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7 Galois extensions, Frobenius elements, and the Artin map

In our standard AKLB setup, A is a Dedekind domain with fraction field K, and L/K is a
finite separable extension of its fraction field (and B is the integral closure of A in L, also a
Dedekind domain). We now consider the case where L/K is also normal, hence Galois, and
let G := Gal(L/K) to denote the Galois group; we will use AKLBG to denote this setup.

7.1 Splitting primes in Galois extensions

We begin by showing that the Galois group G acts on the ideal group IB (the invertible,
equivalently, nonzero, fractional ideals of B) and that this action is compatible with the
group structure of IB. More precisely, IB is a left G-module.

Definition 7.1. Let G be a group. A left G-module is an abelian group M equipped
with a left G-action that commutes with its group operation; in additive notation we have
σ(a + b) = σ(a) + σ(b) for all σ ∈ G and a, b ∈ M . One similarly defines a right G-module
as an abelian group with a right G-action that commutes with the group operation.

Theorem 7.2. Assume AKLBG. For each fractional ideal I of B and σ ∈ G define

σ(I) := {σ(x) : x ∈ I}.

The set σ(I) is a fractional ideal of B, and this defines a group action on IB that makes it
a left G-module. Moreover, the restriction of this action to SpecB makes it a G-set.

Proof. We first show that σ(B) = B for all σ ∈ G. Each b ∈ B is integral over A, hence
f(b) = 0 for some monic polynomial f ∈ A[x], and we have

0 = σ(0) = σ(f(b)) = f(σ(b)),

so σ(b) is also integral over A, hence an element of B, since B is the integral closure of A
in L. This proves σ(B) ⊆ B, and the same argument shows σ−1(B) ⊆ B, hence B ⊆ σ(B)
and therefore σ(B) = B as claimed.

Each σ ∈ G = Gal(L/K) is a field automorphism of L and thus commutes with addition
and multiplication. It follows that if I ⊆ L is a finitely generated B-module (a fractional
ideal) then σ(I) is a finitely generated σ(B)-module, and σ(B) = B, so σ(I) is a finitely
generated B-module, hence a fractional ideal as claimed. We clearly have σ((0)) = (0) for
all σ ∈ G, so G permutes IB, the group of nonzero fractional ideals. We also have

(στ)(I) = {(στ)(x) : x ∈ I} = {σ(τ(x)) : x ∈ I} = {σ(y) : y ∈ τ(I)} = σ(τ(I)),

and the identity clearly acts trivially, so we have a left G-action on IB.
Now let I, J ∈ IB and σ ∈ G. Each x ∈ IJ has the form x = a1b1+· · ·+anbn with ai ∈ I

and bi ∈ J , and σ(x) = σ(a1)σ(b1) + · · ·+ σ(an)σ(bn) ∈ σ(I)σ(J). Thus σ(IJ) ⊆ σ(I)σ(J),
and applying the same argument to σ(I), σ(J), and σ−1 implies σ−1(σ(I)σ(J)) ⊆ IJ and
therefore σ(I)σ(J) ⊆ σ(IJ). Thus σ(IJ) = σ(I)σ(J) for all I, J ∈ IB, implying that IB is
a left G-module.

Let p be a prime of B and let σ(p) = qe11 · · · qenn be the unique factorization of σ(p)
in B. Applying σ−1 to both sides yields p = σ−1(q1)

e1 · · ·σ−1(qn)en , and therefore n = 1
and e1 = 1, since p is prime, thus σ(p) = q1 is prime and the G-action on IB restricts to a
G-action on MaxSpecB, and on SpecB, since G fixes {(0)} = SpecB −MaxSpecB.
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Recall that by a prime of A (or K) we mean a nonzero prime ideal of A, and similarly
for B (and L), and for any prime p of A we use {q|p} to denote the set of primes q that
lie above p (equivalently, for which p = A ∩ q); in other words, {q|p} is the fiber of the
contraction map MaxSpecB → MaxSpecA above p.

