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10 Extensions of complete DVRs

Recall that in our AKLB setup, A is a Dedekind domain with fraction field K, the field L
is a finite separable extension of K, and B is the integral closure of A in L; as we proved in
Theorem 5.25, this implies that B is also a Dedekind domain (with L as its fraction field),
and we proved in Theorem 9.22 that if A is a complete DVR then B is a DVR. We now
want to show that in this situation B is also complete.

Definition 10.1. Let K be a field with absolute value | | and let V be a K-vector space.
A norm on V is a function ∥ ∥ : V → R≥0 such that

• ∥v∥ = 0 if and only if v = 0.

• ∥λv∥ = |λ| ∥v∥ for all λ ∈ K and v ∈ V .

• ∥v + w∥ ≤ ∥v∥+ ∥w∥ for all v, w ∈ V .

Each norm ∥ ∥ induces a topology on V via the distance metric d(v, w) := ∥v − w∥.

Example 10.2. Let V be a K-vector space with basis (ei), and for v ∈ V let vi ∈ K denote
the coefficient of ei in v =

∑
i viei. The sup-norm ∥v∥∞ := sup{|vi|} is a norm on V (thus

every vector space has at least one norm). If V is also a K-algebra, an absolute value ∥ ∥
on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends the absolute
value on K (fix v ̸= 0 and note that ∥λ∥ ∥v∥ = ∥λv∥ = |λ| ∥v∥ ⇔ ∥λ∥ = |λ|).

Proposition 10.3. Let V be a vector space of finite dimension over a complete field K.
Every norm on V induces the same topology, in which V is a complete metric space.

Proof. See Problem Set 5.

Theorem 10.4. Let A be a complete DVR with fraction field K, maximal ideal p, discrete
valuation vp, and absolute value |x|p := cvp(x), with 0 < c < 1. Let L/K be a finite extension
of degree n. The following hold.

(i) There is a unique absolute value |x| := |NL/K(x)|1/np on L that extends | |p;
(ii) The field L is complete with respect to | |, and its valuation ring {x ∈ L : |x| ≤ 1} is

equal to the integral closure B of A in L;

(iii) If L/K is separable then B is a complete DVR whose maximal ideal q induces

|x| = |x|q := c
1
eq

vq(x),

where eq is the ramification index of q, that is, pB = qeq .

Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!),
for any x ∈ K we have

|x| = |NL/K(x)|1/np = |xn|1/np = |x|p,

so | | extends | |p and is therefore a norm on L. The fact that | |p is nontrivial means that
|x|p ̸= 1 for some x ∈ K×, and |x|a = |x|p = |x| only for a = 1, which implies that | | is the
unique absolute value in its equivalence class extending | |p. Every norm on L induces the
same topology (by Proposition 10.3), so | | is the only absolute value on L that extends | |p.

We now show | | is an absolute value. Clearly |x| = 0⇔ x = 0 and | | is multiplicative;
we only need to check the triangle inequality. It suffices to show |x| ≤ 1⇒ |x+1| ≤ |x|+1,
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since we always have |y+ z| = |z||y/z + 1| and |y|+ |z| = |z|(|y/z|+ 1), and without loss of
generality we assume |y| ≤ |z|. In fact the stronger implication |x| ≤ 1⇒ |x+ 1| ≤ 1 holds:

|x| ≤ 1 ⇐⇒ |NL/K(x)|p ≤ 1 ⇐⇒ NL/K(x) ∈A ⇐⇒ x ∈B ⇐⇒ x+1 ∈B ⇐⇒ |x+1| ≤ 1.

The first biconditional follows from the definition of | |, the second follows from the definition
of | |p, the third is Corollary 9.21, the fourth is obvious, and the fifth follows from the first
three after replacing x with x+ 1. This completes the proof of (i), and also proves (ii).

We now assume L/K is separable. Then B is a DVR, by Theorem 9.22, and it is complete
because it is the valuation ring of L. Let q be the unique maximal ideal of B. The valuation
vq extends vp with index eq, by Theorem 8.20, so vq(x) = eqvp(x) for x ∈ K×. We have
0 < c1/eq < 1, so |x|q := (c1/eq)vq(x) is an absolute value on L induced by vq. To show it
is equal to | |, it suffices to show that it extends | |p, since we already know that | | is the
unique absolute value on L with this property. For x ∈ K× we have

|x|q = c
1
eq

vq(x) = c
1
eq

eqvp(x) = cvp(x) = |x|p,

and the theorem follows.

