18.785 Number theory I Fall 2021
Lecture #24 bonus lecture

24 Artin reciprocity in the unramified case

Let L/K be an abelian extension of number fields. In Lecture 22 we defined the norm
group TE‘/K = N/ (IT)R% (see Definition 22.27) that we claim is equal to the kernel of

the Artin map o7 K I — Gal(L/K), provided that the modulus m is divisible by the
conductor of L (see Definition 22.24). In Theorem 22.29 we proved the inequality

Zr: Tryk] < [L: K] = [Tk : ker¢p ] (1)

(the equality follows from the surjectivity of the Artin map proved in Theorem 21.19). We
now want to prove the reverse inequality

R Try] = [L: K]. (2)

Which will show that the subgroups TE/ i and ker 7' e have the same index in Z. One

can then apply an argument due to Artin (see |2, V.5.6]) to show that these equal index
subgroups are in fact equal, yielding isomorphisms

IR /TP e 5 T ke s — Gal(L/K). (3)

This result is known as the Artin reciprocity law. Note that Tin/ o contains R, so I/ TE‘/ %
is a quotient of the ray class group Cl := I} /R, thus the Artin reciprocity law implies
that for every finite abelian extension L/K, the Galois group Gal(L/K) is isomorphic to a
quotient of Cl, for any modulus m divisible by the conductor of L. Moreover, it tells us
exactly which quotient: the one induced by the image of the norm map ZI7* — Zg¢

In this lecture we will prove (2) for cyclic extensions L/K when the modulus m is trivial
(which forces L/K to be unramified).

24.1 Some cohomological calculations

If L/K is a finite Galois extension of global fields with Galois group G, then we can naturally
view any of the abelian groups L, L*, Or, Of, Ir,, Pr, as G-modules.

When G = (o) is cyclic we can compute the Tate cohomology groups of any of these
G-modules A, and their associated Herbrand quotients h(A). The Herbrand quotient is
defined as the ratio of the cardinalities of

ﬁO(A) = ﬁO(G,A) = coker N = AG/imNG = M’
ﬁO(A) = ﬁo(G,A) = ker N = AG[NG] — (014_[%’

if both are finite. We can also compute Ho(A) = H™1(A) ~ H'(A) = H'(A) as 1-cocycles
modulo 1-coboundaries whenever it is convenient to do so. In the interest of simplifying the
notation we omit G from our notation whenever it is clear from context.

For the multiplicative groups Of,L*,Zy,Pr, the norm element Ng = > . | o' corre-
sponds to the action of the field norm Ny /i and ideal norm Ny that we have previously
defined, provided that we identify the codomain of the norm map with a subgroup of its
domain. For the groups L* and O this simply means identifying K * and O as subgroups
via inclusion. For the ideal group Zx we have a natural extension map Zx — Zj, defined by
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I — IOy, that restricts to a map Px < Pr." Under this convention taking the norm of an
element of Z, that is (the extension of) an element of Zy corresponds to the map I~ I#C,
as it should, and Zx is a subgroup of the G-invariants IE.Q

When A is multiplicative, the action of 0 —1 ona € Ais (0 — 1)(a) = o(a)/a, but we
will continue to use the notation (o — 1)(A) and Ao — 1] to denote the image and kernel of
this action. Conversely, when A is additive, the action of Ng corresponds to the trace map,
not the norm map. In order to lighten the notation, in this lecture we use N to denote both
the (relative) field norm Ny /i and the ideal norm Ny k.

Theorem 24.1. Let L/K be a cyclic Galois extension with Galois group G = Gal(L/K).
(i) H(L) and Hy(L) are both trivial.
(i) HY(L*) ~ K*/N(L*) and Ho(L*) is trivial.