Corollary 7.3. Assume AKLBG. For each prime p of A the group G acts transitively
on the set {q|p}; in other words, the orbits of the G-action on SpecB are the fibers of the
contraction map SpecB → SpecA.

Proof. Consider any σ ∈ G. For q|p we have pB ⊆ q and σ(pB) ⊆ σ(q), so σ(q)|p (note
σ(pB) = pB and in a Dedekind domain, to contain is to divide). Thus {q|p} is closed under
the action of G, we just need to show that it consists of a single orbit.

Let {q|p} = {q1, . . . , qn} and suppose that q1 and q2 lie in distinct G-orbits. The
primes q1, . . . , qn are maximal ideals, hence pairwise coprime, so by the CRT we have a ring
isomorphism

B

q1 · · · qn
' B

q1
× · · · × B

qn
,

and we may choose b ∈ B such that b ≡ 0 mod q2 and b ≡ 1 mod σ−1(q1) for all σ ∈ G (by
hypothesis, σ(q2) 6= q1 for all σ ∈ G, since q1, q2 lie in different G-orbits). Then b ∈ q2 and

NL/K(b) =
∏
σ∈G

σ(b) ≡ 1 mod q1,

hence NL/K(b) 6∈ A ∩ q1 = p. But NL/K(b) ∈ NL/K(q2) = pfq2 ⊆ p, a contradiction.

As shown in the proof of Theorem 7.2, we have σ(B) = B for all σ ∈ G = Gal(L/K),
thus each σ ∈ G restricts to a ring automorphism of B that fixes every element of the
subring A = B ∩K, and thus every element of any prime p of A. It follows that σ induces
an isomorphism of residue field extensions σ̄ ∈ HomA/p(B/q, B/σ(q)) defined by σ̄(x+q) :=

σ(x) + σ(q) for x ∈ B, which we may more compactly write as σ̄(x̄) := σ(x) (but note that
the x̄ and σ(x) are typically elements of different residue fields).

Corollary 7.4. Assume AKLBG and let p be a prime of A. The residue field degrees
fq := [B/q :A/p] are the same for every q|p, as are the ramification indices eq := vq(pB).

Proof. For each σ ∈ G we have an isomorphism of the residue fields B/q and B/σ(q) that
fixes A/p, so they clearly have the same degree fq = fσ(q), and G acts transitively on {q|p},
by Corollary 7.3, so the function q 7→ fq must be constant on {q|p}.

For each σ ∈ G we also have σ(p) = p and σ(B) = B, so σ(pB) = pB, and for each q|p,

eq = vq(pB) = vq(σ(pB)) = vq

(
σ
(∏

r|p

rer
))

= vq

(∏
r|p

σ(r)er
)

= vq

(∏
r|p

r
eσ−1(r)

)
= eσ−1(q).

The transitivity of the G-action on {q|p} again implies that q 7→ eq is constant on {q|p}.

Corollary 7.4 implies that whenever L/K is Galois, we may unambiguously write ep
and fp instead of eq and fq; recall that we previously defined gp := #{q|p}.

Corollary 7.5. Assume AKLBG. For each prime p of A we have epfpgp = [L :K].

Proof. This follows immediately from Theorem 5.35 and Corollary 7.4.
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Example 7.6. Assume AKLBG. When n := [L :K] is prime there are just three ways a
prime p of A can split in B:

• ep = n and fp = gp = 1, in which case p is totally ramified in L;

• fp = n and ep = gp = 1, in which case p remains inert in L if B/pB is finite étale;

• gp = n and ep = fp = 1, in which case p splits completely in L if B/pB is finite étale.

Recall from Definition 5.37 that we only defined the terms “remains inert” and “splits com-
pletely” for unramified primes, which includes the condition that all the residue field exten-
sions B/q of A/p are separable, equivalently, that B/pB is finite ètale over A/p. This will
automatically hold in the primary case of interest to us, where the residue field A/p is finite,
hence perfect, and all residue field extensions are separable.

7.2 Decomposition and inertia groups

Definition 7.7. Assume AKLBG. For each prime q of B the decomposition group Dq (also
denoted Dq(L/K)) is the stabilizer of q in G.

