Description

These problems are related to the material covered in Lectures 10-12. Your solutions are to be written up in latex (you can use the latex source for the problem set as a template) and submitted as a pdf-file with a filename of the form SurnamePset 6. pdf via e-mail to drew@math.mit. edu by noon on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators, and any references you consulted. If there are none, write "Sources consulted: none" at the top of your problem set. The first person to spot each nontrivial typo/error in any of the problem sets or lecture notes will receive $1-5$ points of extra credit.

Instructions: First do the warm up problem, then pick problems that sum to 96 points to solve and write up your answers in latex. Finally, complete the survey problem 5.

Problem 0.

These are warm up questions that do not need to be turned in.
(a) Prove that the absolute discriminant of a number field is always a square $\bmod 4$.
(b) Compute the different ideal of the quadratic extensions $\mathbb{Q}(\sqrt{-2}) / \mathbb{Q}$ and $\mathbb{Q}(\sqrt{-3}) / \mathbb{Q}$.
(c) Determine all the primes that ramify in the cubic fields $\mathbb{Q}[x] /\left(x^{3}-x-1\right)$ and $\mathbb{Q}[x] /\left(x^{3}+x+1\right)$ and compute their ramification indices.
(d) Let p be an odd prime. Compute the different ideal and absolute discriminant of the cyclotomic extension $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$.

Problem 1 The different ideal (64 points)

Let A be a Dedekind domain with fraction field K, let L / K be a finite separable extension, and let B be the integral closure of A in L. Write $L=K(\alpha)$ with $\alpha \in B$ and let $f \in A[x]$ be the minimal polynomial of α, with degree $n=[L: K]$.
(a) By comparing the Laurent series expansion of $1 / f(x)$ with its partial fraction decomposition over the splitting field of f (the Galois closure of L), prove that

$$
\mathrm{T}_{L / K}\left(\frac{\alpha^{i}}{f^{\prime}(\alpha)}\right)= \begin{cases}0 & \text { if } 0 \leq i \leq n-2 \\ 1 & \text { if } i=n-1 \\ \in A & \text { if } i \geq n\end{cases}
$$

(b) Suppose $B=A[\alpha]$. Prove that $B^{*}:=\left\{x \in L: \mathrm{T}_{L / K}(x b) \in A\right.$ for all $\left.b \in B\right\}$ is the principal fractional B-ideal $\left(1 / f^{\prime}(\alpha)\right)$. Conclude that $\mathcal{D}_{B / A}=\left(f^{\prime}(\alpha)\right)$.
(c) For any $\beta \in B$ with minimal polynomial $g \in A[x]$ define

$$
\delta_{B / A}(\beta):= \begin{cases}g^{\prime}(\beta) & \text { if } L=K(\beta) \\ 0 & \text { otherwise }\end{cases}
$$

One can show that $\mathcal{D}_{B / A}$ is the B-ideal generated by $\left\{\delta_{B / A}(\beta): \beta \in B\right\}$ (you are not required to prove this). Prove that if g is the minimal polynomial of $\beta \in B$ for which $L=K(\beta)$ then $\mathrm{N}_{L / K}\left(g^{\prime}(\beta)\right)= \pm \operatorname{disc}(g)$.
(d) Prove or disprove: $D_{B / A}$ is the A-ideal generated by $\left\{\mathrm{N}_{L / K}\left(\delta_{B / A}(\beta)\right): \beta \in B\right\}$.
(e) Let \mathfrak{c} be the conductor of the order $C=A[\alpha]$. Prove that

$$
\mathfrak{c}=\left(B^{*}: C^{*}\right):=\left\{x \in L: x C^{*} \subseteq B^{*}\right\}
$$

Conclude that if we define $\mathcal{D}_{C / A}:=\left(B: C^{*}\right)$ and $D_{C / A}:=D(C)$ then we have $\mathcal{D}_{C / A}=\mathfrak{c} \mathcal{D}_{B / A}$ and $D_{C / A}=\mathrm{N}_{B / A}(\mathfrak{c}) D_{B / A}$, so that $D_{C / A}=\mathrm{N}_{B / A}\left(\mathcal{D}_{C / A}\right)$.
(f) Let \mathfrak{q} be a prime of B lying above a prime \mathfrak{p} of A and suppose the corresponding residue field extension is separable. Prove that

$$
e_{\mathfrak{q}}-1 \leq v_{\mathfrak{q}}\left(\mathcal{D}_{B / A}\right) \leq e_{\mathfrak{q}}-1+v_{\mathfrak{q}}\left(e_{\mathfrak{q}}\right)
$$

and that the lower bound is an equality only when B / A is tamely ramified at \mathfrak{q}.
(g) Let p and q be distinct primes congruent to $1 \bmod 4$, let $K:=\mathbb{Q}(\sqrt{p q})$, and let $L:=\mathbb{Q}(\sqrt{p}, \sqrt{q})$. Prove that $\mathcal{D}_{L / K}$ is the unit ideal (so L / K is unramified).

