Description

These problems are related to the material in Lectures 5-7. Your solutions should be written up in late and submitted as a pdf-file named SurnamePset3.pdf (replace Surname with your surname) via e-mail to drew@math.mit. edu by noon on the date due. Collaboration is permitted/encouraged, but you must identify your collaborators, and any references consulted other than the lecture notes. If there are none, write Sources consulted: none at the top of your problem set. The first person to spot each typo/error in the problem set or lecture notes will receive 1-5 points of extra credit.

Instructions: First do the warm up problems, then pick any combination of problems 1-6 that sums to 96 points and write up your answers in latex. Finally, be sure to complete the survey problem 7 .

Problem 0. Warmup (0 points)

These warmup exercises do not need to be written up or turned in.
(a) Show that odd primes p split over $\mathbb{Q}(\sqrt{d})$ if and only if $x^{2}-d$ splits in $\mathbb{F}_{p}[x]$, but that this holds for $p=2$ only when $d \not \equiv 1 \bmod 4$. Then show that for $d \equiv 1 \bmod 4$ using $x^{2}-x+(1-d) / 4$ instead of $x^{2}-d$ works for every prime p.
(b) Let \mathcal{O}_{K} be the ring of integers of an imaginary quadratic field K and let c be a positive integer. Prove that $\mathcal{O}:=\mathbb{Z}+c \mathcal{O}_{K}$ is an order with conductor $c \mathcal{O}_{K}$ and that $c=\left[\mathcal{O}_{K}: \mathcal{O}\right]$ (the index of \mathcal{O} in \mathcal{O}_{K} as additive abelian groups).
(c) Let L / K be a finite Galois extension of number fields. Prove that if K has any inert primes then $\operatorname{Gal}(L / K)$ is cyclic (as we shall prove later, the converse holds).
(d) Let L / K be a finite extension of number fields. Show that a prime of K splits completely in L if and only if it splits completely in the normal closure of L / K.

Problem 1. Factoring primes in cubic fields (32 points)

Let $K=\mathbb{Q}(\sqrt[3]{5})$.
(a) Prove that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{5}]$.
(b) Factor the primes $p=2,3,5,7,11,13$ in $\mathbb{Q}(\sqrt[3]{5})$. Write the prime ideals \mathfrak{q} appearing in your factorizations in the form $(p, f(\sqrt[3]{5}))$ where $f \in \mathbb{Z}[x]$ has degree at most 2 .
(c) Prove that the factorization patterns you found in (b) represent every possible case; that is, every possible sum $[K: \mathbb{Q}]=\sum_{\mathfrak{q} \mid(p)} e_{\mathfrak{q}} f_{\mathfrak{q}}$ that can arise for this particular field K. You should find that there is one numerically possible case that does not occur for $p \leq 13$; you need to prove that it cannot occur for any prime p.
(d) Find a different cubic field of the form $K=\mathbb{Q}(\sqrt[3]{n})$ for which the one factorization pattern missing from (c) does occur (demonstrate this explicitly).

Problem 2. Factoring primes in cyclotomic fields (32 points)

Let ℓ be a prime and let ζ_{ℓ} denote a primitive ℓ th root of unity.
(a) Prove that $\mathbb{Q}\left(\zeta_{\ell}\right) / \mathbb{Q}$ is a Galois extension.
(b) Prove that $\mathbb{Z}\left[\zeta_{\ell}\right]$ is the ring of integers of $\mathbb{Q}\left(\zeta_{\ell}\right)$.
(c) For each prime $p \neq \ell$, determine the number g_{p} of primes \mathfrak{q} of $\mathbb{Q}\left(\zeta_{\ell}\right)$ lying above (p), the ramification index e_{p} and the residue field degree f_{p} (as a function of p and ℓ).
(d) Do the same for $p=\ell$.

Problem 3. Non-monogenic fields (32 points)