Lemma 7.8. Assume AKLBG and let p be a prime of A. The decomposition groups Dq

for q|p are all conjugate in G, with #Dq = epfp and [G : Dq] = gp.

Proof. Points in an orbit of group action have conjugate stabilizers, so the Dq for q|p are all
conjugate, by Corollary 7.3. The orbit-stabilizer theorem implies [G :Dq] = #{q|p} = gp.
We have #G = [L :K] = epfpgp, by Corollary 7.5, so #Dq = #G/[G :Dq] = epfp.

Let us now consider a particular prime q|p of B (by writing q|p we define p as q ∩ A).
As noted above, each σ ∈ G induces a residue field isomorphism σ̄ ∈ HomA/p(B/q, B/σ(q)).
For σ ∈ Dq, we have σ(q) = q, in which case σ̄ ∈ AutA/p(B/q). Moreover, the map σ 7→ σ
defines a group homomorphism πq : Dq → AutA/p(B/q), since for any x ∈ B we have

στ(x̄) = στ(x) = σ(τ(x)) = σ(τ(x)) = σ(τ(x̄)).

Note that B/q need not be a Galois extension of A/p even when L is a Galois extension
of K, which is why we write AutA/p(B/q) and not Gal((B/q)/(A/p)).

Proposition 7.9. Assume AKLBG and let q|p be a prime of B. The group homomorphism
πq : Dq → AutA/p(B/q) defined by σ 7→ σ̄ is surjective and B/q is normal over A/p.

Proof. Let F be the separable closure of A/p in B/q and for b̄ ∈ F , pick b ∈ B such that
b ≡ b̄ mod q and b ≡ 0 mod σ−1(q) (so σ(b) ≡ 0 mod q) for all σ ∈ G−Dq; the CRT implies
that such an b exists, since for σ ∈ G−Dq the ideals q and σ(q) are distinct and therefore
coprime (since they are maximal ideals). Now define

g(x) :=
∏
σ∈G

(
x− σ(b)

)
∈ A[x],

and let g denote the image of g in (A/p)[x]. Observe that b̄ is the root of a polynomial
ḡ ∈ (A/p)[x] that splits completely in (B/q)[x], and our choice of b̄ was arbitrary, so this
applies to every b̄ ∈ F×. It follows that F is a normal (hence Galois) extension of A/p, and
we have Gal(F/(A/p)) ' AutA/p(B/q), since F is the separable closure of A/p in B/q.
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For each σ ∈ G − Dq we have σ(b̄) = 0 , so 0 is a root of g(x) with multiplicity at
least m = #(G − Dq), and the remaining roots are σ(b̄) for σ ∈ Dq, all of which are
Gal(F/(A/p))-conjugates of b̄. It follows that g(x)/xm divides a power of the minimal
polynomial f(x) of b̄, but f(x) is irreducible in (A/p)[x], so g(x)/xm is a power of f(x)
and every Gal(F/(A/p))-conjugate of b̄ has the form σ(b̄) for some σ ∈ Dq. Applying this
to b̄ chosen so that F = (A/p)(b̄) (by the primitive element theorem) shows that the map
πq : Dq → AutA/p(B/q) ' Gal(F/(A/p)) is surjective.

To show that B/q is a normal extension of A/p we proceed as we did for F : for each
b ∈ B define g ∈ A[x] and g ∈ (A/p)[x] as above to show that every b ∈ B/q is the root of
a polynomial in (A/p)[x] that splits completely in (B/q)[x].

Definition 7.10. Assume AKLBG, and let q|p be a prime of B. The kernel of the surjective
homomorphism πq : Dq → AutA/p(B/q) is the inertia group Iq of q.

Corollary 7.11. Assume AKLBG and let q|p be a prime of B. We have an exact sequence

1 −→ Iq −→ Dq −→ AutA/p(B/q) −→ 1,

and #Iq = ep[B/q : A/p]i.

