18.785 Number theory I Fall 2021
Lecture #10 10/13/2019

10 Extensions of complete DVRs

Recall that in our AK LB setup, A is a Dedekind domain with fraction field K, the field L
is a finite separable extension of K, and B is the integral closure of A in L; as we proved in
Theorem 5.25, this implies that B is also a Dedekind domain (with L as its fraction field),
and we proved in Theorem 9.22 that if A is a complete DVR then B is a DVR. We now
want to show that in this situation B is also complete.

Definition 10.1. Let K be a field with absolute value | | and let V' be a K-vector space.
A norm on V is a function || || : V' — Rx>¢ such that

e |[v]| =0 if and only if v = 0.
o || M| = |\]||v| for all A € K and v € V.
o |[v+w| < |v| + ||w| for all v,w € V.

Each norm || || induces a topology on V' via the distance metric d(v,w) := [|jv — w||.

Example 10.2. Let V' be a K-vector space with basis (e;), and for v € V' let v; € K denote
the coefficient of e; in v = ), vie;. The sup-norm ||v|| := sup{|v;|} is a norm on V' (thus
every vector space has at least one norm). If V' is also a K-algebra, an absolute value || ||
on V (as aring) is a norm on V' (as a K-vector space) if and only if it extends the absolute
value on K (fix v # 0 and note that | A]| [[v|| = ||| = [A] ||v]] < [|Al] = |A])-

Proposition 10.3. Let V be a vector space of finite dimension over a complete field K.
Every norm on V induces the same topology, in which V' is a complete metric space.

Proof. See Problem Set 5. O

Theorem 10.4. Let A be a complete DVR with fraction field K, mazimal ideal p, discrete
valuation vy, and absolute value |z|y := ¢ with 0 < ¢ < 1. Let L/K be a finite extension
of degree n. The following hold.

(i) There is a unique absolute value |z| := |NL/K(CC)|;/TL on L that extends | |p;

(ii) The field L is complete with respect to | |, and its valuation ring {x € L : |x| < 1} is
equal to the integral closure B of A in L;

(iii) If L/K is separable then B is a complete DVR whose maximal ideal q induces

L a(z)

—
2] = [x]q = coa
where eq is the ramification index of q, that is, pB = q.

Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!),
for any = € K we have

1/n
2| = INL i (@)p/™ = 2" ™ = ||y,

so | | extends | |, and is therefore a norm on L. The fact that | |, is nontrivial means that
|z], # 1 for some € K*, and |z|* = |z|, = |z| only for a = 1, which implies that | | is the
unique absolute value in its equivalence class extending | |,. Every norm on L induces the
same topology (by Proposition 10.3), so | | is the only absolute value on L that extends | |,.

We now show | | is an absolute value. Clearly |z| =0 < 2 = 0 and | | is multiplicative;
we only need to check the triangle inequality. It suffices to show |z| < 1= |z +1| < |z|+1,
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since we always have |y + z| = |z||y/z + 1] and |y| + |2| = |2|(Jy/2| + 1), and without loss of
generality we assume |y| < |z|. In fact the stronger implication |z| < 1= |z + 1| <1 holds:

|z] <1 <= [Np/g(2)lp <1 <= Np)g(r) €A <= 2€B <= 2+1€B < |[r+1| < 1.

The first biconditional follows from the definition of | |, the second follows from the definition
of | |y, the third is Corollary 9.21, the fourth is obvious, and the fifth follows from the first
three after replacing « with « + 1. This completes the proof of (i), and also proves (ii).

