
18.785 Number theory I
Lecture #3

Fall 2021
09/15/2021

3 Properties of Dedekind domains

In the previous lecture we defined a Dedekind domain as a noetherian domain A that satisfies
either of the following equivalent conditions:

• the localizations of A at its nonzero prime ideals are all discrete valuation rings;

• A is integrally closed and has dimension at most one.

In this lecture we will establish several additional properties enjoyed by Dedekind domains,
the most significant of which is unique factorization of ideals. As we noted last time,
Dedekind domains are typically not unique factorization domains (the only exceptions are
principal ideal domains), but ideals can be uniquely factored into prime ideals.

3.1 Invertible ideals in Dedekind domains

Our first goal is prove that every nonzero fractional ideal in a Dedekind domain is invertible.
We will use the fact that arithmetic of fractional ideals behaves well under localization.

Lemma 3.1. Let I and J be fractional ideals of a noetherian domain A, and let p be a
prime ideal of A. Then Ip and Jp are fractional ideals of Ap, as are

(I + J)p = Ip + Jp, (IJ)p = IpJp, (I : J)p = (Ip : Jp).

The same applies if we localize with respect to any multiplicative subset S of A.

Proof. Ip = IAp is a finitely generated Ap-module (since I is a finitely generated A-module;
see Remark 2.2), hence a fractional ideal of Ap, and similarly for Jp. We have

(I + J)p = (I + J)Ap = IAp + JAp = Ip + Jp,

where we use the distributive law in K to get (I + J)Ap = IAp + JAp. We also have

(IJ)p = (IJ)Ap = IpJp,

since (IJ)Ap ⊆ IpJp obviously holds and by writing fractions over a common denominator
we can see that IpJp ⊆ (IJ)Ap also holds. Finally

(I : J)p = {x ∈ K : xJ ⊆ I}p = {x ∈ K : xJp ⊆ Ip} = (Ip : Jp).

For the last statement, note that no part of our proof depends on the fact that we localized
with respect to a multiplicative set of the from A− p.

Theorem 3.2. Let I be a fractional ideal of a noetherian domain A. Then I is invertible
if and only if its localization at every maximal ideal of A is invertible, equivalently, if and
only if its localization at every prime ideal of A is invertible.

Proof. Suppose I is invertible. Then I(A : I) = A, and for any maximal ideal m we have
Im(Am : Im) = Am, by Lemma 3.1, so Im is also invertible.

Now suppose Im is invertible for every maximal ideal m; then Im(Am : Im) = Am for
every maximal ideal m. Applying Lemma 3.1 and Proposition 2.6 yields

I(A : I) =
⋂
m

(I(A : I))m =
⋂
m

Im(Am : Im) =
⋂
m

Am = A,

so I is invertible. The same proof works for prime ideals.
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Corollary 3.3. In a Dedekind domain every nonzero fractional ideal is invertible.

Proof. If A is Dedekind then all of its localizations at maximal ideals are DVRs, hence PIDs,
and in a PID every nonzero fractional ideal is invertible. It follows from Theorem 3.2 that
every nonzero fractional ideal of A is invertible.

An integral domain in which every nonzero ideal is invertible is a Dedekind domain (see
Problem Set 2), so this gives another way to define Dedekind domains. Let us also note an
equivalent condition that will be useful in later lectures.

Lemma 3.4. A nonzero fractional ideal I in a noetherian local domain A is invertible if
and only if it is principal.

Proof. If I is principal then it is invertible, so we only need to show the converse. Let I be
an invertible fractional ideal, and let m be the maximal ideal of A. We have II−1 = A, so∑n

i=1 aibi = 1 for some ai ∈ I and bi ∈ I−1, and each aibi lies in II−1 = A. One of the
products aibi, say a1b1, must be a unit, otherwise the sum would not be a unit (note that
A = m t A×, since A is a local ring). For every x ∈ I we have a1b1x ∈ (a1), since b1x ∈ A
(because x ∈ I and b1 ∈ I−1). It follows that x = (a1b1)

−1a1b1x ∈ (a1), since (a1b1)
−1 ∈ A,

so we have I ⊆ (a1) ⊆ I, which shows that I = (a1) is principal.