Proof. (i) The trace map from L to K is not identically zero (by Theorem 5.20, since L/K
is separable), so it must be surjective, since it is a K-linear transformation whose codomain
has dimension 1. Thus Ng(L) = T(L) = K and H°(L) = LY /Ng(L) = K/K is trivial. By
the normal basis theorem, we can fix v € L so that (y,0(y),...,0" 1(y)) is a K-basis for
L ~ K™ on which ¢ acts on vectors in K™ as a cyclic shift. For any a € K™ with trace zero,
we may define b € K" by b; = — 3, a; so that 0(b)—b = (by—b1,b1—b2, ..., bp—1-b,) = a.
It follows that L[Ng] = (o — 1)(L) and Hy(L) is trivial.

(ii) We have HO(L*) = (L*)° /Ng(L*) = K*/N(L*). The argument that Hy(L*) is
trivial is as in (i): given a € K™ with norm one we define b € K™ by b; = ([[;; a;)~! so
that o(b)/b = a. It follows that L*[Ng] = (o — 1)(L*) and Ho(L*) is trivial. O

Remark 24.2. If one replaces Hy with H! in Theorem 24.1 (note that Hy = H' in the
cyclic case by Theorem 23.37) the result holds for arbitrary Galois extensions, as shown by
Noether [4], but the proof then involves showing that every 1-cocycle is a 1-coboundary.

Corollary 24.3 (HILBERT THEOREM 90). Let L/K be a finite cyclic extension with Galois
group Gal(L/K) = (o). Then N(a) =1 if and only if o = B/o(B) for some g € L*.

Our next goal is to compute the Herbrand quotient of O (in the case that L/K is a
finite cyclic extension of number fields). For this we will apply a variant of Dirichlet’s unit
theorem due to Herbrand, but first we need to discuss infinite places of number fields.

If L/K is a Galois extension of global fields, the Galois group Gal(L/K) acts on the set
of places w of L via the action w — o(w), where o(w) is the equivalence class of the absolute
value defined by [|a[s () = [[o()|[w. This action permutes the places w lying above a given
place v of K; if v is a finite place corresponding to a prime p of K, this is just the usual
action of the Galois group on the set {q|p}.

Definition 24.4. Let L/K be a Galois extension of global fields and let w be a place of L.
The decomposition group of w is its stabilizer in Gal(L/K):

D,, ={0 € Gal(L/K) : o(w) = w}.

If w corresponds to a prime q of O, then D,, = Dy is also the decomposition group of .

'The induced map Clxg — Clz, need not be injective; extensions of non-principal ideals may be principal.
Indeed, when L is the Hilbert class field every Ox-ideal extends to a principal Or-ideal; this was conjectured
by Hilbert and took over 30 years to prove. You will get a chance to prove it on Problem Set 10.

2Note that Z¢ = Tx only when L/K is unramified; see Lemma 24.9 below.
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Now let L/K be a Galois extension of number fields. If we write L ~ Q[z]/(f) then we
have a one-to-one correspondence between embeddings of L into C and roots of f in C. Each
embedding of L into C restricts to an embedding of K into C, and this induces a map that
sends each infinite place w of L to the infinite place v of K that w extends. This map may
send a complex place to a real place; this occurs when a pair of distinct complex conjugate
embeddings of L restrict to the same embedding of K (which must be a real embedding).
In this case we say that the place v (and w) is ramified in the extension L/K, and define
the ramification index e, = 2 when this holds (and put e, := 1 otherwise). This notation
is consistent with our notation e, := ¢, for finite places v corresponding to primes p of K.
Let us also define f, = 1 for v|oo and put g, := #{w|v} so that the following formula
generalizing Corollary 7.5 holds for all places v of K:

evfogo = [L : K].