We now assume L/ K is separable. Then B is a DVR, by Theorem 9.22, and it is complete
because it is the valuation ring of L. Let q be the unique maximal ideal of B. The valuation
vq extends v, with index eq, by Theorem 8.20, so vy(x) = equp(x) for x € K*. We have
0 < ct/e < 1, s0 |z|q := (c/¢0)"(*) is an absolute value on L induced by vy. To show it
is equal to | |, it suffices to show that it extends | |,, since we already know that | | is the
unique absolute value on L with this property. For x € K* we have

1
equp (T
= ceq? p () _ Cvp(;r) _ |$|pa

! q(if)

|z |q =ca’
and the theorem follows. O

Remark 10.5. The transitivity of Ny g in towers (Corollary 4.53) implies that we can
uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic
closure K. In fact, this is another form of Hensel’s lemma in the following sense: one can
show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute
value of its fraction field K can be uniquely extended to K; see |4, Theorem 6.6].

Corollary 10.6. Assume AKLB and that A is a complete DVR with mazximal ideal p and
let q|p. Then vq(x) = %qvp(NL/K($)) for all x € L.

Proof. vp(Npk(z)) = vp(Np k(€)= vp(Np i (9%0))) = v (ph2a®)) = frvg (). u

Remark 10.7. One can generalize the notion of a discrete valuation to a wvaluation, a
surjective homomorphism v: K* — T, in which I' is a (totally) ordered abelian group and
v(z +y) > min(v(z),v(y)); we extend v to K by defining v(0) = oo to be strictly greater
than any element of I'. In the AKLB setup with A a complete DVR, one can then define

a valuation v(x) = évq(:s) with image éZ that restricts to the discrete valuation v, on K.

The valuation v then extends to a valuation on K with I' = Q. Some texts take this
approach, but we will generally stick with discrete valuations (so our absolute value on L
restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K,
they extend them with index e,).

Remark 10.8. Recall that a valuation ring is an integral domain A with fraction field K
such that for every x € K either x € A or 27! € A (possibly both). As you will show on
Problem Set 6, if A is a valuation ring, then there exists a valuation v: K — I" U {oo} for
some totally ordered abelian group I' such that A = {z € K : v(z) > 0} is the valuation
ring of K with respect to this valuation.

10.1 The Dedekind-Kummer theorem in a local setting

Recall that the Dedekind-Kummer theorem (Theorem 6.14) allows us to factor primes in our
AK LB setting by factoring polynomials over the residue field, provided that B is monogenic
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(of the form Afa] for some o € B), or the prime of interest does not contain the conductor.
We now show that in the special case where A and B are DVRs and the residue field
extension is separable, B is always monogenic; this holds, for example, whenever K is a
local field. To prove this, we first recall a form of Nakayama’s lemma.

Lemma 10.9 (NAKAYAMA’S LEMMA). Let A be a local ring with mazimal ideal p, and
let M be a finitely generated A-module. If the images of x1,...,x, € M generate M /pM as
an (A/p)-vector space then x1,...,x, generate M as an A-module.

Proof. See [1, Corollary 4.8b]. O

Before proving our theorem on local monogenicity, let us record some corollaries of
Nakayama’s Lemma that will be useful to us later.

Corollary 10.10. Let A be a local noetherian ring with mazimal ideal p, let g € Alx] be
monic, and let B == Alz]/(g(z)). Every maximal ideal m of B contains the ideal pB.

Proof. Suppose not. Then m+pB = B for some maximal ideal m of B. The ring B is finitely
generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules

are all finitely generated. Let z1,...,z, be A-module generators for m. Every coset of pB
in B can be written as z + pB for some A-linear combination z of z1,..., z,, so the images
of z1,...,2, generate B/pB as an (A/p)-vector space. By Nakayama’s lemma, z1,..., 2z,
generate B, in which case m = B, a contradiction. O

As a corollary, we immediately obtain a local version of the Dedekind-Kummer theorem
that does not require A and B to be Dedekind domains.

Corollary 10.11. Let A be a local noetherian ring with maximal ideal p, let g € Alx] be
a monic polynomial with reduction g € (A/p)lx], and let « be the image of x in the ring
B = Alz]/(g(x)) = Ala]. The mazimal ideals of B are (p,g;(c)), where gi,...,gm € Alz]
are lifts of the distinct irreducible polynomials g; € (A/p)[x] that divide g.