Recall that a number field K is said to be monogenic if its ring of integers \mathcal{O}_{K} is of the form $\mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_{K}$. Every number field of degree 2 is monogenic; indeed, for $K=\mathbb{Q}(\sqrt{-d})$ we can take $\alpha=(d \pm \sqrt{-d}) / 2$. In this problem you will prove that infinitely many number fields of degrees 3 and 4 are not monogenic.
(a) Let K be a number field of degree $n>2$ in which the prime 2 splits completely (so $2 \mathcal{O}_{K}$ is the product of n distinct prime ideals). Prove that K is not monogenic.
(b) Prove that if 2 splits completely in number fields K_{1} and K_{2} then it also splits completely in their compositum (the smallest number field containing K_{1} and K_{2}).
(c) Show that if $p \equiv \pm 1 \bmod 8$ is prime, then 2 splits completely in $\mathbb{Q}(\sqrt{ \pm p})$ (with the same sign in both \pm). Conclude that for each $k \geq 2$, infinitely many number fields of degree 2^{k} are not monogenic and give a quartic example. ${ }^{1}$
(d) Consider $K=\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right)$, with $a, b \in \mathbb{Z}$ coprime, squarefree, and $a^{2} \not \equiv b^{2} \bmod 9$. Dedekind showed that $\left(1, \sqrt[3]{a b^{2}}, \sqrt[3]{a^{2} b}\right)$ is a \mathbb{Z}-basis for \mathcal{O}_{K}. Show that for every $\alpha \in \mathcal{O}_{K}-\mathbb{Z}$, the index $\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$ has the form $a r^{3}-b s^{3}$, with $r, s \in \mathbb{Z}$. Show that infinitely many cubic number fields are not monogenic and give an example.

Problem 4. Orders in Dedekind domains (32 points)

Let \mathcal{O} be an order (noetherian domain of dimension one with nonzero conductor) with integral closure B (a Dedekind domain) and conductor \mathfrak{c} (largest B-ideal in \mathcal{O}).
(a) Prove that for a prime \mathfrak{p} of \mathcal{O} the following are equivalent:
(1) \mathfrak{p} does not contain \mathfrak{c};
(2) $\mathcal{O}=\{x \in B: x \mathfrak{p} \subseteq \mathfrak{p}\}$;
(3) \mathfrak{p} is invertible (as a fractional \mathcal{O}-ideal);
(4) $\mathcal{O}_{\mathfrak{p}}$ is a DVR;
(5) $\mathfrak{p} \mathcal{O}_{\mathfrak{p}}$ is a principal $\mathcal{O}_{\mathfrak{p}}$-ideal.

Then show that these equivalent conditions all imply that $\mathfrak{p} B$ is a prime B-ideal.

[^0](b) Prove that nonzero fractional ideals I of \mathcal{O} prime to \mathfrak{c} are invertible, but the converse need not hold (give an explicit counterexample).
(c) Let $K \neq \mathbb{Q}$ be a number field with ring of integers \mathcal{O}_{K}, let $c \in \mathbb{Z}_{>1}$, and let
$$
\mathcal{O}:=\mathbb{Z}+c \mathcal{O}_{K}=\left\{a+b: a \in \mathbb{Z}, b \in c \mathcal{O}_{K}\right\}
$$

Prove that \mathcal{O} is an order with integral closure \mathcal{O}_{K} and conductor $c \mathcal{O}_{K}$, and that $c \mathcal{O}_{K}$ is not principal as an \mathcal{O}-ideal.
(d) Let $K:=\mathbb{Q}(i)$ with $\mathcal{O}_{K}=\mathbb{Z}[i]$, let p be any prime, and let $\mathcal{O}:=\mathbb{Z}+p i \mathbb{Z}$. Show that the conductor of \mathcal{O} is $\mathfrak{p}:=p \mathbb{Z}+p i \mathbb{Z}$, that \mathfrak{p} is a prime \mathcal{O}-ideal, and that $\mathfrak{a}:=p^{2} \mathbb{Z}+p i \mathbb{Z}$ is an \mathcal{O}-ideal contained in \mathfrak{p} but not divisible by \mathfrak{p}.

Problem 5. A relative extension without an integral basis (32 points)

Let K be the quadratic field $\mathbb{Q}(\sqrt{-6})$ with ring of integers $A=\mathbb{Z}[\sqrt{-6}]$, let $L:=K(\sqrt{-3})$ be a quadratic extension, and let B be the integral closure of A in L (so $A K L B$ holds).
(a) Let $\zeta_{3}:=\frac{-1+\sqrt{-3}}{2}$. Show that $\left\{1, \sqrt{2}, \zeta_{3}\right\}$ generates B as an A-module. Conclude that B is a torsion free A-module, and that if it is a free A-module, it has rank 2 .
(b) Show that if $B \simeq A^{2}$, then $\left\{1, \zeta_{3}\right\}$ is an A-module basis for B (hint: show that if $\left\{\beta_{1}, \beta_{2}\right\}$ is any A-module basis for B, then the matrix that expresses $\left\{1, \zeta_{3}\right\}$ in terms of this basis is invertible; to do so you may also want to write $\left\{1, \sigma\left(\zeta_{3}\right)\right\}$ in terms of $\left\{\sigma\left(\beta_{1}\right), \sigma\left(\beta_{2}\right)\right\}$ with $\left.\sigma \in \operatorname{Gal}(L / K)\right)$.
(d) Show that $\left\{1, \zeta_{3}\right\}$ is not an A-module basis for B by showing that you cannot write $\sqrt{2}$ in terms of this basis. Conclude that B is not a free A-module and that the ideal class group $\operatorname{cl}(A):=\mathcal{I}_{A} / \mathcal{P}_{A}$ is non-trivial.
(d) Show that the A-module B is isomorphic to the A-module $I_{1} \oplus I_{2}$, where $I_{1}, I_{2} \in \mathcal{I}_{A}$ are the fractional A-ideals $I_{1}:=\left(\zeta_{3}\right)$ and $I_{2}:=\frac{1}{\sqrt{-3}}(3, \sqrt{-6})$.