We have shown that the residue field B/q is always a normal extension of the residue
field A/p. Let us now suppose that it is also separable, hence Galois; this holds, for example,
if A/p is a perfect field, and in particular, whenever A/p is a finite field. We then have

Dq/Iq ' AutA/p(B/q) = Gal((B/q)/(A/p)).

Proposition 7.12. Assume AKLBG, let q|p be a prime of B, and suppose B/q is a sepa-
rable extension of A/p. We have a tower of field extensions K ⊆ LDq ⊆ LIq ⊆ L with

ep = [L : LIq ] = #Iq;

fp = [LIq : LDq ] = #Dq/#Iq;

gp = [LDq : K] = #{q|p}.

The fields LDq and LIq are the decomposition field and inertia field associated to q.

Proof. The third equality follows immediately from Lemma 7.8. The second follows from
Proposition 7.9 and the separability of (B/q)/(A/p), since Dq/Iq ' Gal((B/q)/(A/p)) has
cardinality fp = [B/q :A/p]. We then have [L : LDq ] = #Dq = epfp and #Dq/#Iq = fp, so
#Iq = ep, so the first equality also holds.

We now consider an intermediate field E lying between K and L. Let us fix a prime q|p
of B, and let qE := q ∩ E, so that q|qE and qE |p, and let us use Gq(L/K) := AutA/p(B/q),
Gq(L/E) := Aut(B∩E)/qE (B/q), GqE (E/K) := AutA/p((B ∩ E)/qE) to denote the auto-
morphism groups of the residue field extensions associated to the tower K ⊆ E ⊆ L. We
use the notation Dq(L/E) to denote the decomposition group of q relative to the extension
L/E (note that L/E is Galois since L/K is), and similarly define Dq(L/K), as well as
Iq(L/E) and Iq(L/K). In the case that E/K is also Galois, we similarly use DqE (E/K) and
IqE (E/K) to denote the decomposition and inertia group of qE (subgroups of Gal(E/K)).
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Proposition 7.13. Assume AKLBG, let E be an intermediate field between K and L.
Let q be a prime of B and let qE = q ∩ E and p = q ∩K. Then

Iq(L/E) = Iq(L/K) ∩Gal(L/E) and Dq(L/E) = Dq(L/K) ∩Gal(L/E).

If E/K is Galois, then we have the following commutative diagram of exact sequences:

1 1 1

1 Iq(L/E) Iq(L/K) IqE (E/K) 1

1 Dq(L/E) Dq(L/K) DqE (E/K) 1

1 Gq(L/E) Gq(L/K) GqE (E/K) 1

1 1 1

←→ ←→ ←→

←→ ←→
←→

←→

←→

←→

←→

←→ ←→

←→

←→

←→

←→

←→

←→ ←→

←→

←→
←→

←→

←→

Proof. Note that Dq(L/E) ⊆ Gal(L/E) ⊆ Gal(L/K). An element σ of Gal(L/K) lies in
Dq(L/E) if and only if it fixes E (hence lies in Gal(L/E)) and satisfies σ(q) = q (hence
lies in Dq(L/K)), which proves the first claim. For the second claim, the restriction of
πq(L/K) : Dq(L/K) → Gq(L/K) to Dq(L/E) is the map πq(L/E) : Dq(L/E) → Gq(L/E),
hence the kernels agree after intersecting with Gal(L/E).

The exactness of the columns follows from Corollary 7.11; we now argue exactness of the
rows. Each row corresponds to an inclusion followed by a restriction in which the inclusion is
precisely the kernel of the restriction (for the first two rows this follows from the two claims
proved above and for the third row it follows from Proposition 7.9, since normal subextension
of an algebraic extension are stable under automorphisms); exactness at the first two groups
in each row follows. Surjectivity of the restriction maps follows from the bijection used in
the proof of Lemma 4.10. We have a bijection HomK(L,Ω)→ HomE(L,Ω)×HomK(E,Ω)
whose second factor is restriction, and we may view this as a bijection φ : Gal(L/K) →
Gal(L/E)×Gal(E/K). If σ ∈ Gal(E/K) stabilizes qE then φ−1(1, σ) ∈ Gal(L/K) stabilizes
q and restricts to σ; this implies surjectivity of the restriction maps in the first two rows,
and for the third we replace L/E/K with the corresponding tower of residue field extensions
(and forget about stabilizing qE).

