
18.785 Number Theory Fall 2021

Problem Set #7 Due: 11/5/2021

Description

These problems are related to material from Lectures 12–15. Your solutions should be
written in latex and submitted as a pdf-file to Gradescope by midnight on the date due.

Collaboration is permitted/encouraged, but you must identify your collaborators or
the name of your group on pset partners, as well any references you consulted that are
not listed in the course syllabus. If there are none write “Sources consulted: none” at
the top of your solution. Note that each student is expected to write their own solutions;
it is fine to discuss the problems with others, but your work must be your own.

The first person to spot each typo/error in any of the problem sets or lecture notes
will receive 1–5 points of extra credit, depending on the severity of the error

Instructions: First do the warm up problems, then pick a set of Problems 1–6 that
sum to 96 points Finally, complete the survey problem.

Problem 0.

These are warm up problems that do not need to be turned in.

(a) Prove that a cubic field K is Galois if and only if DK is a perfect square.

(b) Prove that our two definitions of a lattice Λ in V ' Rn are equivalent: Λ is a Z-
submodule generated by an R-basis for V if and only if it is a discrete cocompact
subgroup of V .

(c) Let n ∈ Z>0 and assume n2 − 1 is squarefree. Prove that n +
√
n2 − 1 is the

fundamental unit of Q(
√
n2 − 1).

Problem 1. Classification of global fields (64 points)

Let K be a field and let MK be the set of places of K (equivalence classes of nontrivial
absolute values). We say that K has a (strong) product formula if MK is nonempty for
each v ∈ MK there is an absolute value | |v in its equivalence class and a positive real
number mv such that for all x ∈ K× we have∏

v∈MK

|x|mv
v = 1,

where all but finitely many factors in the product are equal to 1. Equivalently, if we fix
normalized absolute values ‖ ‖v := |x|mv

v for each v ∈MK , then for all x ∈ K× we have∏
v∈MK

‖x‖v = 1,

with ‖x‖v = 1 for all but finitely many v ∈MK .

Definition. A field K is a global field if it has a product formula and the completion
Kv of K at each place v ∈MK is a local field.
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In Lectures 10 and 13 we proved every finite extension of Q and Fq(t) is a global
field. In this problem you will prove the converse, a result due to Artin and Whaples [1].

Let K be a global field with normalized absolute values ‖ ‖v for v ∈MK that satisfy
the product formula. As we defined in lecture, an MK-divisor is a sequence of positive
real numbers c = (cv) indexed by v ∈ MK with all but finitely many cv = 1 such that
for each v ∈ MK there is an x ∈ K×v for which cv = ‖x‖v. For each MK-divisor c we
define the set

L(c) := {x ∈ K : ‖x‖v ≤ cv for all v ∈MK}.

(a) Let E/F be a finite Galois extension. Prove E is a global field if and only if F is.

(b) Extend your proof of (a) to all finite extensions E/F .

(c) Prove that MK is infinite but contains only finitely many archimedean places.

(d) Assume K has an archimedean place. Prove that L(c) is finite for every MK-
divisor c (we proved this in class for number fields, but here K is a global field as
defined above).

(e) Extend your proof of (d) to the case where K has no archimedean places.

(f) Prove that if MK contains an archimedean place then K is a finite extension of Q
(hint: show Q ⊆ K and use (d) to show that K/Q is a finite extension).

(g) Prove that ifMK does not contain an archimedean place then K is a finite extension
of Fq(t) for some finite field Fq (hint: by choosing an appropriate MK-divisor c,
show that L(c) is a finite field k ⊆ K and that every t ∈ K − k is transcendental
over k; then show that K is a finite extension of k(t)).

(h) In your proofs of (a)-(g) above, where did you use the fact that the completions
of K are local fields? Show that if K has a product formula and Kv is a local field
for any place v ∈MK then Kv is a local field for every place v ∈MK (so we could
weaken our definition of a global field to only require one Kv to be a local field).
Are there fields with a product formula for which no completion is a local field?

Problem 2. Finiteness of global class groups (64 points)

A commutative ring R with finite quotients by all nonzero ideals is a finite quotient
domain; to rule out trivial cases we further assume R is not a field. For such R we define
the absolute ideal norm NR(I) := #R/I for each nonzero R-ideal I, let NR((0)) := 0,
and put NR(r) := NR((r)) for r ∈ R.

