
18.785 Number Theory Fall 2019

Problem Set #9 Due: 11/20/2019

Description

These problems are related to the material covered in Lectures 16–18. Your solutions are
to be written up in latex (you can use the latex source for the problem set as a template)
and submitted as a pdf-file with a filename of the form SurnamePset9.pdf via e-mail
to drew@math.mit.edu by noon on the date due. Collaboration is permitted/en-
couraged, but you must identify your collaborators, and any references you consulted.
If there are none, write “Sources consulted: none” at the top of your problem set.
The first person to spot each non-trivial typo/error in any of the problem sets or lecture
notes will receive 1-5 points of extra credit.

Instructions: First do the warm up problems, then pick two of problems 1–5 to solve
and write up your answers in latex, then complete the survey problem 6.

Problem 0.

These are warm up problems that do not need to be turned in.

(a) Show π(x) :=
∑

p≤x 1 =
∫∞
2−(1/ log t)dϑ(t) and ϑ(x) :=

∑
p≤x log p =

∫∞
2− log tdπ(t),

and use these identities to prove

ϑ(x) = π(x) log x−
∫ x

2

π(t)

t
dt, π(x) =

ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt,

which provides an alternative proof that π(x) ∼ x/ log x if and only if ϑ(x) ∼ x.

(b) Let χ be a primitive Dirichlet character of conductor m > 1. Verify the identity

∑
n≥1

χ(n)xn =
1

1− xm
m−1∑
n=1

χ(n)xn

and use this to prove that Γ(s)L(s, χ) extends to a holomorphic function on C.
Conclude that L(s, χ) has an analytic continuation to C.

Problem 1. Mertens’ Theorems (49 points)

In his 1874 paper Mertens’ proved three asymptotic bounds on sums over primes; he
necessarily did not rely on the Prime Number Theorem, which wasn’t proved until 1896.

Define the constants

α := −
∑
n≥2

µ(n)

n
log ζ(n) ≈ 0.315718, γ := lim

x→∞

 ∑
1≤n≤x

1

n
− log x

 ≈ 0.577216,

where µ(n) is the Möbius function from Problem Set 8:

µ(n) :=

{
(−1)#{p|n} if n ≥ 1 is square free;

0 otherwise.
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Let Λ(n) denote the von Mangoldt function:

Λ(n) :=

{
log p if n > 1 is a power of a prime p;

0 otherwise.

Theorem (Mertens). As x→∞ we have the following asymptotic bounds:

(1)
∑
p≤x

log p
p = log x+O(1);

(2)
∑
p≤x

1
p = log log x+ γ − α+O

(
1

log x

)
;

(3)
∑
p≤x

log
(

1− 1
p

)
= −log log x− γ +O

(
1

log x

)
.

Remark. Mertens showed that the O(1) term in (1) has absolute value bounded by 2,

but we will not need this. One often sees (3) written as
∏
p≤x(1− 1

p) = e−γ+o(1)
log x but our

version is a slightly sharper statement that reflects what Mertens actually proved.

(a) Show that log(n) =
∑

d|n Λ(d) and derive the bounds

∑
n≤x

log n =
∑
d≤x

Λ(d)bxdc and
∑
d≤x

Λ(d)

d
= log x+O(1).

Use these bounds and Stirling’s formula to prove (1).

(b) Let A(x) denote the sum in (1). Prove that∑
p≤x

1

p
=
A(x)

log x
+

∫ x

2

A(t)

t(log t)2
dt = log log x+ c+O

(
1

log x

)
,

for some constant c.

(c) Prove that for Re(s) > 1 we have

1

s
log ζ(s) =

∫ ∞
2

π(t) dt

t(ts − 1)
,

and for t > 1 we have
1

t2(t− 1)
= −

∑
n≥2

µ(n)

t(tn − 1)
.

(d) Prove that ∑
n≥2

∑
p

1

npn
=

∫ ∞
2

π(t) dt

t2(t− 1)
= α

and deduce that (2) and (3) are equivalent.