Remark 10.5. The transitivity of NL/K in towers (Corollary 4.53) implies that we can
uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic
closure K. In fact, this is another form of Hensel’s lemma in the following sense: one can
show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute
value of its fraction field K can be uniquely extended to K; see [4, Theorem 6.6].

Corollary 10.6. Assume AKLB and that A is a complete DVR with maximal ideal p and
let q|p. Then vq(x) =

1
fq
vp(NL/K(x)) for all x ∈ L.

Proof. vp(NL/K(x)) = vp(NL/K((x))) = vp(NL/K(qvq(x))) = vp(p
fqvq(x)) = fqvq(x).

Remark 10.7. One can generalize the notion of a discrete valuation to a valuation, a
surjective homomorphism v : K× → Γ, in which Γ is a (totally) ordered abelian group and
v(x + y) ≥ min(v(x), v(y)); we extend v to K by defining v(0) = ∞ to be strictly greater
than any element of Γ. In the AKLB setup with A a complete DVR, one can then define
a valuation v(x) = 1

eq
vq(x) with image 1

eq
Z that restricts to the discrete valuation vp on K.

The valuation v then extends to a valuation on K with Γ = Q. Some texts take this
approach, but we will generally stick with discrete valuations (so our absolute value on L
restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K,
they extend them with index eq).

Remark 10.8. Recall that a valuation ring is an integral domain A with fraction field K
such that for every x ∈ K× either x ∈ A or x−1 ∈ A (possibly both). As you will show on
Problem Set 6, if A is a valuation ring, then there exists a valuation v : K → Γ ∪ {∞} for
some totally ordered abelian group Γ such that A = {x ∈ K : v(x) ≥ 0} is the valuation
ring of K with respect to this valuation.

10.1 The Dedekind-Kummer theorem in a local setting

Recall that the Dedekind-Kummer theorem (Theorem 6.14) allows us to factor primes in our
AKLB setting by factoring polynomials over the residue field, provided that B is monogenic
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(of the form A[α] for some α ∈ B), or the prime of interest does not contain the conductor.
We now show that in the special case where A and B are DVRs and the residue field
extension is separable, B is always monogenic; this holds, for example, whenever K is a
local field. To prove this, we first recall a form of Nakayama’s lemma.

Lemma 10.9 (Nakayama’s Lemma). Let A be a local ring with maximal ideal p, and
let M be a finitely generated A-module. If the images of x1, . . . , xn ∈M generate M/pM as
an (A/p)-vector space then x1, . . . , xn generate M as an A-module.

Proof. See [1, Corollary 4.8b].

Before proving our theorem on local monogenicity, let us record some corollaries of
Nakayama’s Lemma that will be useful to us later.

Corollary 10.10. Let A be a local noetherian ring with maximal ideal p, let g ∈ A[x] be
monic, and let B := A[x]/(g(x)). Every maximal ideal m of B contains the ideal pB.

Proof. Suppose not. Then m+pB = B for some maximal ideal m of B. The ring B is finitely
generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules
are all finitely generated. Let z1, . . . , zn be A-module generators for m. Every coset of pB
in B can be written as z + pB for some A-linear combination z of z1, . . . , zn, so the images
of z1, . . . , zn generate B/pB as an (A/p)-vector space. By Nakayama’s lemma, z1, . . . , zn
generate B, in which case m = B, a contradiction.

As a corollary, we immediately obtain a local version of the Dedekind-Kummer theorem
that does not require A and B to be Dedekind domains.

Corollary 10.11. Let A be a local noetherian ring with maximal ideal p, let g ∈ A[x] be
a monic polynomial with reduction ḡ ∈ (A/p)[x], and let α be the image of x in the ring
B := A[x]/(g(x)) = A[α]. The maximal ideals of B are (p, gi(α)), where g1, . . . , gm ∈ A[x]
are lifts of the distinct irreducible polynomials ḡi ∈ (A/p)[x] that divide ḡ.