Corollary 3.5. A nonzero fractional ideal in a noetherian domain A is invertible if and
only if it is locally principal, that is, its localization at every maximal ideal of A is principal.

3.2 Unique factorization of ideals in Dedekind domains

We are now ready to prove the main result of this lecture, that every nonzero ideal in a
Dedekind domain has a unique factorization into prime ideals. As a first step we need to
show that every ideal is contained in only finitely many prime ideals.

Lemma 3.6. Let A be a Dedekind domain and let a ∈ A be nonzero. The set of prime ideals
that contain a is finite.

Proof. Consider the following subsets S and T of the ideal group IA:

S := {I ∈ IA : (a) ⊆ I ⊆ A},
T := {I ∈ IA : A ⊆ I ⊆ (a)−1}.

The sets S and T are both non-empty (they contain A) and partially ordered by inclusion.
The elements of S are all ideals, and we have bijections

ϕ1 : S → T ϕ2 : T → S

I 7→ I−1 I 7→ aI

with ϕ1 order-reversing and ϕ2 order-preserving. The composition ϕ := ϕ2 ◦ ϕ1 is thus an
order-reversing permutation of S. Since A is noetherian, the set S satisfies the ascending
chain condition: every chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals in S is eventually constant. By
applying our order-reversing permutation ϕ we see that S also satisfies the descending chain
condition: every chain I1 ⊇ I2 ⊇ I3 ⊇ · · · of ideals in S is eventually constant.

Now if a lies in infinitely many distinct prime ideals p1, p2, p3, . . ., then

p1 ⊇ p1 ∩ p2 ⊇ p1 ∩ p2 ∩ p3 ⊇ · · ·
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is a descending chain of ideals in S that must stabilize. Thus for n sufficiently large we have

p1 · · · pn−1 ⊆ p1 ∩ · · · ∩ pn−1 = p1 ∩ · · · ∩ pn ⊆ pn.

The prime ideal pn contains the product p1 · · · pn−1, so it must contain one of the factors
p1, · · · , pn−1 (this is what it means for an ideal to be prime). But this contradicts dimA ≤ 1:
we cannot have a chain of prime ideals (0) ( pi ( pn of length 2 in A.

Corollary 3.7. Let I be a nonzero ideal of a Dedekind domain A. The number of prime
ideals of A that contain I is finite.

Proof. Apply Lemma 3.6 to any nonzero a ∈ I.

Example 3.8. The Dedekind domain A = C[t] contains uncountably many nonzero prime
ideals pr = (t− r), one for each r ∈ C. But any nonzero f ∈ C[t] lies in only finitely many
of them, namely, the pr for which f(r) = 0; equivalently, f has finitely many roots.

Let p be a nonzero prime ideal in a Dedekind domain A with fraction field K, let π be a
uniformizer for the discrete valuation ring Ap, and let I be a nonzero fractional ideal of A.
The localization Ip is a nonzero fractional ideal of Ap, hence of the form (πn) for some n ∈ Z
that does not depend on the choice of π (note that n may be negative). We now extend the
valuation vp : K → Z ∪ {∞} to fractional ideals by defining vp(I) := n and vp((0)) := ∞;
for any x ∈ K we have vp((x)) = vp(x).

The map vp : IA → Z is a group homomorphism: if Ip = (πm) and Jp = (πn) then

(IJ)p = IpJp = (πm)(πn) = (πm+n),

so vp(IJ) = m+n = vp(I) + vp(J). It is order-reversing with respect to the partial ordering
on IA by inclusion and the total order on Z: for any I, J ∈ IA, if I ⊆ J then vp(I) ≥ vp(J).

