
18.785 Number Theory Fall 2018

Problem Set #3 Due: 10/1/2018

Description

These problems are related to the material in Lectures 5–7. Your solutions should
be written up in late and submitted as a pdf-file named SurnamePset3.pdf (replace
Surname with your surname) via e-mail to drew@math.mit.edu by noon on the date
due. Collaboration is permitted/encouraged, but you must identify your collaborators,
and any references consulted other than the lecture notes. If there are none, write
Sources consulted: none at the top of your problem set. The first person to spot each
typo/error in the problem set or lecture notes will receive 1–5 points of extra credit.

Instructions: First do the warm up problems, then pick any combination of problems
1–6 that sums to 96 points and write up your answers in latex. Finally, be sure to
complete the survey problem 7.

Problem 0. Warmup (0 points)

These warmup exercises do not need to be written up or turned in.

(a) Show that odd primes p split over Q(
√
d) if and only if x2 − d splits in Fp[x], but

that this holds for p = 2 only when d 6≡ 1 mod 4. Then show that for d ≡ 1 mod 4
using x2 − x+ (1− d)/4 instead of x2 − d works for every prime p.

(b) Let OK be the ring of integers of an imaginary quadratic field K and let c be a
positive integer. Prove that O := Z + cOK is an order with conductor cOK and
that c = [OK : O] (the index of O in OK as additive abelian groups).

(c) Let L/K be a finite Galois extension of number fields. Prove that if K has any
inert primes then Gal(L/K) is cyclic (as we shall prove later, the converse holds).

(d) Let L/K be a finite extension of number fields. Show that a prime of K splits
completely in L if and only if it splits completely in the normal closure of L/K.

Problem 1. Factoring primes in cubic fields (32 points)

Let K = Q( 3
√

5).

(a) Prove that OK = Z[ 3
√

5].

(b) Factor the primes p = 2, 3, 5, 7, 11, 13 in Q( 3
√

5). Write the prime ideals q appearing
in your factorizations in the form (p, f( 3

√
5)) where f ∈ Z[x] has degree at most 2.

(c) Prove that the factorization patterns you found in (b) represent every possible case;
that is, every possible sum [K : Q] =

∑
q|(p) eqfq that can arise for this particular

field K. You should find that there is one numerically possible case that does not
occur for p ≤ 13; you need to prove that it cannot occur for any prime p.

(d) Find a different cubic field of the form K = Q( 3
√
n) for which the one factorization

pattern missing from (c) does occur (demonstrate this explicitly).



Problem 2. Factoring primes in cyclotomic fields (32 points)

Let ` be a prime and let ζ` denote a primitive `th root of unity.

(a) Prove that Q(ζ`)/Q is a Galois extension.

(b) Prove that Z[ζ`] is the ring of integers of Q(ζ`).

(c) For each prime p 6= `, determine the number gp of primes q of Q(ζ`) lying above (p),
the ramification index ep and the residue field degree fp (as a function of p and `).

(d) Do the same for p = `.

Problem 3. Non-monogenic fields (32 points)

Recall that a number field K is said to be monogenic if its ring of integers OK is of
the form Z[α] for some α ∈ OK . Every number field of degree 2 is monogenic; indeed,
for K = Q(

√
−d) we can take α = (d ±

√
−d)/2. In this problem you will prove that

infinitely many number fields of degrees 3 and 4 are not monogenic.

(a) Let K be a number field of degree n > 2 in which the prime 2 splits completely (so
2OK is the product of n distinct prime ideals). Prove that K is not monogenic.

(b) Prove that if 2 splits completely in number fields K1 and K2 then it also splits
completely in their compositum (the smallest number field containing K1 and K2).

(c) Show that if p ≡ ±1 mod 8 is prime, then 2 splits completely in Q(
√
±p) (with the

same sign in both ±). Conclude that for each k ≥ 2, infinitely many number fields
of degree 2k are not monogenic and give a quartic example.1

(d) Consider K = Q(
3
√
ab2), with a, b ∈ Z coprime, squarefree, and a2 6≡ b2 mod 9.

Dedekind showed that (1,
3
√
ab2,

3
√
a2b) is a Z-basis for OK . Show that for every

α ∈ OK − Z, the index [OK : Z[α]] has the form ar3 − bs3, with r, s ∈ Z. Show
that infinitely many cubic number fields are not monogenic and give an example.

Problem 4. Orders in Dedekind domains (32 points)

Let O be an order (noetherian domain of dimension one with nonzero conductor) with
integral closure B (a Dedekind domain) and conductor c (largest B-ideal in O).

(a) Prove that for a prime p of O the following are equivalent:

(1) p does not contain c;

(2) O = {x ∈ B : xp ⊆ p};
(3) p is invertible (as a fractional O-ideal);

(4) Op is a DVR;

(5) pOp is a principal Op-ideal.

Then show that these equivalent conditions all imply that pB is a prime B-ideal.