Proof. By Corollary 10.10, the quotient map B → B/pB gives a one-to-one correspondence
between maximal ideals of B and maximal ideals of B/pB, and we have

B

pB
≃ A[x]

(p, g(x))
≃ (A/p)[x]

(ḡ(x))
.

Each maximal ideal of (A/p)[x]/(ḡ(x)) is the reduction of an irreducible divisor of ḡ, hence
one of the ḡi (because (A/p)[x] is a PID). The corollary follows.

Theorem 10.12. Assume AKLB, with A and B DVRs with residue fields k := A/p and
l := B/q. If l/k is separable then B = A[α] for some α ∈ B; if L/K is unramified this holds
for every lift α of any generator ᾱ for l = k(ᾱ).

Proof. Let pB = qe be the factorization of pB and let f = [l : k] be the residue field degree,
so that ef = n := [L : K]. The extension l/k is separable, so we may apply the primitive
element theorem to write l = k(ᾱ0) for some ᾱ0 ∈ l whose minimal polynomial ḡ is separable
of degree equal to f . Let g ∈ A[x] be a monic lift of ḡ, and let α0 be any lift of ᾱ0 to B.
If vq(g(α0)) = 1 then let α := α0. Otherwise, let π0 be any uniformizer for B and let
α := α0 + π0 ∈ B (so α ≡ ᾱ0 mod q), and writing g(x + π0) = g(x) + π0g

′(x) + π2
0h(x) for

some h ∈ A[x] via Lemma 9.11, we have

vq(g(α)) = vq(g(α0 + π0)) = vq(g(α0) + π0g
′(α0) + π2

0h(α0)) = 1,
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so π := g(α) is also a uniformizer for B.
We now claim B = A[α], equivalently, that 1, α, . . . , αn−1 generate B as an A-module.

By Nakayama’s lemma, it suffices to show that the reductions of 1, α, . . . , αn−1 span B/pB
as an k-vector space. We have p = qe, so pB = (πe). We can represent each element of
B/pB as a coset

b+ pB = b0 + b1π + b2π · · ·+ be−1π
e−1 + pB,

where b0, . . . , be−1 are determined up to equivalence modulo πB. Now 1, ᾱ, . . . , ᾱf−1 are a
basis for B/πB = B/q as a k-vector space, and π = g(α), so we can rewrite this as

b+ pB = (a0 + a1α+ · · · af−1α
f−1)

+ (af + af+1α+ · · · a2f−1α
f−1)g(α)

+ · · ·
+ (aef−f+1 + aef−f+2α+ · · · aef−1α

f−1)g(α)e−1 + pB.

Since deg g = f , and n = ef , this expresses b+ pB in the form b′+ pB with b′ in the A-span
of 1, . . . , αn−1. Thus B = A[α].

We now note that if L/K is unramified then l/k is separable (this is part of the definition
of unramified), and e = 1, f = n, in which case there is no need to require g(α) to be a
uniformizer and we can just take α = α0 to be any lift of any ᾱ0 that generates l over k.

In our AKLB setup, if A is a complete DVR with maximal ideal p then B is a complete
DVR with maximal ideal q|p and the formula [L : K] =

∑
q|p eqfq given by Theorem 5.35 has

only one term eqfq. We now simplify matters even further by reducing to the two extreme
cases fq = 1 (a totally ramified extension) and eq = 1 (an unramified extension, provided
that the residue field extension is separable).1

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any
finite unramified extension of L/K of degree n is a corresponding finite separable extension
of residue fields l/k of the same degree n. Given that the extensions L/K and l/k are
finite separable extensions of the same degree, we might wonder how they are related. More
precisely, if we fix K with residue field k, what is the relationship between finite unramified
extensions L/K of degree n and finite separable extensions l/k of degree n? Each L/K
uniquely determines a corresponding l/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K
form a category CunrK whose morphisms are K-algebra homomorphisms, and the finite sepa-
rable extensions l of k form a category Csepk whose morphisms are k-algebra homomorphisms.
These two categories are equivalent.