Recall our standard AKLB assumption: A is a Dedekind domain, K is its fraction
field, L/K is finite separable, and B is the integral closure of A in L.

(a) Assume AKLB. Show that if A is a finite quotient domain then so is B, and we
have the identity NB(α) = NA(NL/K(α)) for all α ∈ B.

Definition. A PID is basic if it is a finite quotient domain and ∃c1, c2 ∈ Z>0 such that

(i) #{x ∈ A : NA(x) ≤ c1m} ≥ m for all integers m,
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(ii) NA(x+ y) ≤ c2(NA(x) + NA(y)) for all x, y ∈ A.

(b) Show that Z is a basic PID but Z[
√

5] is not. Is Z[i] a basic PID?

(c) Show that Fq[t] is a basic PID.

Definition. A global Dedekind domain (over A) is a Dedekind domain that is free of
finite rank as a module over a subring A that is a basic PID.

(d) Assume AKLB. Show that if A is a basic PID then B is a global Dedekind domain.
Conclude that every global field is the fraction field of a global Dedekind domain.

(e) Assume AKLB with A a basic PID and let e1, . . . en be an A-basis for B. Prove
there exists a homogeneous f ∈ A[x1, . . . , xn] of degree n such that for any α ∈ B,

NL/K(α) = f(a1, . . . , an),

where α = a1e1 + · · · anen with ai ∈ A. Prove there exists c ∈ Z>0 such that

NB(α) ≤ cmax(NA(a1), . . . ,NA(an))n

for all α = a1e1 + · · · anen ∈ B.

(f) Let B be a global Dedekind domain. Prove that there is a real number m such that
for every nonzero B-ideal I there is a nonzero α ∈ I for which NB(α) ≤ mNB(I).

(g) Prove that the ideal class group of a global Dedekind domain over Z or Fq(t) is
finite (in fact all global Dedekind domains are global Dedekind domains over one
of these basic PIDs, but you are not asked to prove this).

(h) In the case that B is the ring of integers of a number field L, how does the constant
m in (f) compare to the Minkowski constant mL defined in Theorem 14.17?

Remark. Given (d) and the terminology we have chosen, you might wonder if the
fraction field of a global Dedekind domain is necessarily a global field. The answer is
yes! You can find a proof of this in [2, §4], but I urge you to wait until you have solved
this problem before reading it (this problem is adapted from [2, §2-3] and [3, §3]).

Problem 3. Some applications of the Minkowski bound (32 points)

For a number field K, let

mK :=
n!

nn

(
4

π

)s√
|DK |

denote the Minkowski constant and let hK := # clOK denote the class number. You may
wish to use a computer to help with some of the calculations involved in this problem,
but if you do so, please describe your computations (preferably in words or pseudo-code).

(a) Prove that if OK contains no prime ideals p of norm N(p) ≤ mK other than inert
primes, then hK = 1, and show that when K is an imaginary quadratic field the
converse also holds.
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(b) Let K be an imaginary quadratic field. Show that if hK = 1 then |DK | is a power
of 2 or a prime congruent to 3 mod 4, and then determine all imaginary quadratic
fields K of class number one with |DK | < 200 (this is in fact all of them).

(c) Prove that there are no totally real cubic fields of discriminant less than 20 and that
every totally real cubic field K with DK < M can be written as K = Q(α), where α
is an algebraic integer with minimal polynomial x3 + ax2 + bx+ c whose coefficients
satisfy |a| <

√
M + 2, |b| < 2

√
M + 1, and |c| <

√
M .

(d) Determine all totally real cubic fields K that are ramified only at a prime p < 10
and give a defining polynomial for each field that arises. You may find the Sage
function pari.polredabs useful: given a monic irreducible polynomial in Z[x]
it will output another monic irreducible polynomial that defines the same number
field but may have smaller discriminant (it will never be larger).

(e) Prove that a totally real cubic field ramified at only one prime is Galois if and only
if it is totally ramified at that prime.

Problem 4. A non-solvable quintic extension (32 points)

Let f(x) := x5 − x+ 1, let K := Q[x]/(f) =: Q[α] and let L be the splitting field of f .