Proof. By Corollary 10.10, the quotient map B — B/pB gives a one-to-one correspondence
between maximal ideals of B and maximal ideals of B/pB, and we have

B Al (Afp)le]

PB ~ (pg(x) — (g(z)
Each maximal ideal of (A/p)[x]/(g(x)) is the reduction of an irreducible divisor of g, hence
one of the g; (because (A/p)[z] is a PID). The corollary follows. O

Theorem 10.12. Assume AKLB, with A and B DVRs with residue fields k == A/p and
l:=B/q. Ifl/k is separable then B = Ala] for some o € B; if L/K is unramified this holds
for every lift a of any generator & for | = k(@).

Proof. Let pB = q° be the factorization of pB and let f = [l : k] be the residue field degree,
so that ef = n := [L : K|. The extension [/k is separable, so we may apply the primitive
element theorem to write | = k(d&p) for some &y € | whose minimal polynomial g is separable
of degree equal to f. Let g € Alx| be a monic lift of g, and let g be any lift of ag to B.
If vq(g9(ap)) = 1 then let o := ag. Otherwise, let my be any uniformizer for B and let
o= ap+m € B (so a = & mod q), and writing g(x + my) = g(x) + mog'(z) + 73h(x) for
some h € A[z] via Lemma 9.11, we have

vg(g(a)) = vg(g(0 + m0)) = vg(g(0) +mog'(aw) + m5h(a0)) = 1,

18.785 Fall 2021, Lecture #10, Page 3


https://math.mit.edu/classes/18.785/2021fa/LectureNotes9.pdf#theorem.2.11

so 7 = g(«) is also a uniformizer for B.

We now claim B = A[a], equivalently, that 1,c,...,a" ! generate B as an A-module.
By Nakayama’s lemma, it suffices to show that the reductions of 1,q;,...,a" ! span B/pB
as an k-vector space. We have p = ¢, so pB = (7). We can represent each element of
B/pB as a coset

n

b+pB =0by+bim+bow- -+ be_ 171 +pB,

where b, ..., b._1 are determined up to equivalence modulo 7B. Now 1,a,...,a/~! are a

basis for B/mB = B/q as a k-vector space, and m = g(«), so we can rewrite this as

b+pB = (ap+aa+---a; 10/ )
+(af+af+104+"'aszloaf_l)g(a)
+ (Gef—fi1+ Qep—pro0+ - 'aef71ozf71)g(a)6*1 +pB.

Since deg g = f, and n = ef, this expresses b+ pB in the form b’ + pB with ¢’ in the A-span
of 1,...,a" 1. Thus B = Ala].

We now note that if L/ K is unramified then [/k is separable (this is part of the definition
of unramified), and e = 1, f = n, in which case there is no need to require g(a) to be a
uniformizer and we can just take & = ag to be any lift of any &g that generates [ over k. [

In our AK LB setup, if A is a complete DVR with maximal ideal p then B is a complete
DVR with maximal ideal q|p and the formula [L : K] =}, €qfq given by Theorem 5.35 has
only one term eg fy. We now simplify matters even further by reducing to the two extreme
cases fq = 1 (a totally ramified extension) and e; = 1 (an unramified extension, provided
that the residue field extension is separable).!

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any
finite unramified extension of L/K of degree n is a corresponding finite separable extension
of residue fields I/k of the same degree n. Given that the extensions L/K and [/k are
finite separable extensions of the same degree, we might wonder how they are related. More
precisely, if we fix K with residue field k, what is the relationship between finite unramified
extensions L/K of degree n and finite separable extensions [/k of degree n? Each L/K
uniquely determines a corresponding [/k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K
form a category Ci'" whose morphisms are K-algebra homomorphisms, and the finite sepa-
rable extensions [ of k form a category C;** whose morphisms are k-algebra homomorphisms.
These two categories are equivalent.