Theorem 10.13. Let A be a complete DVR with fraction field K and residue field k :=
A/p. The categories CunrK and Csepk are equivalent via the functor F : CunrK → Csepk that sends
each unramified extension L of K to its residue field l, and each K-algebra homomorphism
φ : L1 → L2 to the k-algebra homomorphism φ̄ : l1 → l2 defined by φ̄(ᾱ) := φ(α), where α

1Recall from Definition 5.37 that separability of the residue field extension is part of the definition of an
unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field
extension is automatically separable, but in general it need not be, even when L/K is unramified.
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is any lift of ᾱ ∈ l1 := B1/q1 to B1 and φ(α) is the reduction of φ(α) ∈ B2 to l2 := B2/q2;
here q1, q2 are the maximal ideals of the valuation rings B1, B2 of L1, L2, respectively.

In particular, F gives a bijection between the isomorphism classes in CunrK and Csepk , and
if L1, L2 and have residue fields l1, l2 then F induces a bijection of finite sets

HomK(L1, L2)
∼−→ Homk(l1, l2).

Proof. Let us first verify that F is well-defined. It is clear that it maps finite unramified
extensions L/K to finite separable extensions l/k, but we should check that the map on
morphisms does not depend on the lift α of ᾱ we pick. So let φ : L1 → L2 be a K-algebra
homomorphism, and for ᾱ ∈ l1, let α and α′ be two lifts of ᾱ to B1. Then α − α′ ∈ q1,
and this implies that φ(α − α′) ∈ φ(q1) = φ(B1) ∩ q2 ⊆ q2, and therefore φ(α) = φ(α′).
The identity φ(q1) = φ(B1) ∩ q2 ⊆ q2 follows from the fact that φ restricts to an injective
ring homomorphism B1 → B2 and B2/φ(B1) is a finite extension of DVRs in which q2 lies
over the prime φ(q1) of φ(B1). It’s easy to see that F sends identity morphisms to identity
morphisms and that it is compatible with composition, so we have a well-defined functor.

To show that F is an equivalence of categories we need to prove two things:

• F is essentially surjective: each separable l/k is isomorphic to the residue field of some
unramified L/K

• F is full and faithful: the induced map HomK(L1, L2)→ Homk(l1, l2) is a bijection.

We first show that F is essentially surjective. Given a finite separable extension l/k, we
may apply the primitive element theorem to write

l ≃ k(ᾱ) =
k[x]

(ḡ(x))
,

for some ᾱ ∈ l whose minimal polynomial ḡ ∈ k[x] is necessarily monic, irreducible, separa-
ble, and of degree n := [l : k]. Let g ∈ A[x] be any monic lift of ḡ; then g is also irreducible,
separable, and of degree n. Now let

L :=
K[x]

(g(x))
= K(α),

where α is the image of x in K[x]/g(x). Then L/K is a finite separable extension, and by
Corollary 10.11, (p, g(α)) = (p, 0) = pA[α] is the unique maximal ideal of A[α], since ḡ is
irreducible, and

B

q
≃ A[α]

(p, g(α))
≃ A[x]

(p, g(x))
≃ (A/p)[x]

(ḡ(x))
≃ l,

where B is the valuation ring of L with maximal ideal q. Thus [L :K] = deg g = [l : k] = n,
and it follows that L/K is an unramified extension of degree n = f := [l :k]: the ramification
index of q is necessarily e = n/f = 1, and the extension l/k is separable by assumption (so
in fact B = A[α], by Theorem 10.12).

We now show that the functor F is full and faithful. Given finite unramified extensions
L1, L2 with valuation rings B1, B2 and residue fields l1, l2, we have induced maps

HomK(L1, L2)
∼−→ HomA(B1, B2) −→ Homk(l1, l2).

The first map is given by restriction from L1 to B1, and since tensoring with K gives an
inverse map in the other direction, it is a bijection. We need to show that the same is
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true of the second map, which sends φ : B1 → B2 to the k-homomorphism φ that sends
α ∈ l1 = B1/q1 to the reduction of φ(α) modulo q2, where α is any lift of ᾱ.

