14 The Minkowski bound and finiteness results

14.1 Lattices in real vector spaces

In previous lectures we defined, for an integral domain A, the notion of an A-lattice in a finite dimensional vector space V over its fraction field K as a finitely generated A-submodule of V that spans K. We now want to specialize to the case $A=\mathbb{Z}$, in which case every A-lattice is free as a \mathbb{Z}-module (because \mathbb{Z} is a PID and a submodule of a vector space is torsion-free). Rather than working with the fraction field $K=\mathbb{Q}$ we will instead work with its archimedean completion \mathbb{R}. We now take V to be a vector space over \mathbb{R} and may regard it as a topological space isomorphic to \mathbb{R}^{n} (by Proposition 10.6, there is a unique topology on V compatible with the topology on \mathbb{R}).

Recall that a subset S of a topological group is discrete if every $s \in S$ has an open neighborhood U for which $S \cap U=\{s\}$; equivalently, the subspace topology on S is the discrete topology. A subgroup H of a topological group G is said to be cocompact if it is normal and the quotient G / H is compact.

Definition 14.1. Let V be a real vector space of finite dimension. A (full) lattice in V is a free \mathbb{Z}-module $\Lambda \subseteq V$ that spans V as a real vector space. Equivalently, Λ is a discrete cocompact subgroup of V (see Problem Set 7).

Remark 14.2. A discrete subgroup of a Hausdorff topological group is necessarily closed; see [1, III.2.1.5] for a proof. This is easy to see for lattices: \mathbb{Z} is closed in \mathbb{R} (it is the complement of a union of open intervals), so \mathbb{Z}^{n} is closed in \mathbb{R}^{n}. Given a lattice Λ in V, each \mathbb{Z}-basis for Λ determines an isomorphism of topological groups $\Lambda \simeq \mathbb{Z}^{n}$ and $V \simeq \mathbb{R}^{n}$.

Remark 14.3. You might ask why we are using the archimedean completion \mathbb{R} of \mathbb{Q} rather than some other completion \mathbb{Q}_{p} of \mathbb{Q}. The reason is that \mathbb{Z} is not a discrete subset of \mathbb{Q}_{p} (elements of \mathbb{Z} can be arbitrarily close to 0 under the p-adic metric).

As a locally compact group, $V \simeq \mathbb{R}^{n}$ has a Haar measure μ that is unique up to a scaling. Any basis u_{1}, \ldots, u_{n} for V determines a parallelepiped

$$
F\left(u_{1}, \ldots, u_{n}\right):=\left\{a_{1} u_{1}+\cdots+a_{n} u_{n}: a_{1}, \ldots, a_{n} \in[0,1)\right\}
$$

that we may view as the unit cube by taking $\varphi: V \xrightarrow{\sim} \mathbb{R}^{n}$ to be the isomorphism that maps $\left(u_{1}, \ldots, u_{n}\right)$ to the standard basis for \mathbb{R}^{n} and normalizing the Haar measure μ so that $\mu\left(F\left(u_{1}, \ldots, u_{n}\right)\right)=1$. For any measurable set $S \subseteq \mathbb{R}^{n}$ we then have $\mu_{\mathbb{R}^{n}}(S)=\mu(\varphi(S))$, where $\mu_{\mathbb{R}^{n}}$ denotes the standard Lebesgue measure on \mathbb{R}^{n}.