Theorem 10.13. Let A be a complete DVR with fraction field K and residue field k :=
A/p. The categories C{* and C;* are equivalent via the functor F: C} — C;P that sends
each unramified extension L of K to its residue field I, and each K-algebra homomorphism
w: L1 — Ly to the k-algebra homomorphism @: 1y — lo defined by ¢(@) = ¢(«), where «

'Recall from Definition 5.37 that separability of the residue field extension is part of the definition of an
unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field
extension is automatically separable, but in general it need not be, even when L/K is unramified.
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is any lift of & € l; :== B1/q1 to By and ¢(«) is the reduction of ¢(a) € By to ly := Ba/qa;
here q1,qo are the maximal ideals of the valuation rings By, Bo of L1, La, respectively.

In particular, F gives a bijection between the isomorphism classes in Ci and Czep, and
if L1, Lo and have residue fields l1,ls then F induces a bijection of finite sets

HOH]K(Ll, LQ) ;> Homk(ll, lg).

Proof. Let us first verify that F is well-defined. It is clear that it maps finite unramified
extensions L/K to finite separable extensions [/k, but we should check that the map on
morphisms does not depend on the lift a of & we pick. So let ¢: Ly — Lo be a K-algebra
homomorphism, and for & € Iy, let a and o’ be two lifts of @ to B;. Then a — o’ € q1,
and this implies that o(a — /) € ¢(q1) = ©(B1) N g2 C g2, and therefore p(a) = p(o/).
The identity ¢(q1) = ¢(B1) N g2 C qo follows from the fact that ¢ restricts to an injective
ring homomorphism By — By and By/¢(B1) is a finite extension of DVRs in which qq lies
over the prime ¢(q1) of p(B1). It’s easy to see that F sends identity morphisms to identity
morphisms and that it is compatible with composition, so we have a well-defined functor.

To show that F is an equivalence of categories we need to prove two things:

e F is essentially surjective: each separable [/k is isomorphic to the residue field of some
unramified L/K

e F is full and faithful: the induced map Hompg (L1, Lo) — Homg(l1,12) is a bijection.

We first show that F is essentially surjective. Given a finite separable extension [/k, we
may apply the primitive element theorem to write

l~k(a)=

for some @ € | whose minimal polynomial g € k[x] is necessarily monic, irreducible, separa-
ble, and of degree n := [l : k]. Let g € A[x] be any monic lift of g; then g is also irreducible,
separable, and of degree n. Now let

where « is the image of x in K[z]/g(x). Then L/K is a finite separable extension, and by
Corollary 10.11, (p,g(a)) = (p,0) = pA[a] is the unique maximal ideal of A[a], since g is
irreducible, and
B _Ale] Al (A/p)l]
a  (pgla))  (p,g(x)  (g(2))

where B is the valuation ring of L with maximal ideal q. Thus [L: K| =degg = [l : k] = n,
and it follows that L/K is an unramified extension of degree n = f := [I:k]: the ramification
index of q is necessarily e = n/f = 1, and the extension [/k is separable by assumption (so
in fact B = Ala], by Theorem 10.12).

We now show that the functor F is full and faithful. Given finite unramified extensions
L1, Lo with valuation rings Bi, Bo and residue fields Iy, l2, we have induced maps

~,

HOIDK(Ll, LQ) L) HOHlA(Bl, BQ) — Homk(ll, lg)

The first map is given by restriction from L; to Bj, and since tensoring with K gives an
inverse map in the other direction, it is a bijection. We need to show that the same is
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true of the second map, which sends ¢: By — By to the k-homomorphism  that sends
@ € l; = B1/q1 to the reduction of ¢(«) modulo g2, where « is any lift of a.

As above, use the primitive element theorem to write Iy = k(@) = k[z]/(g(x)) for some
a € l1. If we now lift @ to @ € Bj, we must have L1 = K(«), since [L; : K] = [l1 : k] is
equal to the degree of the minimal polynomial g of & which cannot be less than the degree
of the minimal polynomial g of o (both are monic). Moreover, we also have By = Alq],
since this is true of the valuation ring of every finite unramified extension in our category.