As above, use the primitive element theorem to write l1 = k(ᾱ) = k[x]/(ḡ(x)) for some
ᾱ ∈ l1. If we now lift ᾱ to α ∈ B1, we must have L1 = K(α), since [L1 : K] = [l1 : k] is
equal to the degree of the minimal polynomial ḡ of ᾱ which cannot be less than the degree
of the minimal polynomial g of α (both are monic). Moreover, we also have B1 = A[α],
since this is true of the valuation ring of every finite unramified extension in our category.

Each A-algebra homomorphism in

HomA(B1, B2) = HomA

(
A[x]

(g(x))
, B2

)
is uniquely determined by the image of x in B2. This gives a bijection between HomA(B1, B2)
and the roots of g in B2. Similarly, each k-algebra homomorphism in

Homk(l1, l2) = Homk

(
k[x]

(ḡ(x))
, l2

)
is uniquely determined by the image of x in l2, and there is a bijection between Homk(l1, l2)
and the roots of ḡ in l2. Now ḡ is separable, so every root of ḡ in l2 = B2/q2 lifts to a unique
root of g in B2, by Hensel’s Lemma 9.15. Thus the map HomA(B1, B2) −→ Homk(l1, l2)
induced by F is a bijection.

Remark 10.14. In the proof above we actually only used the fact that L1/K is unramified.
The map HomK(L1, L2)→ Homk(l1, l2) is a bijection even if L2/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.13.

Corollary 10.15. Assume AKLB with A a complete DVR with residue field k. Then L/K
is unramified if and only if B = A[α] for some α ∈ L whose minimal polynomial g ∈ A[x]
has separable image ḡ in k[x].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse
direction note that ḡ must be irreducible, since otherwise we could use Hensel’s lemma to
lift a non-trivial factorization of ḡ to a non-trivial factorization of g, so the residue field
extension is separable and has the same degree as L/K, so L/K is unramified.

Corollary 10.16. Let A be a complete DVR with fraction field K and residue field k, and
let ζn be a primitive nth root of unity in some algebraic closure of K, with n prime to the
characteristic of k. The extension K(ζn)/K is unramified.

Proof. The field K(ζn) is the splitting field of f(x) = xn − 1 over K. The image f̄ of f in
k[x] is separable when p ∤ n, since gcd(f̄ , f̄ ′) ̸= 1 only when f̄ ′ = nxn−1 is zero, equivalently,
only when p|n. When f̄ is separable, so are all of its divisors, including the reduction of
the minimal polynomial of ζn, which must be irreducible since otherwise we could obtain a
contradiction by lifting a non-trivial factorization via Hensel’s lemma. It follows that the
residue field of K(ζn) is a separable extension of k, thus K(ζn)/K is unramified.

When the residue field k is finite (always the case if K is a local field), we can give a
precise description of the finite unramified extensions L/K.
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Corollary 10.17. Let A be a complete DVR with fraction field K and finite residue field Fq,
and let L be a degree n extension of K. Then L/K is unramified if and only if L ≃ K(ζqn−1).
When this holds, A[ζqn−1] is the integral closure of A in L and L/K is a Galois extension
with Gal(L/K) ≃ Z/nZ.

Proof. The reverse implication is implied by Corollary 10.16; note that K(ζqn−1) has de-
gree n over K because its residue field is the splitting field of xqn−1− 1 over Fq, which is an
extension of degree n (indeed, one can take this as the definition of Fqn).

Suppose L/K is unramified. Then [l : k] = [L : K] = n and l ≃ Fqn has multiplicative
group cyclic of order qn − 1 generated by some ᾱ. The minimal polynomial ḡ ∈ Fq[x] of ᾱ
divides xqn−1− 1, and since ḡ is irreducible, it is coprime to the quotient (xqn−1− 1)/ḡ. By
Hensel’s Lemma 9.19, we can lift ḡ to a polynomial g ∈ A[x] that divides xq

n−1 − 1 ∈ A[x],
and by Hensel’s Lemma 9.15 we can lift ᾱ to a root α of g, in which case α is also a root of
xq

n−1 − 1; it must be a primitive (qn − 1)-root of unity because its reduction ᾱ is.
Let B be the integral closure of A in L. We have B ≃ A[ζqn−1] by Theorem 10.12, and

L is the splitting field of xqn−1− 1, since its residue field Fqn is (we can lift the factorization
of xq

n−1 − 1 from Fqn to L via Hensel’s lemma). It follows that L/K is Galois, and the
bijection between (qn− 1)-roots of unity in L and Fqn induces an isomorphism Gal(L/K) ≃
Gal(l/k) = Gal(Fqn/Fq) ≃ Z/nZ.