(a) Prove that f is irreducible in Q[x], thus K is number field. Determine the number
of real and complex places of K, and the structure of O×K as a finitely generated
abelian group (both torsion and free parts).

(b) Prove that the ring of integers of K is OK := Z[α] and compute discOK , which you
should find is squarefree. Use this to prove that for each prime p dividing discOK

exactly one of q|p is ramified, and it has ramification index eq = 2 and residue
field degree fq = 1. Conclude that K/Q is tamely ramified (this means that for all
places p of Q and places v|p of K the extension Kv/Qp is tamely ramified).

(c) Using the fact that any extension of local fields has a unique maximal unramified
subextension, prove that for any monic irreducible polynomial g ∈ Z[x] the splitting
field of g is unramified at all primes that do not divide the discriminant of g.
Conclude that L/Q is unramified away from primes dividing discOK and tamely
ramified everywhere, and show that every prime dividing discOK has ramification
index 2. Use this to compute discOL.

(d) Show that OK has no ideals of norm 2 or 3 and use this to prove that the class
group of OK is trivial and therefore OK is a PID.

(e) Prove that Gal(L/Q) ' S5, and that it is generated by the Frobenius elements σ2
and σ5 (here σ2 and σ5 denote conjugacy class representatives).

Problem 5. Unit groups of real quadratic fields (64 points)

A (simple) continued fraction is a (possibly infinite) expression of the form

a0 +
1

a1 +
1

a2 + · · ·
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with an ∈ Z and an > 0 for n > 0. They are more compactly written as (a0; a1, a2, . . .).
For any t ∈ R>0 the continued fraction expansion of t is defined recursively via

t0 := t, an := btnc, tn+1 := 1/(tn − an),

where the sequence a(t) := (a0; a1, a2, . . .) terminates at an if tn = an, in which case we
say that a(t) = (a0; a1, . . . , an) is finite, and otherwise call a(t) = (a0; a1, a2, . . .) infinite.
If a(t) is infinite and there exists ` ∈ Z>0 such that an+` = an for all sufficiently large n,
we say that a(t) is periodic and call the least such integer ` := `(t) the period of a(t).

For an infinite continued fraction a(t) := (a0; a1, a2, . . .), we define Pn, Qn ∈ Z≥0 via

P−2 = 0, P−1 = 1, Pn = anPn−1 + Pn−2;

Q−2 = 1, Q−1 = 0, Qn = anQn−1 +Qn−2.

Note that Pn+2 > Pn+1 ≥ Pn > 0 and Qn+1 > Qn ≥ Qn−1 > 0 for all n ≥ 1.

(a) Prove that a(t) is finite if and only if t ∈ Q, in which case t = a(t).

(b) Prove that if a(t) is infinite then Pn/Qn = (a0; a1, . . . , an) with |Q2
nt−PnQn| < 1 and

a(tn) = (an; an+1, an+2, . . .), for all n ≥ 0. Conclude that t = limn→∞ Pn/Qn = a(t).

(c) Prove that a(t) is periodic if and only if t is a real quadratic irrational.
(Hint: show that if At2 +Bt+C = 0 with A,B,C ∈ Z then Ant

2
n +Bntn +Cn = 0

with An, Bn, Cn ∈ Z and B2
n−4AnCn = B2−4AC and |An|, |Cn| ≤ 2|At|+|A|+|B|).

Now let D > 0 be a squarefree integer that is not congruent to 1 mod 4 and let
K = Q(

√
D). As shown on previous problem sets, OK = Z[

√
D], and it is clear that

(O×K)tors = {±1}. Every α = x + y
√
D ∈ O×K has N(α) = ±1, and (x, y) is thus an

(integer) solution to the Pell equation

X2 −DY 2 = ±1 (1)

(d) Prove that if (x1, y1) and (x2, y2) are solutions to (1) with x1, y1, x2, y2 ∈ Z>0 then
x1 + y1

√
D < x2 + y2

√
D if and only if x1 < x2 and y1 ≤ y2. Conclude that the

fundamental unit ε = x + y
√
D of O×K is the unique solution (x, y) to (1) with

x, y > 0 and x minimal.