We now argue commutativity of the four corner squares which suffices to prove the
commutativity of the enitre diagram. The upper left square commutes because all the maps
are inclusions. The upper right square commutes because inclusion and restriction commute.
The lower left square commutes because the horizontal maps are inclusions and the vertical
maps coincide on Dq(L/E). The lower right square commutes because the horizontal maps
are restrictions and the vertical maps agree after restriction to E.

Corollary 7.14. Assume AKLBG, let E be an intermediate field between K and L. Let q
be a prime of B and let qE = q ∩ E and p = q ∩K. Then

• eqE/p = 1 if and only if E ⊆ LIq , and

• eqE/p = fqE/p = 1 if and only if E ⊆ LDq,
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where Iq and Dq are the inertia and decomposition groups of q.

Proof. Proposition 7.13 implies Iq(L/E) = Iq(L/K) ∩Gal(L/E), and for F = LIq , we have
Iq(L/F ) = Iq(L/K) = Gal(L/F ). We also have Gal(L/EF ) = Gal(L/E) ∩Gal(L/F ), so

Iq(L/E) = Iq(L/K) ∩Gal(L/E) = Gal(L/F ) ∩Gal(L/EF ) = Gal(L/EF ) = Iq(L/EF ).

Now eq/qE = #Iq(L/E) = #Iq(L/EF ) = eq/qEF is equal to eq/qF = #Iq(L/F ) if and
only if E ⊆ F . The first claim in the corollary follows, since Iq(L/F ) = Iq(L/K) implies
eq/qF = eq/p which implies eqF /p = 1, since eq/qF eqF /p = eq/p, by Lemma 5.30.

The proof of the second claim follows mutatis mutandis: replace Iq by Dq and eq/x by
eq/xfq/x throughout.

In our AKLBG setup, for any prime p of K we let Ip and Dp denote the subgroups of
G = Gal(L/K) generated by the inertia groups Iq and the decomposition groups Dq of the
primes q|p, respectively, which we call the inertia group and decomposition group of p. The
corresponding inertia field LIp and decomposition field LDp are Galois extensions of K that
are characterized by the following corollary.

Corollary 7.15. Assume AKLBG and let p be a prime of K. The fields LIp and LDp are
Galois extensions of K, and for any intermediate field E we have eqE/p = 1 for all qE |p if
and only if E ⊆ LIp , and eqE/p = fqE/p = 1 for all qE |p if and only if E ⊆ LDp.

When A/p is a perfect field, the inertia field is the largest subfield of L in which p is
unramified, and the decomposition field is the largest subfield in which p splits completely.

Proof. The fact that G acts transitively on {q|p} means that Ip is generated by a complete
set of conjugate subgroups Iq and is therefore stable under conjugation, hence normal, and
similarly for Dp. It follows that the corresponding fixed fields are Galois extensions of K.
The rest of the corollary follows immediately from Corollary 7.14.

7.3 Frobenius elements

We now add the further assumption that the residue fields A/p (and therefore B/q) are
finite for all primes p of K.1 This holds, for example, whenever K is a global field (a finite
extension of Q or Fq(t)). In this situation B/q is necessarily a Galois extension of A/p
(we don’t need Proposition 7.9 for this, finite extensions of finite fields are always Galois).
Indeed, recall that every finite extension of a finite field F has a cyclic Galois group generated
by the #F-power Frobenius automorphism x 7→ x#F.

In order to simplify the notation, when working with finite residue fields we may write
Fq := B/q and Fp := A/p; these are finite fields of p-power order, where p is the characteristic
of Fp (and of Fq). Note that the field K (and L) need not have characteristic p (consider the
case of number fields), but if the characteristic of K is positive then it must be p (consider
the homomorphism A→ A/p from the integral domain A to the field A/p).