1You may assume Dirichlet’s theorem on primes in arithmetic progressions, which we will prove later
in the course: for any coprime a,m ∈ Z there are infinitely many primes p ≡ a mod m.



(b) Prove that nonzero fractional ideals I of O prime to c are invertible, but the
converse need not hold (give an explicit counterexample).

(c) Let K 6= Q be a number field with ring of integers OK , let c ∈ Z>1, and let

O := Z + cOK = {a+ b : a ∈ Z, b ∈ cOK}.

Prove that O is an order with integral closure OK and conductor cOK , and that
cOK is not principal as an O-ideal.

(d) Let K := Q(i) with OK = Z[i], let p be any prime, and let O := Z + piZ. Show
that the conductor of O is p := pZ + piZ, that p is a prime O-ideal, and that
a := p2Z + piZ is an O-ideal contained in p but not divisible by p.

Problem 5. A relative extension without an integral basis (32 points)

Let K be the quadratic field Q(
√
−6) with ring of integers A = Z[

√
−6], let L := K(

√
−3)

be a quadratic extension, and let B be the integral closure of A in L (so AKLB holds).

(a) Let ζ3 := −1+
√
−3

2 . Show that {1,
√

2, ζ3} generates B as an A-module. Conclude
that B is a torsion free A-module, and that if it is a free A-module, it has rank 2.

(b) Show that if B ' A2, then {1, ζ3} is an A-module basis for B (hint: show that
if {β1, β2} is any A-module basis for B, then the matrix that expresses {1, ζ3} in
terms of this basis is invertible; to do so you may also want to write {1, σ(ζ3)} in
terms of {σ(β1), σ(β2)} with σ ∈ Gal(L/K)).

(d) Show that {1, ζ3} is not an A-module basis for B by showing that you cannot write√
2 in terms of this basis. Conclude that B is not a free A-module and that the

ideal class group cl(A) := IA/PA is non-trivial.

(d) Show that the A-module B is isomorphic to the A-module I1⊕I2, where I1, I2 ∈ IA
are the fractional A-ideals I1 := (ζ3) and I2 := 1√

−3(3,
√
−6).

Problem 6. Modules over Dedekind domains (64 points)

Let us recall some terminology from commutative algebra. Let A be a ring and let M
be an A-module. A splitting of a surjective A-module homomorphism ψ : N →M is an
A-module homomorphism φ : M → N such that ψ ◦ φ is the identity map; we then have

N = φ(M)⊕ ker(ψ) 'M ⊕ ker(ψ).

We say that M is projective if every surjective A-module homomorphism ψ : N → M
admits a splitting φ : M → N . A torsion element m ∈ M satisfies am = 0 for some
nonzero a ∈ A. If M consists entirely of torsion elements then it is a torsion module. If
M has no nonzero torsion elements then it is torsion free. Note that the zero module is
a torsion-free torsion module.

Now let A be a Dedekind domain with fraction field K.

(a) Prove that every finitely generated torsion A-module M is isomorphic to

A/I1 ⊕ · · · ⊕A/In,

for some nonzero A-ideals I1, . . . , In (you may use the structure theorem for mod-
ules over PIDs).



(b) Prove that every fractional ideal of A is a projective A-module.

(c) Prove that every finitely generated torsion-free A-module M is isomorphic to a
finite direct sum of nonzero fractional ideals of A (elements of IA).

(d) Prove that every finitely generated A-module is isomorphic to the direct sum of a
finitely generated torsion module and a finitely generated torsion-free module.

(e) Show that if M is a finitely generated A-module then M ⊗A K ' Kr for some
r ∈ Z≥0, and that for M ∈ IA we must have r = 1.

(f) Let M be a finitely generated torsion-free A-module, and let us fix an isomorphism
ι : M ⊗A K

∼−→ Kn that embeds M in Kn via m 7→ ι(m ⊗ 1). Let N be the A-
submodule of K generated by the determinants of all n×n matrices whose columns
lie in M . Prove that N ∈ IA and that its ideal class (its image in the ideal class
group cl(A) := IA/PA) is independent of ι; this is the Steinitz class of M .

(g) Prove that for any I1, . . . , In ∈ IA the Steinitz class of I1 ⊕ · · · ⊕ In is the ideal
class of the product I1 · · · In.

(h) Prove that two finite direct sums I1 ⊕ · · · ⊕ Im and J1 ⊕ · · · ⊕ Jn of elements of IA
are isomorphic as A-modules if and only if m = n and the ideal classes of I1 · · · Im
and J1 · · · Jn are equal.

(i) Prove that infinite direct sums
⊕∞

i=1 Ii and
⊕∞

j=1 Jj of elements of IA are always
isomorphic as A-modules.

Problem 7. Survey (4 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

9/25 Ideal norms, Dedekind-Kummer

9/27 Primes in Galois extensions

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.