Remark. Parts (b) and (d) imply that (3) holds if we replace γ with c′ = c + α.
Problem 2 gives a proof that in fact c′ = γ, so both (2) and (3) hold.
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(e) Let P (x) :=
∑

p≤x
1
p = log log x+ c+ ε(x) with ε(x) = O

(
1

log x

)
as in (b). Show that

π(x) =

∫ x

2−
t dP (t) = O

( x

log x

)
,

and that with the error bound ε(x) = o
(

1
log x

)
one obtains π(x) ∼ x

log x . Thus a
slightly stronger version of Mertens’ 2nd theorem implies the prime number theorem.

Problem 2. Mellin transforms of Dirichlet series (49 points)

Associated to any arithmetic function f : Zn≥1 → C is a Dirichlet series

Df (s) :=
∑
n≥1

f(n)n−s,

which we may view a function of the complex variable s on any region Re(s) > σ ≥ 0
in which the series converges; conversely, the coefficients of a Dirichlet series define an
arithmetic function.

We also have the summatory function Sf : R→ C associated to f , defined by

Sf (x) :=
∑

1≤n≤x
f(n),

and the logarithmic summatory function Lf : R→ C defined by

Lf (x) :=
∑

1≤n≤x

f(n)

n
.

(a) Show that Df (s) is related to Sf (x) and Lf (x) via the formulas

Df (s) = s

∫ ∞
1

Sf (t)t−s−1 dt (Re(s) > max(0, σ)),

Df (s) = (s− 1)

∫ ∞
1

Lf (t)t−s dt (Re(s) > max(1, σ)).

(b) By applying (a) to f = 1, show that

ζ(s) =
s

s− 1
− s

∫ ∞
1
{t}t−s−1 dt (Re(s) > 0),

where {t} := t− btc. Use this to show that as s→ 1 we have

ζ(s) =
1

s− 1
+ γ +O(|s− 1|).

(c) Let

P (x) := −
∑
p≤x

log(1− 1
p)

be the negation of the sum in Mertens’ 3rd theorem (see Problem 1), and let κ(n)
be the arithmetic function defined by κ(n) = 1/k when n = pk is a prime power
(k ≥ 1) and κ(n) = 0 otherwise (as in Problem 4.e on Problem set 8). Show that

P (x) = Lκ(x) +O
(

1
log x

)
.
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(d) Show that log ζ(s) = Dκ(s) and use (b) to prove that

Dκ(s) = log
1

s− 1
+O(s− 1)

as s→ 1+ (along the real line).

From parts (b) and (d) of Problem 1 we know that

P (x) = log log x+ C +O
(

1
log x

)
(1)

for some constant C which, according to Mertens’ 3rd theorem, is equal to Euler’s
constant γ. You are now in a position to prove this.

(e) From (c) and (1) we know that Lκ = log log x + C + O
(

1
log x

)
. By plugging this

into to the formula relating Dκ and Lκ from (a), show that we have

Dκ(s) = log
1

s− 1
+ C +

∫ ∞
0

(log t)e−tdt+O
(

(s− 1) log 1
s−1

)
as s→ 1+.

(f) By combining (d) and (e) and letting s→ 1+ show that

C = −
∫ ∞
0

(log t)e−tdt.

Then show that the integral is equal to Γ′(1), and prove that Γ′(1) = −γ (you can
do this either by using (b) and the functional equation for ζ(s), or by evaluating the
digamma function Ψ(s) := Γ′(s)/Γ(s) at 1).

Problem 3. Dirichlet density (49 points)

Let K be a global field and let P be the set of nonzero prime ideals of OK . The natural
density of a set S ⊆ P is defined by

δ(S) := lim
x→∞

#{p ∈ S : N(p) ≤ x}
#{p ∈ P : N(p) ≤ x}

(whenever this limit exists), and its Dirichlet density is defined by

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
p∈P N(p)−s

(whenever this limit exists). Here N(p) := [OK : p] is the absolute norm.

(a) Show that the denominator in d(S) is finite for real s > 1 and that∑
p∈P

N(p)−s ∼ log

(
1

s− 1

)

as s→ 1+.
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(b) Let S and T be subsets of P with Dirichlet densities. Show that S ⊆ T implies
d(S) ≤ d(T ), and that d(S) = 0 when S is finite. Conclude that if S and T differ
by a finite set (that is, the sets S − T and T −S are both finite), then d(S) = d(T ).

(c) Suppose S, T ⊂ P have finite intersection. Show that if any two of the set S, T , and
S ∪ T have a Dirichlet density then so does the third and d(S ∪ T ) = d(S) + d(T ).