Lemma 3.9. Let p be a nonzero prime ideal in a Dedekind domain A. If I is an ideal of A
then vp(I) = 0 if and only if p does not contain I. In particular, if q is any nonzero prime
ideal different from p then vq(p) = vp(q) = 0.

Proof. If I ⊆ p then vp(I) ≥ vp(p) = 1 is nonzero. If I 6⊆ p then pick a ∈ I−p and note that
0 = vp(a) ≥ vp(I) ≥ vp(A) = 0, since (a) ⊆ I ⊆ A. The prime ideals p and q are nonzero,
hence maximal (since dimA ≤ 1), so neither contains the other and vq(p) = vp(q) = 0.

Corollary 3.10. Let A be a Dedekind domain with fraction field K. For each nonzero
fractional ideal I we have vp(I) = 0 for all but finitely many prime ideals p. In particular,
if x ∈ K× then vp(x) = 0 for all but finitely many p.

Proof. For I ⊆ A this follows from Corollary 3.7 and Lemma 3.9. For I 6⊆ A let I = 1
aJ

with a ∈ A and J ⊆ A. Then vp(I) = vp(J) − vp(a) = 0 − 0 = 0 for all but finitely many
prime ideals p. This holds in particular for I = (x), for any x ∈ K×.

We are now ready to prove our main theorem.

Theorem 3.11. Let A be a Dedekind domain. The ideal group IA of A is the free abelian
group generated by its nonzero prime ideals p. The isomorphism

IA '
⊕
p

Z

18.785 Fall 2021, Lecture #3, Page 3



is given by the inverse maps

I 7→ (. . . , vp(I), . . .)∏
p

pep ←[ (. . . , ep, . . .)

Proof. Corollary 3.10 implies that the first map is well defined (the vector associated to
I ∈ IA has only finitely many nonzero entries and is thus an element of the direct sum). For
each nonzero prime ideal p, the maps I 7→ vp(I) and ep 7→ pep are group homomorphisms,
and it follows that the maps in the theorem are both group homomorphisms. To see that
the first map is injective, note that if vp(I) = vp(J) then Ip = Jp, and if this holds for
every p then I = ∩pIp = ∩pJp = J , by Corollary 2.7. To see that it is surjective, note that
Lemma 3.9 implies that for any vector (. . . , ep, . . .) in the image we have

vq

(∏
p

pep

)
=
∑
p

epvq(p) = eq,

which implies that
∏

p p
ep is the pre-image of (. . . , ep, . . .); it also shows that the second map

is the inverse of the first map.

Remark 3.12. When A is a DVR, the isomorphism given by Theorem 3.11 is just the
discrete valuation map vp : IA

∼−→ Z, where p is the unique maximal ideal of A.

Corollary 3.13. In a Dedekind domain every nonzero fractional ideal I has a unique fac-
torization I =

∏
p p

vp(I) into nonzero prime ideals p.1

Remark 3.14. Every integral domain with unique ideal factorization is a Dedekind domain
(see Problem Set 2).

The isomorphism of Theorem 3.11 allows us to reinterpret the operations we have defined
on fractional ideals. If I =

∏
p p

ep and J =
∏

p p
fp are nonzero fractional ideals then

IJ =
∏

pep+fp ,

(I : J) =
∏

pep−fp ,

I + J =
∏

pmin(ep,fp) = gcd(I, J),

I ∩ J =
∏

pmax(ep,fp) = lcm(I, J),

and for all I, J ∈ IA we have
IJ = (I ∩ J)(I + J).

A key consequence of unique factorization is that I ⊆ J if and only if ep ≥ fp for all p;
this implies that J contains I if and only if J divides I. Recall that in any commutative
ring, if J divides I (i.e. JH = I for some ideal H) then J contains I (the elements of I are
H-linear, hence A-linear, combinations of elements of J and so lie in J), whence the slogan
to divide is to contain. In a Dedekind domain the converse is also true: to contain is to
divide. This leads to another characterization of Dedekind domains (see Problem Set 2).