Let q|p be a prime of B. Corollary 7.11 gives us an exact sequence

1 −→ Iq −→ Dq
πq−→ Gal

(
Fq/Fp

)
−→ 1.

If p (equivalently, q) is unramified, then ep = eq = 1 and Iq is trivial. In this case we have
an isomorphism

πq : Dq
∼−→ Gal(Fq/Fp).

1There exist Dedekind domains A (PIDs even) with a mixture of finite and infinite residue fields; see [1].
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The Galois group Gal(Fq/Fp) is the cyclic group of order fp = [Fq : Fp] generated by the
Frobenius automorphism

x 7→ x#Fp .

Note that the cardinality of the finite field Fp is necessarily a power of its characteristic p.
If K = Q and p = (p) is a prime of Z, then Fp = Z/pZ is the field with p elements, but in
general the field Fp need not be a prime field (consider K = Q(i) and p = (7)).

Definition 7.16. Assume AKLBG with finite residue fields and q|p unramified. The inverse
image of the Frobenius automorphism of Gal(Fq/Fp) under πq : Dq

∼−→ Gal(Fq/Fp) is the
Frobenius element σq ∈ Dq ⊆ G (also called the Frobenius substitution [2, §8]).

Proposition 7.17. Assume AKLBG with finite residue fields and q|p unramified. The
Frobenius element σq is the unique σ ∈ G such that for all x ∈ B we have

σ(x) ≡ x#Fp mod q.

Proof. Clearly σq has this property, we just need to show uniqueness. Suppose σ ∈ G
has the desired property. For any x ∈ q we have x ≡ 0 mod q, and σ(x) ≡ x#Fp mod q
implies σ(x) ≡ 0 mod q, so σ(x) ∈ q; it follows that σ(q) = q, and therefore σ ∈ Dq. The
isomorphism πq : Dq → Gal(Fq/Fp) maps both σ and σq to the Frobenius automorphism
x 7→ x#Fp , so we must have σ = σq.

Proposition 7.18. Assume AKLBG with finite residue fields and let p be an unramified
prime of A. The set of Frobenius elements {σq : q|p} is a conjugacy class of G.

Proof. Let σq be a Frobneius element, let C be its conjugacy class, let q′|p, and let τ ∈ G
satisfy q′ = τ(q) (the existence of τ is guaranteed by Corollary 7.3). For any x ∈ B we have

σq(x) ≡ x#Fp mod q.

τ(σq(x)) ≡ τ
(
x#Fp

)
mod τ(q)

(τσq)(x) ≡ τ(x)#Fp mod q′

(τσq)(τ
−1(x)) ≡ τ(τ−1(x))#Fp mod q′

(τσqτ
−1)(x) ≡ x#Fp mod q′,

where we applied τ to both sides in the second line and replaced x by τ−1(x) in the fourth
line. Proposition 7.17 implies σq′ = τσqτ

−1 ∈ C.
Now consider any g ∈ C, pick τ ∈ G so that τσqτ−1 = g, and let q′ := τ(q). We have

g(x) = (τσqτ
−1)(x) ≡ x#Fp mod q′ for all x ∈ B by the argument above, and Proposi-

tion 7.17 implies that g = σq′ is a Frobenius element.

Definition 7.19. Assume AKLBG with finite residue fields and let p be an unramified
prime of A. The G-conjugacy class {σq : q|p} is the Frobenius class of p, denoted Frobp.

It is common to abuse terminology and refer to Frobp as a Frobenius element σp ∈ G
representing its conjugacy class (so σp = σq for some q|p); there is little risk of confusion so
long as we remember that σp is only determined up to conjugacy (which usually governs all
the properties we care about). But there is one situation where this terminology is entirely
correct. If G is abelian then each conjugacy classes consists of a single element, in which
case Frobp = {σq : q|p} is a singleton set and there is a unique choice for σp (note that
#{σq : q|p} = 1 does not imply #{q|p} = 1 because the map q→ σq need not be injective).
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7.4 Artin symbols

There is another notation commonly used to denote Frobenius elements that includes the
field extension in the notation.