Definition. Let t be a real quadratic irrational with Galois conjugate t′ and continued
fraction a(t) = (a0; a1, a2, . . .) of period ` = `(t). We say that t is purely periodic if we
have ai = a`+i for all i ≥ 0 and call t reduced if t > 1 and −1 < t′ < 0,

Lemma (Galois). A real quadratic irrational t that is reduced is also purely periodic.

Proof. Suppose t0 = t is reduced. Then so is t1 = 1/(t−btc) > 1, since t′1 = 1/(t′−btc),
as are all ti. Let i be the least i ≥ 0 with ti = t`+i. If i > 0 then ti = 1/(ti−1−ai−1) and
t`+i = 1/(t`+i−1−a`+i−1), which implies ai−1 = t′i−1− 1/t′i and a`+i−1 = t′`+i−1− 1/t′`+i,
hence ai−1 = b−1/t′ic = b−1/t′`+ic = a`+i−1, since −1 < t′i−1, t

′
`+i−1 < 0, but this

contradicts the minimality of i, so we must have i = 0 and t is purely periodic.

Lemma. Let t > 0 be irrational with Pn, Qn defined as above. If P,Q ∈ Z>0 satisfy
|tQ− P | < 1/(2Q) then P/Q = Pn/Qn for some n ≥ 0.
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Proof. Choose n so Qn ≤ Q < Qn+1 (note Q > 0). Choose u, v ∈ Z so uPn + vPn+1 = P

and uQn + vQn+1 = Q (note
[
Pn Pn+1

Qn Qn+1

]
∈ GL2(Z) because PnQn+1 − Pn+1Qn = ±1).

We must have u 6= 0 since 0 < Q < Qn+1. If v = 0 then P/Q = uPn/uQn = Pn/Qn.
Otherwise uv < 0. We always have (tQn − Pn)(tQn+1 − Pn+1) < 0, so if we write
tQ− P = u(tQn − Pn) + v(tQn+1 − Pn+1), both terms on the RHS have the same sign.
Thus |tQ−P | > |u(tQn−Pn)| ≥ |tQn−Pn| and we have |tQn−Pn| < |tQ−P | < 1/(2Q).
If P/Q 6= Pn/Qn then QPn − PQn ∈ Z6=0, so |QPn − PQn| ≥ 1, and we have

1

QQn
≤ |QPn − PQn|

QQn
=

∣∣∣∣Pn

Qn
− P

Q

∣∣∣∣ =

∣∣∣∣ tQn − Pn

Qn
− tQ− P

Q

∣∣∣∣
≤ |tQ− P |

Qn
+
|tQ− P |

Q
<

1

2QQn
+

1

2Q2
≤ 1

QQn
,

but this is a contradiction, so v = 0 and P/Q = uPn/uQn = Pn/Qn.

(e) Let a(
√
D) = (a0; a1, a2, . . .), and define tn, Pn, Qn as above. Prove that

Pn−2Qn−1 − Pn−1Qn−2 = ±1 and
tnPn−1 + Pn−2
tnQn−1 +Qn−2

=
√
D

for all n ≥ 0, and that tkl = a0 +
√
D. Use this to show that (Pk`−1, Qk`−1) is a

solution to (1) for all k ≥ 0, where ` := `(
√
D). Conclude that ε = P`−1 +Q`−1

√
D.

(f) Compute the fundamental unit ε for each of the real quadratic fields Q(
√

19),
Q(
√

570), and Q(
√

571); in each case give the period `(
√
D) as well as ε.

Problem 6. S-class groups and S-unit groups (32 points)

Let K be a number field with ring of integers OK , and let S be a finite set of places of K
including all archimedean places. Define the ring of S-integers OK,S as the set

OK,S := {x ∈ K : vp(x) ≥ 0 for all p 6∈ S}.

(a) Prove that OK,S is a Dedekind domain containing OK with the same fraction field.

(b) Define a natural homomorphism between clOK,S and clOK (it is up to you to
determine which direction it should go) and use it to prove that clOK,S is finite.

(c) Prove that there is a finite set S for which OK,S is a PID and give an explicit upper
bound on #S that depends only on n = [K : Q] and |discOK |.

(d) Prove the S-unit theorem: O×K,S is a finitely generated abelian group of rank #S−1.

Problem 7. Survey (4 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.
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Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

11/1 Dirichlet’s unit theorem

11/3 Prime number theorem

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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