(d) Suppose K is a number field and define P1 := {p ∈ P : N(p) is prime}. Show that
d(P1) = 1 and in particular, that there are infinitely many degree one primes of K.

(e) With K and P1 as in (d) show for any S ⊆ P, if S has a Dirichlet density then
d(S) = d(S ∩P1) and otherwise S ∩P1 does not have a Dirichlet density. Compute
the density of the set of primes of Q(i) that lie above a prime p ≡ 3 mod 4.

(f) Show that if S ⊆ P has a natural density then it has Dirichlet density d(S) = δ(S).

(g) Show that for K = Fq(t) the set of primes (f) where f is an irreducible polynomial
of even degree has Dirichlet density 1/2 but no natural density.

(h) Show that for K = Q the set S1 of primes whose leading decimal digit is equal to 1
has no natural density.

(i) Let A be the set of positive integers with leading decimal digit equal to 1. Show
that

lim
s→1+

∑
n∈A n

−s

1
s−1

= lim
s→1+

∑
n∈A n

−s∑
n≥1 n

−s = log10(2).

(j) Adapt your argument in (i) to show that d(S1) = log10(2).

Problem 4. PNT for arithmetic progressions (49 points)

For each integer m > 1 and integer a coprime to m we define the prime counting function

π(x;m, a) :=
∑
p≤x

p≡a mod m

1.

In this problem you will adapt the proof of the PNT in [4] (which is essentially the same
as given in class except for the argument to show that ζ(s) has no zeros on Re(s) = 1)
to prove the PNT for arithmetic progressions, which states that

π(x;m, a) ∼ π(x)

φ(m)
∼ 1

φ(m)

x

log x
,

where φ(m) := #(Z/mZ)× is the Euler function. We first set some notation.
Let χ denote a primitive Dirichlet character of conductor dividing m and define

L(s, χ) :=
∑
n≥1

χ(n)n−s, θm,a(x) := φ(m)
∑
p≤x

p≡a mod m

log p,

φ(s, χ) :=
∑
p

χ(p)p−s log p, Φm(s) :=
∑
χ

φ(s, χ), Φm,a(s) :=
∑
χ

χ(a)φ(s, χ).

Finally, let K = Q(ζm) be the mth cyclotomic field with Dedekind zeta function ζK(s).
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(a) Show that θm,a(x) = O(x).

(b) Show that for each χ we have

−L
′(s, χ)

L(s, χ)
= φ(s, χ) + h(s, χ),

for some h(s, χ) holomorphic on Re(s) > 1/2, and conclude that

−
ζ ′K(s)

ζK(s)
= Φm(s) + h(s),

for some h(s) holomorphic on Re(s) > 1/2.

(c) Show that ζK(s) is real-valued on real values of s and proceed as in step (IV) of [4]
to show that ζK(s), and therefore each L(s, χ), has no zeros on Re(s) = 1.

(d) Show that Φm,a(s)− 1
s−1 is holomorphic on Re(s) ≥ 1 and prove that

Φm,a(s) = s

∫ ∞
0

e−stθm,a(e
t)dt.

(e) Show that the Laplace transform of f(t) = θm,a(e
t)e−t−1 extends to a holomorphic

function on Re(s) ≥ 0 and use this to prove θm,a(x) ∼ x.

(f) Show that (e) implies

π(x;m, a) ∼ π(x)

φ(m)
∼ 1

φ(m)

x

log x
.

Problem 5. Factoring with the analytic class number formula (49 points)

Let K be an imaginary quadratic field with discriminant D < 0. Recall from Problem 2
of Problem Set 7 that each ideal class in clOK can be uniquely represented by a reduced
binary quadratic form

f(x, y) = ax2 + bxy + cy2

which we compactly denote f = (a, b, c). The coefficients a, b, c are integers with no
common factor with a > 0 and b2−4ac = D (so f is integral, primitive, positive definite,
and of discriminant D), and if

−a < b ≤ a < c or 0 ≤ b ≤ a = c,

then we say that f is reduced, and in this case a ≤
√
|D|/3. Every form is equivalent

(under the action of SL2(Z)) to a unique reduced form (a, b, c) that corresponds to an
ideal I(f) = aZ + aτZ of norm a in the class it represents, where

τ :=
−b+

√
D

2a

and OK = Z+ aτZ. Let σ be the non-trivial element of Gal(K/Q). If a is an ideal, then
ā := σ(a) denotes its Galois conjugate.