Problem 2. Valuation rings (64 points)

An ordered abelian group is an abelian group Γ with a total order \leq that is compatible with the group operation. This means that for all $a, b, c \in \Gamma$ the following hold:

$$
\begin{array}{cccc}
a \leq b \leq a & \Longrightarrow & a=b & \text { (antisymmetry) } \\
a \leq b \leq c & \Longrightarrow & a \leq c & \text { (transitivity) } \\
a \not \leq b & \Longrightarrow & b \leq a & \text { (totality) } \\
a \leq b & \Longrightarrow & a+c \leq b+c & \text { (compatibility) }
\end{array}
$$

Note that totality implies reflexivity $(a \leq a)$. Given an ordered abelian group Γ, we define the relations $\geq,<,>$ and the sets $\Gamma_{\leq 0}, \Gamma_{\geq 0}, \Gamma_{<0}, \Gamma_{>0}$ in the obvious way.

A valuation v on a field K is a surjective homomorphism $v: K^{\times} \rightarrow \Gamma$ to an ordered abelian group Γ that satisfies $v(x+y) \geq \min (v(x), v(y))$ for all $x, y \in K^{\times}$. The group Γ is called the value group of v, and when $\Gamma=\{0\}$ we say that v is the trivial valuation. We may extend v to K by defining $v(0)=\infty$, where ∞ is defined to be strictly greater than any element of Γ.

Recall that a valuation ring is an integral domain A with fraction field K such that for all $x \in K^{\times}$either $x \in A$ or $x^{-1} \in A$ (possibly both).
(a) Let A be a valuation ring with fraction field K, and let $v: K^{\times} \rightarrow K^{\times} / A^{\times}=\Gamma$ be the quotient map. Show that the relation \leq on Γ defined by

$$
v(x) \leq v(y) \Longleftrightarrow y / x \in A
$$

makes Γ an ordered abelian group and that v is a valuation on K.
(b) Let K be a field with a non-trivial valuation $v: K^{\times} \rightarrow \Gamma$. Prove that the set

$$
A:=\{x \in K: v(x) \geq 0\}
$$

is a valuation ring with fraction field K and that $v(x) \leq v(y) \Longleftrightarrow y / x \in A$.
(c) Let Γ be an ordered abelian group and let k be a field. For each $a \in \Gamma_{\geq 0}$, let x^{a} be a formal symbol, and define multiplication of these symbols via $x^{a} x^{b}:=x^{a+b}$. Let A be the k-algebra whose elements are formal sums $\sum_{a \in I} c_{a} x^{a}$, where $c_{a} \in k$ and the index set $I \subseteq \Gamma_{\geq 0}$ is well ordered (every subset has a minimal element). ${ }^{1}$ Let K be the fraction field of A and define $v: K^{\times} \rightarrow \Gamma$ by

$$
v\left(\frac{\sum c_{a} x^{a}}{\sum d_{a} x^{a}}\right)=\min \left\{a: c_{a} \neq 0\right\}-\min \left\{a: d_{a} \neq 0\right\}
$$

Prove that v is a valuation on K with value group Γ and valuation ring A.
(d) Let $v: K^{\times} \rightarrow \Gamma_{v}$ and $w: K^{\times} \rightarrow \Gamma_{w}$ be two valuations on a field K, and let A_{v} and A_{w} be the corresponding valuation rings. Prove that $A_{v}=A_{w}$ if and only if there is an order preserving isomorphism $\rho: \Gamma_{v} \rightarrow \Gamma_{w}$ for which $\rho \circ v=w$, in which case we say that v and w are equivalent. Thus there is a 1-to- 1 correspondence between valuation rings with fraction field K and equivalence classes of valuations on K.
(e) Let A be an integral domain properly contained in its fraction field K, and let \mathcal{R} be the set of local rings that contain A and are properly contained in K. Partially order \mathcal{R} by writing $R_{1} \leq R_{2}$ if $R_{1} \subseteq R_{2}$ and the maximal ideal of R_{1} is contained in the maximal ideal of R_{2} (this is known as the dominance ordering). Prove that \mathcal{R} contains a maximal element R and that every such R is a valuation ring.
(\mathbf{f}) Prove that every valuation ring is local and integrally closed, and that the intersection of all valuation rings that contain an integral domain A and lie in its fraction field is equal to the integral closure of A.
(g) Prove that a valuation ring that is not a field is a discrete valuation ring if and only if it is noetherian.