Definition 24.5. For a Galois extension of number fields L/K we define the integers

eo(L/K) = H €y, eco(L/K) = H €y, e(L/K) =eo(L/K)ex(L/K).

vfoo v|oo

Let us now write L ~ K[z]/(g). Each embedding of K into C gives rise to [L : K] distinct
embeddings of L into C that extend it, one for each root of g (use the embedding of K to view
g as a polynomial in C[z], then pick a root of g in C). The transitive action of Gal(L/K)
on the roots of g induces a transitive action on these embeddings and their corresponding
places. Thus for each infinite place v of K the Galois group acts transitively on {w|v}, and
either every place w above v is ramified (this can occur only when v is real and [L : K] is
divisible by 2), or none are. It follows that each unramified place v of K has [L : K] places
w lying above it, each with trivial decomposition group D,,, while each ramified (real) place
v of K has [L : K]/2 (complex) places w lying above it, each with decomposition group D,,
of order 2 (its non-trivial element corresponds to complex conjugation in the corresponding
embeddings), and the D,, are all conjugate.

Theorem 24.6 (HERBRAND UNIT THEOREM). Let L/K be a Galois extension of number
fields. Let wy,...wy4s be the archimedean places of L, where r and s are the number of real
and complez places of L, respectively. There exist units €1,...,Ep1s € (’)Z such that

(i) o(ei) = ¢j if and only if o(w;) = wj, for all 0 € Gal(L/K);
(ii) The set {e1,...,er+5} generates a finite index subgroup of OF ;
(iii) [[;& =1, and every relation among the €; is a multiple of this one.

Proof. The theorem holds with e = 1if r4+s = 1 so assume r+s > 1. Pick uy, ..., u,45 € (’)z
such that [|u;l|.,, <1 for i # j and |lug||w, > 1. Such u; may be constructed as in the proof
of Dirichlet’s unit theorem: fix B > (2)*,/|Dy|, fix generators 7, for the principal Oy, ideals
of absolute norm at most B, let M = (r + s) max;; |k |lw;, define an Arakelov divisor ¢
of size B with ¢, = 1 for v f 0o and ¢,; = 1/M for j # i, use Proposition 15.9 to obtain
a; € Op with ||aillw; < 1/M for j # i and N(a;) < B, and take u; = a;/y € O, where v is
our chosen generator for (a;).
Now let «v; == HaeDwi o(u;) € OF. We have

laillo, = T llo@ilw, = T luilowy= T luille, > 1.

O'GDwi UEDwi O'GDwi
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and for j # i we have

loillo, = T loCallo, = T luilloq, <1,

O'GDU,,L. chDwi

since o € D, fixes w; and permutes the w; with j # ¢; note that «; is fixed by o € D,,.
The Galois group G := Gal(L/K) partitions the w; into m orbits, where m is the number
of archimedean place of v. Let us index the w; and «a; so that wq,...,w,, lie in distinct
orbits. We then have w; = o;(w;(;)) for a unique i(j) < m, with o; in a unique coset of
Dy, ;)5 let us fix a choice of o} € 0jDw,;)- We now define 8; = 0j(a;(;)); the value of B;
does not depend on our choice of o; because «; is fixed by D,,. The f; satisfy (i), and
Lemma 24.7 below implies that they also satisfy (ii), since they are a permutation of the «;.

We must have [], 8] = 1 for some tuple (ni,...,np4s) € Z'%, since Of has rank
r + s — 1. The set of all such tuples spans a rank-1 submodule of Z""* from which we may
choose a generator (ni,...,n,ys). If now put ; .= 3" then the ¢; satisfy (iii). The ¢; also

satisfy (ii), since the ¢; generate a finite index subgroup of the group generated by the f;.
We must have n; = n; whenever w; and w; lie in the same Galois orbit (otherwise applying
some o € G to [[; 8;" = 1 would yield a relation that is not a multiple of the one we have).
It follows that the ¢; satify (i), since the 5; do. O

Lemma 24.7. Let K be a number field with archimedean places v1i,...,Vr4s. Any units
ut, ... upys € OF that satisfy ||uille; <1 for j #i generate a finite index subgroup of Oj.