1We view A =
∏

p p
vp(A) =

∏
p p

0 = (1) as an (empty) product of prime ideals.
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Given that inclusion and divisibility are equivalent in a Dedekind domain, we may view
I+J as the greatest common divisor of I and J (it is the smallest ideal that contains, hence
divides, both I and J), and I ∩ J as the least common multiple of I and J (it is the largest
ideal contained in, hence divisible by, both I and J).2

We also note that

x ∈ I ⇐⇒ (x) ⊆ I ⇐⇒ vp(x) ≥ ep for all p,

(where I =
∏

p p
ep as above), and therefore

I = {x ∈ K : vp(x) ≥ ep for all p}.

We have I ⊆ A if and only if ep ≥ 0 for all p.

Corollary 3.15. A Dedekind domain is a UFD if and only if it is a PID, equivalently, if
and only if its class group is trivial.

Proof. Every PID is a UFD, so we only need to prove the reverse implication. The fact
that we have unique factorization of ideals implies that it is enough to show that every
prime ideal is principal. Let p be a nonzero prime ideal in a Dedekind domain A that is
also a UFD, let a ∈ p nonzero, and let a = p1 · · · pn be the unique factorization of a into
irreducible elements. Now p contains and therefore divides (a) = (p1) · · · (pn), so p divides
(and therefore contains) some (pi), which is necessarily a prime ideal (in a UFD, irreducible
elements generate prime ideals). But A has dimension one, so we must have p = (pi).

3.3 Representing ideals in a Dedekind domain

Most Dedekind domains are not PIDs, so a typical Dedekind domain will contain ideals
that require more than one generator. But it turns out that two generators always suffice,
and we can even pick one of them arbitrarily. To prove this we need the following lemma.
Recall that two A-ideals I and J are said to be relatively prime, or coprime, if I + J = A;
equivalently, gcd(I, J) = (1).

Lemma 3.16. Let A be a Dedekind domain and let I and I ′ be nonzero ideals. There exists
an ideal J coprime to I ′ such that IJ is principal.

Proof. Let p1, . . . , pn be the nonzero prime ideals dividing I ′ (a finite list, by Corollary 3.7).
For 1 ≤ i ≤ n define the ideal ai := p1 · · · pi−1pi+1 · · · pn and choose ai ∈ I so that

ai ∈ aiI and ai 6∈ piI.

Note that aiI ∩ piI ( aiI because vpi(aiI ∩ piI) = vpi(piI) > vpi(I) = vpi(aiI), so such an ai
exists. Each ai is necessarily nonzero, and satisfies vpi(ai) = vpi(I) since

vpi(ai) ≥ vpi(aiI) = vpi(I) and vpi(ai) < vpi(piI) = vpi(I) + 1,

and for j 6= i we have vpj (ai) ≥ vpj (pjI) > vpj (I). We now define a := a1 + · · · + an, so
that vpi(a) = vpi(ai) = vpi(I) for 1 ≤ i ≤ n (by the nonarchimedean triangle equality; see
Problem Set 1). We thus have vp(a) = vp(I) for all prime ideals p|I ′.

Now (a) is contained in I and therefore divisible by I (since A is a Dedekind domain),
so (a) = IJ for some ideal J . For each prime ideal p|I ′ we have vp(J) = vp(a)− vp(I) = 0,
so J is coprime to I ′, and IJ = (a) is principal as desired.

2It may seem strange at first glance that the greatest common divisor of I and J is the smallest ideal
dividing I and J , but note that if A = Z then gcd((a), (b)) = (gcd(a, b)) for any a, b ∈ Z, so the terminology
is consistent (note that bigger numbers generate smaller ideals).
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One can show that every integral domain satisfying Lemma 3.16 is a Dedekind domain
(see Problem Set 2).