Corollary 10.18. Let A be a complete DVR with fraction field K and finite residue field
of characteristic p, and suppose that K does not contain a primitive pth root of unity. The
extension K(ζm)/K is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.16 implies that K(ζm)/K is unramified. If p
divides m then K(ζm) contains K(ζp), which by Corollary 10.17 is unramified if and only if
K(ζp) ≃ K(ζpn−1) with n := [K(ζp) : K], which occurs if and only if p divides pn − 1 (since
ζp ̸∈ K), which it does not; thus K(ζp) and therefore K(ζm) is ramified when p|m.

Example 10.19. Consider A = Zp, K = Qp, k = Fp, and fix Fp and Qp. For each positive
integer n, the finite field Fp has a unique extension of degree n in Fp, namely, Fpn . Thus
for each positive integer n, the local field Qp has a unique unramified extension of degree n;
it can be explicitly constructed by adjoining a primitive root of unity ζpn−1 to Qp. The
element ζpn−1 will necessarily have minimal polynomial of degree n dividing xp

n−1 − 1.

Another useful consequence of Theorem 10.13 that applies when the residue field is finite
is that the norm map NL/K restricts to a surjective map B× → A× on unit groups; in fact,
this property characterizes unramified extensions.

Theorem 10.20. Assume AKLB with A a complete DVR with finite residue field. Then
L/K is unramified if and only if NL/K(B×) = A×.

Proof. See Problem Set 6.

Definition 10.21. Let L/K be a separable extension. The maximal unramified extension
of K in L is the subfield ⋃

K⊆E⊆L
E/K fin. unram.

E ⊆ L

where the union is over finite unramified subextensions E/K. When L = Ksep is the
separable closure of K, this is the maximal unramified extension of K, denoted Kunr.
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Example 10.22. The field Qunr
p is an infinite extension of Qp with Galois group

Gal(Qunr
p /Qp) ≃ Gal(Fp/Fp) = lim←−

n

Gal(Fpn/Fp) ≃ lim←−
n

Z/nZ =: Ẑ,

where the inverse limit is taken over positive integers n ordered by divisibility. The ring Ẑ
is the profinite completion of Z. The field Qunr

p has value group Z and residue field Fp.

Theorem 10.23. Assume AKLB with A a complete DVR and separable residue field ex-
tension l/k. Let e and f be the ramification index and residue field degrees, respectively, and
let q be the unique prime of B. The following hold:

(i) There is a unique intermediate field extension E/K that contains every unramified
extension of K in L and it has degree [E : K] = f .

(ii) The extension L/E is totally ramified and has degree [L : E] = e.

(iii) If L/K is Galois then Gal(L/K) is the decomposition group of Dq, Gal(L/E) is the
inertia subgroup of Iq, and E/K is Galois with Gal(E/K) ≃ Dq/Iq ≃ Gal(l/k).

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite
separable extension l/k given by Theorem 10.13; then [E : K] = [l : k] = f as desired. The
maximal unramified extension E′ of K in L has the same residue field l as L, which is also
the residue field of E, and equivalence of categories given by Theorem 10.13 implies that
the trivial isomorphism ℓ ≃ ℓ corresponds to an isomorphism E ≃ E′ that allows us to view
E as a subfield of L; the same applies to any unramified extension of K with residue field l,
so E is unique up to isomorphism.

(ii) Let n = [L : K]. Then [L : E] = [L : K]/[E : K] = n/f = ef/f = e.
(iii) We have Dq ⊆ Gal(L/K) of order ef = [L : K], so this inclusion is an equality. If

we put qE := q∩E then Proposition 7.13 implies IqE = Gal(L/E)∩ Iq. These three groups
all have order e and must coincide. The group Iq is a normal in Dq since it is the kernel
of the surjective homomorphism πq : Dq → Gal(l/k)), so E/K is normal, hence Galois (it
must be separable since L/K is), and it follows that Gal(E/K) ≃ Dq/Iq ≃ Gal(l/k).
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