Proof. Recall Log: Ky — R""* given by (ay) — (log ||awll») from the proof of Dirichlet’s
Unit Theorem (see Proposition 15.11). The restriction to O € K* < Kp has finite kernel,
so it suffices to to show Log({u;}) generates a finite index subgroup of Log(O}) ~ Z™+5~1.

Let e; = (€1, €2, -, €i(rts)) = Log(u;). It suffices to show that e1,...,e,45-1 are R-
linearly independent; they then span a free Z-module of rank r+s—1 in Log(O}) ~ Z"+51,
which must have finite index. Consider the (r+s—1) x (r+s—1) matrix M = (e;;). It has
positive diagonal entries, negative nondiagonal entries, and positive row sums (Zgif e;j =0
and €14 < 0 imply Z;Z‘;_l e;j > 0). Suppose that Mz = 0 has a nonzero solution
with 1 > max; |z;| > 0 (such a solution can be obtained from any nonzero solution by
re-indexing columns and negating z if needed). We have

Zmlj:vj = mii1x1 — Z \m1j|xj > mii1T1 — Z |m1j]:r1 =T Zmlj > 0,
j -

i>1 7>1 j
since Zj mq; > 0, but this contradicts Mx = 0. ]

Theorem 24.8. Let L/ K be an extension of number fields with cyclic Galois group G = (o).
The Herbrand quotient of the G-module OF is

eo(L/K)

MOL) = [L: K]

Proof. Let e1,...,&r45 € O be as in Theorem 24.6, and let A be the subgroup of OF they
generate, viewed as a G-module. By Corollary 23.48, h(A) = h(OJ) if either is defined,
since A has finite index in OF, so we will compute h(A).

For each field embedding ¢: K — C, let Ey be the free Z-module with basis {¢|¢}
consisting of the n := [L : K] embeddings p: L — C with ¢, = ¢, equipped with the
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G-action given by o(p) := @oo. Let v be the infinite place of K corresponding to ¢, and let
A, be the free Z-module with basis {w|v} consisting of places of L that extend v, equipped
with the G-action given by the action of G on {w|v}. Let 7: Ey — A, be the G-module
morphism sending each embedding ¢|¢ to the corresponding place w|v. Let m = #{w|v}
and define 7 := ¢"; then 7 is either trivial or has order 2, and in either case generates the
decomposition group D,, for all w|v (since G is abelian). We have an exact sequence

O—>ker7r—>E¢l>Av—>0,

with kerm = (7 — 1)Ey. If v is unramified then kerm = 0 and h(A,) = h(Ey) = 1, since
E, ~ Z|G] ~ Ind%(Z), by Lemma 23.43. Otherwise, order {w|v} = {wo,...,wnm_1} and
{old} ={¢o0,---,¢n-1} so that w; = {¥;, pm+i}. We then have

kerm = (7‘ — 1)E¢ = Z ai(goi — (Pm—i-i) ta; € 7 s
0<i<m

which is annihilated by Ng, and ker 7[o — 1] = (ker )¢ = 0, since 7 = ¢™ acts as —1, so
h(ker ) = 1. Now (0 — 1)(ker7) = {>_ ai(©; — @mi) : a; € Z with 3" a; = 0 mod 2} has
index 2 in ker 7[Ng] = ker 7, so ho(ker7) = 2 and h(kerw) = 1/2. Corollary 23.41 implies
h(Ay) = h(Eg)/h(kerm) = 2, and in every case we have h(A4,) = e,, where e, € {1,2} is
the ramification index of v.