Everything above also applies to orders O ⊆ OK that are not necessarily maximal,
provided we restrict our attention to ideals whose norms are prime to the conductor
c := [OK : O]. We now work in this greater generality and consider binary quadratic
forms of discriminant D = c2 discOK and the class group clO (the group of ideals prime
to the conductor modulo equivalence of principal ideals).
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(a) Show that the identity element in clO is represented by the form (1, 0,−D/4) when
D is even and (1, 1, (1−D)/4) when D is odd.

(b) Show that if a is an ideal with Galois conjugate ā then aā = (N(a)) and therefore
[a]−1 = [ā]. Show that in terms of forms, if a = I(f) with f = (a, b, c) then ā
corresponds to the form (a,−b, c), and if (a,−b, c) is not reduced then we must have
b = a or a = c, but in both these cases (a,−b, c) is equivalent to (a, b, c).

(c) An ambiguous form f = (a, b, c) is a reduced form for which one of the following
holds: b = 0, b = a, or c = a. Show that every ambiguous form corresponds to an
ideal class that is equal to its inverse (hence has order 1 or 2), and conversely.

(d) Show that if D is odd then the ambiguous forms of discriminant D are those of the
form (

u+v
4 , v−u2 , u+v4

)
with uv = −D, gcd(u, v) = 1, and 0 < v/3 ≤ u ≤ v, and those of the form(

u, u, u+v4
)

with uv = −D, gcd(u, v) = 1, and 0 < u ≤ v/3.

(e) Show that if D is odd and has k distinct prime factors then there are 2k−1 ambiguous
forms, each representing a 2-torsion element of clO (an ideal class of order 1 or 2),
and conversely, that every 2-torsion element of clO is represented by an ambiguous
form. Conclude that the 2-torsion subgroup of clO is isomorphic to (Z/2Z)k−1 and
that every ideal class of order 1 or 2 is represented by an ambiguous form.

(f) Let n > 1 be an integer coprime to 6, not a perfect power. Show that if n ≡ 3 mod 4
then for the discriminant D = −n every ideal class in clO of order 2 (of which
there is at least one) is represented by an ambiguous form whose coefficients yield a
nontrivial factorization uv of n; show that if n ≡ 1 mod 4 then for the discriminant
D = −3n a similar statement holds for all but one ideal class of order 2 (of which
there are at least 3).

(g) Show that for O = OK we have # clO = 1
π

√
|D|L(1, χ), where χ is the Dirichlet

character defined by the Kronecker symbol
(
D
·
)

(so χ(n) =
(
D
n

)
). This also holds

for O ( OK , but you are not required to prove this.

The Extended Riemann Hypothesis (ERH) states that the zeros of every Dirichlet L-
function L(s, χ) all lie on the critical line Re(s) = 1

2 . Under this assumption there is an
effectively computable constant c1 such that if we compute the partial product

L∗ :=
∏

p≤n1/5

(
1− χ(p)p−1

)−1
of L(1, χ) and put h∗ := 1

π

√
|D|L∗ (with D < −4), then for h = # clO we have

|h− h∗| < c1n
2/5(log n)2;

as shown in [3]. The ERH also implies the existence of an effectively computable constant
c2 for which the set of ideals of prime norm a ≤ c2 log2 |D| are enough to generate clO;
this follows from results in [2] (for O = OK one can take c2 = 6, see [1]).
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(h) Describe a deterministic O(n1/5+o(1)) algorithm that, given an integer n > 1 does
one of the following: (1) outputs a nontrivial factorization of n, (2) proves that n is
prime, (3) proves that the ERH is false. Assume arithmetic operations on integers
(and rational numbers) can be performed in quasi-linear time (i.e. O(b1+o(1)) where b
is the number of bits in the operands). You do not need to spell out all the details of
the algorithm, a summary of each step is sufficient (note: you will need to address
the case where n is a perfect power separately). If you are not familiar with the
baby-steps giant-steps algorithm, see section 8.9 in these notes for a quick overview).

Problem 6. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

11/11 Dirichlet L-functions

11/13 Analytic class number formula

11/18 Kronecker-Weber theorem

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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