Problem 3. Norm maps of local fields (32 points)

Let A be the valuation ring of a nonarchimedean local field K, let L be a tamely ramified finite abelian extension of K, and let B be the integral closure of A in L. The goal of this problem is to prove that the extension L / K is unramified if and only if the norm map restricts to a surjective map of unit groups, equivalently, $\mathrm{N}_{L / K}\left(B^{\times}\right)=A^{\times}$. Let \mathfrak{p} and \mathfrak{q} be the maximal ideals of A and B and $k:=A / \mathfrak{p}$ and $l:=B / \mathfrak{q}$ the residue fields.
(a) Prove that we always have $\mathrm{N}_{L / K}\left(B^{\times}\right) \subseteq A^{\times}$and $\mathrm{N}_{l / k}\left(l^{\times}\right)=k^{\times}$and $\mathrm{T}_{l / k}(l)=k$.
(b) For $i \geq 0$ define $U_{i}:=1+\mathfrak{p}^{i}:=\left\{1+a: a \in \mathfrak{p}^{i}\right\}$. Show that the U_{i} are distinct closed subgroups of A^{\times}that form a base of neighborhoods $1 \in A^{\times}$(this means every open neighborhood of 1 in the topological group A^{\times}contains some U_{i}).
(c) Prove that if L / K is totally ramified then the norm of every $b \in B^{\times}$lies in a coset of U_{1} of the form $u^{n} U_{1}$, where $n=[L: K]$. Show that for $n>1$ the norms of these cosets do not cover A^{\times}. Conclude that if $\mathrm{N}_{L / K}\left(B^{\times}\right)=A^{\times}$then L / K must be unramified.
(d) Assume L / K is unramified. Show that for every $u \in A^{\times}$there exists $\alpha_{0} \in B^{\times}$with $\mathrm{N}_{L / K}\left(\alpha_{0}\right) \equiv u \bmod \mathfrak{p}$. Then construct $\alpha_{1} \in B^{\times}$with $\mathrm{N}_{L / K}\left(\alpha_{0} \alpha_{1}\right) \equiv u \bmod \mathfrak{p}^{2}$. Continuing in this fashion, construct $\alpha \in B^{\times}$such that $\mathrm{N}_{L / K}(\alpha)=u$.

[^0]
Problem 4. Minkowski's lemma and sums of four squares (32 points)

Minkowski's lemma (for \mathbb{Z}^{n}) states that if $S \subseteq \mathbb{R}^{n}$ is a symmetric convex set of volume $\mu(S)>2^{n}$ then S contains a nonzero element of \mathbb{Z}^{n}.

Here symmetric means that S is closed under negation, and convex means that for all $x, y \in S$ the set $\{t x+(1-t) y: t \in[0,1]\}$ lies in $S)$.
(a) Prove that for any measurable $S \subseteq \mathbb{R}^{n}$ with measure $\mu(S)>1$ there exist distinct $s, t \in S$ such that $s-t \in \mathbb{Z}^{n}$, then prove Minkowski's lemma.
(b) Prove that Minkowski's lemma is tight in the following sense: show that is is false if either of the words "symmetric" or "convex" is removed, or if the strict inequality $\mu(S)>2^{n}$ is weakened to $\mu(S) \geq 2^{n}$ (give three explicit counter examples).
(c) Prove that one can weaken the inequality $\mu(S)>2^{n}$ in Minkowski's lemma to $\mu(S) \geq 2^{n}$ if S is assumed to be compact.

You will now use Minkowski's lemma to prove a theorem of Lagrange, which states that every positive integer is a sum of four integer squares. Let p be an odd prime.
(d) Show that $x^{2}+y^{2}=a$ has a solution (m, n) in \mathbb{F}_{p}^{2} for every $a \in \mathbb{F}_{p}$.
(e) Let V be the \mathbb{F}_{p}-span of $\{(m, n, 1,0),(-n, m, 0,1)\}$ in \mathbb{F}_{p}^{4}, where $m^{2}+n^{2}=-1$. Prove that V is isotropic, meaning that $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}=0$ for all $v \in V$.
(f) Use Minkowski's lemma to prove that p is a sum of four squares.
(g) Prove that every positive integer is the sum of four squares.

Problem 5. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found it ($1=$ "trivial," $10=$ "brutal" $)$. Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			
Problem 4			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material to you ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$10 / 17$	Different and discriminant ideals				
$10 / 22$	Haar measure, product formula				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

References

[1] H. Hahn, Über die nichtarchimedischen Grössensysteme, Sitzungsberichte der K. Akademie der Wissenschaften, Vienna 116 (1907), 601-655.
[2] G. Higman, Ordering by divisibility in abstract algebras, Proceedings of the London Mathematical Society (3) 2 (1952), 326-336.

[^0]: ${ }^{1}$ That A is a ring is a classical result of Hahn [1]; see [2, Thm. 5.1] for a modern proof.