Each A-algebra homomorphism in

Homa(B1, By) = Homa (@4([3)’32)

is uniquely determined by the image of x in By. This gives a bijection between Hom 4 (B, B2)
and the roots of g in Bsy. Similarly, each k-algebra homomorphism in

k[z]
Homk(ll, lg) = Homk <, lg)
(9(x))
is uniquely determined by the image of x in Iy, and there is a bijection between Homy (11, l2)
and the roots of g in ls. Now g is separable, so every root of g in ls = Bs/q2 lifts to a unique
root of g in By, by Hensel’s Lemma 9.15. Thus the map Hom (B, B2) — Homg/(l1,l2)
induced by F is a bijection. O

Remark 10.14. In the proof above we actually only used the fact that L; /K is unramified.
The map Homg (L1, La) — Homyg(l1,12) is a bijection even if Ly/K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.13.

Corollary 10.15. Assume AKLB with A a complete DVR with residue field k. Then L/K
is unramified if and only if B = Ala] for some o € L whose minimal polynomial g € Alz]
has separable image g in k|x].

Proof. The forward direction was proved in the proof of the theorem, and for the reverse
direction note that g must be irreducible, since otherwise we could use Hensel’s lemma to
lift a non-trivial factorization of g to a non-trivial factorization of g, so the residue field
extension is separable and has the same degree as L/K, so L/K is unramified. O

Corollary 10.16. Let A be a complete DVR with fraction field K and residue field k, and
let (, be a primitive nth root of unity in some algebraic closure of K, with n prime to the
characteristic of k. The extension K((,)/K is unramified.

Proof. The field K((,) is the splitting field of f(z) = 2™ — 1 over K. The image f of f in
k[z] is separable when p { n, since ged(f, f') # 1 only when f’ = nz"~! is zero, equivalently,
only when p|n. When f is separable, so are all of its divisors, including the reduction of
the minimal polynomial of (,, which must be irreducible since otherwise we could obtain a
contradiction by lifting a non-trivial factorization via Hensel’s lemma. It follows that the
residue field of K((,) is a separable extension of k, thus K((,)/K is unramified. O

When the residue field k is finite (always the case if K is a local field), we can give a
precise description of the finite unramified extensions L/K.
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Corollary 10.17. Let A be a complete DVR with fraction field K and finite residue field Fy,
and let L be a degree n extension of K. Then L/K is unramified if and only if L ~ K ((gn_1).
When this holds, A[(4qn—1] is the integral closure of A in L and L/K is a Galois extension
with Gal(L/K) ~ Z/nZ.

Proof. The reverse implication is implied by Corollary 10.16; note that K((;»—1) has de-
gree n over K because its residue field is the splitting field of 24" 1 — 1 over [F,, which is an
extension of degree n (indeed, one can take this as the definition of Fyn).

Suppose L/K is unramified. Then [l : k] = [L : K] = n and [ ~ F;» has multiplicative
group cyclic of order ¢" — 1 generated by some @. The minimal polynomial g € F[z] of &
divides 29"~ — 1, and since g is irreducible, it is coprime to the quotient (z4"~! —1)/g. By
Hensel’s Lemma 9.19, we can lift g to a polynomial g € A[z] that divides 24"~ — 1 € A[z],
and by Hensel’s Lemma 9.15 we can lift & to a root « of g, in which case « is also a root of
27"~ — 1; it must be a primitive (¢" — 1)-root of unity because its reduction & is.