Definition 7.20. Assume AKLBG with finite residue fields. For each unramified prime q
of L we define the Artin symbol (

L/K

q

)
:= σq.

Proposition 7.21. Assume AKLBG with finite residue fields and q|p unramified. Then p

splits completely if and only if
(
L/K
q

)
= 1.

Proof. This follows directly from the definitions: if p splits completely then epfp = 1 and
Dq = 〈σq〉 = {1}. Conversely, if Dq = 〈σq〉 = {1} then epfp = 1 and p splits completely.

We will see later in the course that the extension L/K is completely determined by the
set of primes p that split completely in L. Thus in some sense the Artin symbol captures
the essential structure of L/K.

Proposition 7.22. Assume AKLBG with finite residue fields and let q|p be unramified.
Let E be an intermediate field between K and L, and define qE := q ∩ E. Then(

L/E

q

)
=

(
L/K

q

)[FqE
:Fp]

,

and if E/K is Galois then
(
E/K
qE

)
is the restriction of

(
L/K
q

)
to E.

Proof. For the first claim, note that #FqE = (#Fp)
[FqE

:Fp]. The second claim follows from
the commutativity of the lower right square in the commutative diagram of Proposition 7.13:
the Frobenius automorphism x 7→ x#Fp of Gal(FqE/Fp) is the restriction of the Frobenius
automorphism x 7→ x#Fp of Gal(Fq/Fp) to FqE .

When L/K is abelian, the Artin symbol takes the same value for all q|p and we may
instead write (

L/K

p

)
:= σp.

In this setting we now view the Artin symbol as a function mapping unramified primes p to
Frobenius elements σp ∈ G. We wish to extend this map to a multiplicative homomorphism
from the ideal group IA to the Galois group G = Gal(L/K), but ramified primes q|p cause
problems: the homomorphism πq : Dq → Gal(Fq/Fp) is not a bijection when p is ramified
(it has nontrivial kernel Iq of order eq = ep > 1).

For any set S of primes of A, let ISA denote the subgroup of IA generated by the primes
of A that do not lie in S (a free abelian group).

Definition 7.23. Let A be a Dedekind domain with finite residue fields. Let L be a finite
abelian extension of K = FracA, and let S be the set of primes of A that ramify in L. The
Artin map is the homomorphism(

L/K

·

)
: ISA → Gal(L/K)

m∏
i=1

peii 7→
m∏
i=1

(
L/K

pi

)ei
.
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Remark 7.24. We will prove in later lectures that the set S of ramified primes is finite,
but the definition makes sense in any case, and more generally, for any set S that contains
all ramified primes, a fact that we will use later.

One of the main results of class field theory is that the Artin map is surjective (this is
part of what is known as Artin reciprocity). This is a deep theorem that we are not yet
ready to prove, but we can verify that it holds in some simple examples.

Example 7.25 (Quadratic fields). Let K = Q and L = Q(
√
d) for some square-free integer

d 6= 1. Then Gal(L/K) has order 2 and is certainly abelian. As you proved on Problem
Set 2, the only ramified primes p = (p) of A = Z are those that divide the discriminant

D := disc(L/K) =

{
d if d ≡ 1 mod 4,

4d if d 6≡ 1 mod 4.

If we identify Gal(L/K) with the multiplicative group {±1}, then(
L/K

p

)
=

(
Q(
√
d)/Q

(p)

)
=

(
D

p

)
= ±1,

where
(
D
p

)
is the Kronecker symbol. For odd primes p 6 | D we have

(
D

p

)
=

{
+1 if D is a nonzero square modulo p,
−1 if D is not a square modulo p,

and for p = 2 not dividing D (in which case D = d ≡ 1 mod 4) we have(
D

2

)
=

{
+1 if D ≡ 1 mod 8,

−1 if D ≡ 5 mod 8.

The cyclotomic extensions Q(ζn)/Q provide another interesting example that you will
have an opportunity to explore on Problem Set 4.
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