Now consider the exact sequence of G-modules

0—>Z—>@Avi>A—>1

v|oo

where 1 sends each infinite place wq,...,w,+s of L to the corresponding €1,...,6,05 € A
given by Theorem 24.6. The kernel of ¢ is the trivial G-module (>, w;)Z ~ Z, since we
have (>, w;) = [[,&; = 1 and no other relations among the &;, by Theorem 24.6. We
have h(Z) = #G = [L : K], by Corollary 23.46, and h(€p Ay) = [[h(A4y,) = [[ew, by
Corollary 23.42, so h(A) = exo(L/K)/[L : K]. O

Lemma 24.9. Let L/K be a cyclic extension of global fields with Galois group (o). We have
hg(ZL) =1 and h(IL) = hO(IL) = eo(L/K)[IK : N(IL)]

Proof. Let I € I, and suppose N(I) = Og. For each prime qlp we have N(q) = p/»
(by Theorem 6.10), and N ([, qua) = pfr Zawva) = O equivalently, > qlp val) = 0.
Order {q|p} as q1,...,4qq so that ;41 = o(q;) and q1 = o(qg). Let n; == vy, () and define
mi == ic;n;j and Jy = [[q]"" so that

U(Jp)/Jp = q?rl”g*m1q72n1—m2 - q;”gfl—mg — q7111 . qgg — H qvq(l).
alp

It follows that I = o(J)/J where J =[], Jp, thus I [N¢] = (0 — 1)(Z) and ho(Zp) = 1.
We have I € I¥ < Vg (q) (1) = vq(I) for all primes q € Zy. If we put p := qN O, then
I € ¥ if and only if v4(I) is constant on {q|p} for all primes p € Tx. It follows that Z¢
consists of all products of ideals of the form (pOp)/. Therefore [Z¢ : T| = eg(L/K) and
h(Zp) = h%(Zy) = [Z¢ : N(Z1)] = eo(L/K)[Zk : N(Z.)] as claimed. O
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Recall that for a modulus m of K and an extension of global fields L/K we use Z}' to
denote the group of fractional ideals coprime to mQOyp.

Corollary 24.10. Let L/K be a cyclic extension of global fields and let m be a modulus
for K divisible by all the primes that ramify in L. Then h(I}') = [Z} : N(I})].

Proof. The proof of Lemma 24.9 still applies if we replace 7y, with Z7' and Zx with Zg. [0

Theorem 24.11 (AMBIGUOUS CLASS NUMBER FORMULA). Let L/K be a cyclic extension
of number fields with Galois group G. The G-invariant subgroup of the G-module Cly has
cardinality

e(L/K)#Clk

n(L/K)[L: K]’

where n(L/K) =[O : N(L*)NOf| € Z>1.

#CIF =

Proof. The ideal class group Clz is the quotient of Z; by its subgroup P; of principal
fractional ideals. We thus have a short exact sequence of G-modules

1— P, —I; — Clp — 1.
The corresponding long exact sequence in (standard) cohomology begins
1—PY =1V —Clf — HY (P) — 1,
since HY(Z1) ~ Ho(Zy) is trivial, by Lemma 24.9. Therefore
#CIf = [Zf : PL] ho(PL)- (4)
Using the inclusions P C Pf - If we can rewrite the first factor on the RHS as

¢ e T¢: Pk [T¢ :Ik][Ik : Pr]  eo(L/K)#Clg
P = pa p T O Pe]  [POiPR] (5)

where [Z¢ : Tx] = eo(L/K) follows from the proof of Lemma 24.9.
We now consider the short exact sequence

1—>Of—>LXaH—((>X)

Pr — 1.
The corresponding long exact sequence in cohomology begins

1 — Of — K* — PY — HYOF) — 1 — HY(P) — H*(OF) — H*(L*), (6)
since H (LX) ~ ﬁg(LX) is trivial, by Lemma 24.9. We have K* /O ~ Pk, thus

_(0F) _ h(O]) [L: K]

L (oo}

by Theorem 24.8. Combining this identity with (4) and (5) yields

e(L/K)#Clg  ho(PL)
[L: K] RO(OF)

#CIf = (7)
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We can write the second factor on the RHS using the second part of the long exact sequence
in (6). Recall that H?(e) = H?(e) = H"(e), by Theorem 23.37, thus