Let B be the integral closure of A in L. We have B ~ A[(4n_1] by Theorem 10.12, and
L is the splitting field of 29"~ — 1, since its residue field Fyn is (we can lift the factorization
of #7"71 — 1 from Fyn to L via Hensel’s lemma). It follows that L/K is Galois, and the
bijection between (¢" — 1)-roots of unity in L and Fgn» induces an isomorphism Gal(L/K') ~
Gal(l/k) = Gal(Fgn /Fy) >~ Z/nZ. O

Corollary 10.18. Let A be a complete DVR with fraction field K and finite residue field
of characteristic p, and suppose that K does not contain a primitive pth root of unity. The
extension K((p)/K is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.16 implies that K ((,,)/K is unramified. If p
divides m then K ((,) contains K ((p), which by Corollary 10.17 is unramified if and only if
K(¢p) ~ K((yn—1) with n == [K((p) : K], which occurs if and only if p divides p™ — 1 (since
(p ¢ K), which it does not; thus K((,) and therefore K ((;,) is ramified when p|m. O

Example 10.19. Consider A = Z,, K = Q,, k =T, and fix E, and @p. For each positive
integer n, the finite field F, has a unique extension of degree n in F,, namely, F,n. Thus
for each positive integer n, the local field Q, has a unique unramified extension of degree n;
it can be explicitly constructed by adjoining a primitive root of unity (,n_1 to Q,. The
element (pn»_1 will necessarily have minimal polynomial of degree n dividing Pl -1,

Another useful consequence of Theorem 10.13 that applies when the residue field is finite
is that the norm map Ny, restricts to a surjective map B> — A on unit groups; in fact,
this property characterizes unramified extensions.

Theorem 10.20. Assume AKLB with A a complete DVR with finite residue field. Then
L/K is unramified if and only if Ny i (B*) = A*.

Proof. See Problem Set 6. O

Definition 10.21. Let L/K be a separable extension. The mazimal unramified extension
of K in L is the subfield
U EcL

KCECL
E/K fin. unram.

where the union is over finite unramified subextensions E/K. When L = K*P is the
separable closure of K, this is the mazimal unramified extension of K, denoted KT,
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Example 10.22. The field Q)™ is an infinite extension of Q, with Galois group

Gal(Qy™/Qp) = Gal(F,/Fy) = lim Gal(Fyn /F,) =~ lim Z/nZ =: Z,

n

where the inverse limit is taken over positive integers n ordered by divisibility. The ring 7
is the profinite completion of Z. The field Q)™ has value group Z and residue field F).

Theorem 10.23. Assume AKLB with A a complete DVR and separable residue field ex-
tension l/k. Let e and f be the ramification index and residue field degrees, respectively, and
let q be the unique prime of B. The following hold:

(1) There is a unique intermediate field extension E/K that contains every unramified
extension of K in L and it has degree [E : K] = f.

(ii) The extension L/E is totally ramified and has degree [L : E] = e.

(ili) If L/K is Galois then Gal(L/K) is the decomposition group of Dq, Gal(L/E) is the
inertia subgroup of I, and E/K is Galois with Gal(E/K) ~ Dq /14 ~ Gal(l/k).

Proof. (i) Let E/K be the finite unramified extension of K in L corresponding to the finite
separable extension [/k given by Theorem 10.13; then [E : K] = [l : k] = f as desired. The
maximal unramified extension £’ of K in L has the same residue field [ as L, which is also
the residue field of F, and equivalence of categories given by Theorem 10.13 implies that
the trivial isomorphism ¢ ~ ¢ corresponds to an isomorphism F ~ E’ that allows us to view
E as a subfield of L; the same applies to any unramified extension of K with residue field [,
so F is unique up to isomorphism.

(ii) Let n=[L: K]. Then [L: E]=[L: K]/[E:K|=n/f=c¢f/f=ce.

(ili) We have Dy C Gal(L/K) of order ef = [L : K], so this inclusion is an equality. If
we put qg := q N E then Proposition 7.13 implies I, = Gal(L/E) N I,. These three groups
all have order e and must coincide. The group I; is a normal in Dy since it is the kernel
of the surjective homomorphism m,: Dy — Gal(l/k)), so E/K is normal, hence Galois (it
must be separable since L/K is), and it follows that Gal(E/K) ~ Dy/I; ~ Gal(l/k). O
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