Corollary 3.17 (Finite approximation). Let I be a nonzero fractional ideal in a Dedekind
domain A and let p1, . . . , pn be a finite set of nonzero prime ideals of A. Then I contains
an element x for which vpi(x) = vpi(I) for 1 ≤ i ≤ n.

Proof. Let I = 1
sJ with s ∈ A and J an ideal. As in the proof of Lemma 3.16, we can

pick a ∈ J so that vpi(a) = vpi(J) for 1 ≤ i ≤ n. If we now let x = a/s then we have
vpi(x) = vpi(a)− vpi(s) = vpi(J)− vpi(s) = vpi(I) for 1 ≤ i ≤ n as desired.

Corollary 3.18. Let I be a nonzero ideal in a Dedekind domain A. The quotient ring A/I
is a principal ideal ring (every ideal in A/I is principal).

Proof. Let ϕ : A → A/I be the quotient map, let J̄ be an (A/I)-ideal and let J := ϕ−1(J)
be its inverse image in A; then I ⊆ J , and J̄ ' J/I as (A/I)-modules. By Corollary 3.17 we
may choose a ∈ J so that vp(a) = vp(J) for all nonzero prime ideals p|I. For every nonzero
prime ideal p we then have vp(J) ≤ vp(I) and

vp((a) + I) =

{
min(vp(a), vp(I)) = vp(a) = vp(J) if p|I,
min(vp(a), vp(I)) = vp(I) = 0 = vp(J) if p - I,

so (a) + I = J (here we are using unique factorization of ideals; in a Dedekind domain two
ideals with the same valuation at every nonzero prime ideal must be equal). If follows that
J̄ ' J/I = ((a) + I)/I = ϕ((a)) = (ϕ(a)) is principal.

The converse of Corollary 3.18 also holds; an integral domain whose quotients by nonzero
ideals are principal ideal rings is a Dedekind domain (see Problem Set 2).

Definition 3.19. A ring that has only finitely many maximal ideals is called semilocal.

Example 3.20. The ring Z(3) ∩ Z(5) is semilocal, it has just two maximal ideals.

Corollary 3.21. Every semilocal Dedekind domain is a principal ideal domain.

Proof. If we let I ′ be the product of all the prime ideals in A and apply Lemma 3.16 to any
ideal I we will necessarily have J = A and IJ = I principal.

Theorem 3.22. Let I be a nonzero ideal in a Dedekind domain A and let a ∈ I be nonzero.
Then I = (a, b) for some b ∈ I.

Proof. We have (a) ⊆ I, so I divides (a) and we have II ′ = (a) for some nonzero ideal I ′.
By Lemma 3.16 there is an ideal J coprime to I ′ such that IJ is principal, so IJ = (b) for
some b ∈ I. We have gcd((a), (b)) = gcd(II ′, IJ) = I, since gcd(I ′, J) = (1), and it follows
that I = (a, b).

Theorem 3.22 gives us a convenient way to represent ideals I in the ring of integers of a
global field. We can always pick a ∈ Z or a ∈ Fq[t]; we will see in later lectures that there is
a natural choice for a (the absolute norm of I). It also gives us yet another characterization
of Dedekind domains: they are precisely the integral domains for which Theorem 3.22 holds.

We end this section with a theorem that summarizes the various equivalent definitions
of a Dedekind domain that we have seen.
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Theorem 3.23. Let A be an integral domain. The following are equivalent:

• A is an integrally closed noetherian domain of dimension at most one.

• A is noetherian and its localizations at nonzero prime ideals are DVRs.

• Every nonzero ideal in A is invertible.

• Every nonzero ideal in A is a (finite) product of prime ideals.

• A is noetherian and “to contain is to divide" holds for ideals in A.

• For every ideal I in A there is an ideal J in A such that IJ is principal.

• Every quotient of A by a nonzero ideal is a principal ideal ring.

• For every nonzero ideal I in A and nonzero a ∈ I we have I = (a, b) for some b ∈ I.

Proof. See Problem Set 2.
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