H'(Pp) ~ ker(ﬁO(o;> = fIO(LX)) ~ ker(O%/N(OF) = K* /N(L¥)),

s0 ho(Pr) = [0 N N(L*) : N(Of)]. We have h%(Of) = [0F : N(O})], thus

ho(0F)
— 2L = [OF : N(L*)N O] =n(L/K
and plugging this into (7) yields the desired formula. O]

Remark 24.12. If L/K is a quadratic extension then CI¢¥ = Clg[2]. To see this, note
that if Gal(L/K) = (o) has order 2 then Io(I) = N(I) € Pk for all I € Tk, thus [I]7 =
[0(I)] = o([I]) in Clg, and we have o([I]) = [I]”* = [I] if and only if [I] € Clg[2]. This

fact can be used to prove quadratic reciprocity |3, §9].

Remark 24.13. When K = Q and L is an imaginary quadratic field of discriminant D, the
ambiguous class number formula implies that the rank of the 2-Sylow subgroup of the class
group of L is one less than the number of prime divisors of D: we have #CI¢ = eo(L/K)/2,
since #Clg =1 and ex(L/K) = [L: K] =n(L/K) = 2.

24.2 Norm index equality for unramified extensions

We first record an elementary lemma.

Lemma 24.14. Let f : A — C be a homomorphism of abelian groups and let B be a
subgroup of A containing the kernel of f. Then A/B ~ f(A)/f(B).
Proof. Apply the snake lemma to the commutative diagram and consider the cokernels.

ker f —— B~ f(B) —— 0

I

0 ker f < A

In the following theorem it is crucial that the extension L/K is completely unramified,

including at all infinite places of K; to emphasize this, let us say that an extension of number
fields L/ K is totally unramified if e(L/K) = 1.

Theorem 24.15. Let L/K be a totally unramified cyclic extension of number fields. Then
[Zx : N(Z1)Pk] > [L : K].
Proof. We have

. Ik Pkl #Cl
L NTPr] = 02 P Pl ~ IN(TL) P Pr”
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The denominator on the RHS can be rewritten as

[IN(Z1)Pk : Px] = [N(Zr) : N(Z1) N Pk] (2nd isomorphism theorem)
]

[
=[Ir : N1 (Pk) (Lemma 24.14)
= [Zr./Pr : N"'(Pk)/Pz]  (3rd isomorphism theorem)
= [Cly, : ClL[Ng]]
= #Ng/(Cly)

Now h2(Cly) = [CI¥ : Ng(Cly)], and applying Theorem 24.11 yields

#Clg - h°(Cly)  RO(Clp)n(L/K)[L : K]
#Qf e(L/K)

[Zx : N(Zp)Pk] = > [L: K], (8)

since e(L/K) =1, and h%(Cly), n(L/K) > 1. O

The norm index inequality Theorem 22.29 implies that for totally unramified cyclic
extensions of number fields L/K we have the equality

[Zx : N(Z1)Pk| = [L : K],

so we must have n(L/K) =[O : N(L*)NO%] = 1 and h(Clz) = 1, since (8) is an equality
with e(L/K) = 1.

Corollary 24.16. Let L/K be a totally unramified cyclic extension of number fields. Then
#C1Y = #Cl /[L : K] and the Tate cohomology groups of Cly, are all trivial.

Proof. We have n(L/K) = h%(Cly) = e(L/K) = 1, so #CI¢ = #Clg/[L : K] by Theo-
rem 24.11. We also have h(Cly) = hO(ClL)/ho(ClL) = 1, since Cl, is finite, by Lemma 23.43,
s0 ho(Cly) = 1. Thus H°(Cly) and Hy(Cly) are both trivial, and this implies that all the
Tate cohomology groups are trivial, by Theorem 23.37. O

Corollary 24.17. Let L/K be a totally unramified cyclic extension of number fields. Then
every unit in O is the norm of an element of L.

Proof. We have n(L/K) =[O : N(L*)NOg] =1, s0 O = N(L*) N Of. O
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