divisor classes of degree n, and show that if we define
Zk(u) :=

∑
n≥0 anu

n then ζK(s) = ZK(q−s) for Re s > 1.

7



(f) Let eZ = deg(PicK). Prove there is a polynomial LK ∈ Z[u] of degree 2g for which

ZK(u) =
LK(ue)

(1− ue)(1− (qu)e)
,

and show that LK(0) = 1 and LK(1) = # Pic0K.

(g) For n ≥ 1 let Kn := K ⊗Fq Fqn . Show that ZKn(un) =
∏n
i=1 ZK(ζinu), and use this

to prove that we must have e = 1 in part (f).

(h) Prove that ZK(q−s) is meromorphic on C and thus provides an analytic continuation
of ζK(s) to C with simple poles at s = 0, 1. Are these the only poles?

(i) Let ξK(s) := q(g−1)sζK(s). Prove that ξK(s) satisfies the functional equation

ξK(1− s) = ξK(s).

Problem 6. Survey (4 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

11/8 The functional equation

11/10 Primes in arithmetic progressions

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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