Problem 6. Modules over Dedekind domains (64 points)

Let us recall some terminology from commutative algebra. Let A be a ring and let M be an A-module. A splitting of a surjective A-module homomorphism $\psi: N \rightarrow M$ is an A-module homomorphism $\phi: M \rightarrow N$ such that $\psi \circ \phi$ is the identity map; we then have

$$
N=\phi(M) \oplus \operatorname{ker}(\psi) \simeq M \oplus \operatorname{ker}(\psi) .
$$

We say that M is projective if every surjective A-module homomorphism $\psi: N \rightarrow M$ admits a splitting $\phi: M \rightarrow N$. A torsion element $m \in M$ satisfies $a m=0$ for some nonzero $a \in A$. If M consists entirely of torsion elements then it is a torsion module. If M has no nonzero torsion elements then it is torsion free. Note that the zero module is a torsion-free torsion module.

Now let A be a Dedekind domain with fraction field K.
(a) Prove that every finitely generated torsion A-module M is isomorphic to

$$
A / I_{1} \oplus \cdots \oplus A / I_{n},
$$

for some nonzero A-ideals I_{1}, \ldots, I_{n} (you may use the structure theorem for modules over PIDs).
(b) Prove that every fractional ideal of A is a projective A-module.
(c) Prove that every finitely generated torsion-free A-module M is isomorphic to a finite direct sum of nonzero fractional ideals of A (elements of \mathcal{I}_{A}).
(d) Prove that every finitely generated A-module is isomorphic to the direct sum of a finitely generated torsion module and a finitely generated torsion-free module.
(e) Show that if M is a finitely generated A-module then $M \otimes_{A} K \simeq K^{r}$ for some $r \in \mathbb{Z}_{\geq 0}$, and that for $M \in \mathcal{I}_{A}$ we must have $r=1$.
(f) Let M be a finitely generated torsion-free A-module, and let us fix an isomorphism $\iota: M \otimes_{A} K \xrightarrow{\sim} K^{n}$ that embeds M in K^{n} via $m \mapsto \iota(m \otimes 1)$. Let N be the A submodule of K generated by the determinants of all $n \times n$ matrices whose columns lie in M. Prove that $N \in \mathcal{I}_{A}$ and that its ideal class (its image in the ideal class $\left.\operatorname{group} \operatorname{cl}(A):=\mathcal{I}_{A} / \mathcal{P}_{A}\right)$ is independent of ι; this is the Steinitz class of M.
(g) Prove that for any $I_{1}, \ldots, I_{n} \in \mathcal{I}_{A}$ the Steinitz class of $I_{1} \oplus \cdots \oplus I_{n}$ is the ideal class of the product $I_{1} \cdots I_{n}$.
(h) Prove that two finite direct sums $I_{1} \oplus \cdots \oplus I_{m}$ and $J_{1} \oplus \cdots \oplus J_{n}$ of elements of \mathcal{I}_{A} are isomorphic as A-modules if and only if $m=n$ and the ideal classes of $I_{1} \cdots I_{m}$ and $J_{1} \cdots J_{n}$ are equal.
(i) Prove that infinite direct sums $\bigoplus_{i=1}^{\infty} I_{i}$ and $\bigoplus_{j=1}^{\infty} J_{j}$ of elements of \mathcal{I}_{A} are always isomorphic as A-modules.

Problem 7. Survey (4 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found it $(1=$ "trivial," $10=$ "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			
Problem 4			
Problem 5			
Problem 6			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material to you ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$9 / 25$	Ideal norms, Dedekind-Kummer				
$9 / 27$	Primes in Galois extensions				

Please feel free to record any additional comments you have on the problem sets and the lectures, in particular, ways in which they might be improved.

[^0]: ${ }^{1}$ You may assume Dirichlet's theorem on primes in arithmetic progressions, which we will prove later in the course: for any coprime $a, m \in \mathbb{Z}$ there are infinitely many primes $p \equiv a \bmod m$.