For any other basis e_{1}, \ldots, e_{n} of V, if we let $E=\left[e_{i j}\right]$ be the matrix whose j th column expresses $e_{j}=\sum_{i} e_{i j} u_{i}$, in terms of our standard basis u_{1}, \ldots, u_{n}, then

$$
\begin{equation*}
\mu\left(F\left(e_{1}, \ldots, e_{n}\right)\right)=|\operatorname{det} E|=\sqrt{\operatorname{det} E^{t} \operatorname{det} E}=\sqrt{\operatorname{det}\left(E^{t} E\right)}=\sqrt{\operatorname{det}\left[\left\langle e_{i}, e_{j}\right\rangle\right]_{i j}}, \tag{1}
\end{equation*}
$$

where $\left\langle e, e_{j}\right\rangle$ is the canonical inner product (the dot product) on \mathbb{R}^{n}. Here we have used the fact that the determinant of a matrix in $\mathbb{R}^{n \times n}$ is the signed volume of the parallelepiped spanned by its columns (or rows). This is a consequence of the following more general result, which is independent of the choice of basis or the normalization of μ.

Proposition 14.4. If $T: V \rightarrow V$ is a linear transformation on a real vector space $V \simeq \mathbb{R}^{n}$ with Haar measure μ, then for every measurable set S we have

$$
\begin{equation*}
\mu(T(S))=|\operatorname{det} T| \mu(S) \tag{2}
\end{equation*}
$$

Proof. See [8, Ex. 1.2.21].
If Λ is a lattice $e_{1} \mathbb{Z}+\cdots+e_{n} \mathbb{Z}$ in V, the quotient space V / Λ is a compact group that we may identify with the parallelepiped $F\left(e_{1}, \ldots, e_{n}\right) \subset V$, which forms a set of coset representatives. More generally, we make the following definition.

Definition 14.5. Let Λ be a lattice in $V \simeq \mathbb{R}^{n}$. A fundamental domain for Λ is a measurable set $F \subseteq V$ such that

$$
V=\bigsqcup_{\lambda \in \Lambda}(F+\lambda) .
$$

In other words, F is a measurable set of coset representatives for V / Λ. Fundamental domains exist: if $\Lambda=e_{1} \mathbb{Z}+\cdots+e_{n} \mathbb{Z}$ we may take the parallelepiped $F\left(e_{1}, \ldots, e_{n}\right)$.

Proposition 14.6. Let Λ be a lattice in $V \simeq \mathbb{R}^{n}$ with Haar measure μ. Then $\mu(F)=\mu(G)$ for all fundamental domains F and G for Λ.

Proof. Using the translation invariance and countable additivity of μ (note that $\Lambda \simeq \mathbb{Z}^{n}$ is a countable set) along with the fact that Λ is closed under negation, we obtain

$$
\begin{aligned}
\mu(F) & =\mu(F \cap V)=\mu\left(F \cap \bigsqcup_{\lambda \in \Lambda}(G+\lambda)\right)=\mu\left(\bigsqcup_{\lambda \in \Lambda}(F \cap(G+\lambda))\right) \\
& =\sum_{\lambda \in \Lambda} \mu(F \cap(G+\lambda))=\sum_{\lambda \in \Lambda} \mu((F-\lambda) \cap G)=\sum_{\lambda \in \Lambda} \mu((G+\lambda) \cap F) .
\end{aligned}
$$

The proposition then follows by symmetry (swap F and G in the derivation above).
Definition 14.7. Let Λ be a lattice in $V \simeq \mathbb{R}^{n}$ with Haar measure μ. The covolume $\operatorname{covol}(\Lambda)$ of Λ is the volume $\mu(F)$ of any fundamental domain F for Λ.

Note that volumes and covolumes depend on the normalization of the Haar measure μ, but ratios of them do not. Regardless of the normalization, the covolume of a lattice Λ is finite (because Λ is cocompact) and nonzero (because Λ is discrete).

Proposition 14.8. If $\Lambda^{\prime} \subseteq \Lambda$ are lattices in a real vector space V of finite dimension then

$$
\operatorname{covol}\left(\Lambda^{\prime}\right)=\left[\Lambda: \Lambda^{\prime}\right] \operatorname{covol}(\Lambda)
$$

Proof. Fix a fundamental domain F for Λ and a set of coset representatives L for $\Lambda / \Lambda^{\prime}$. Then

$$
F^{\prime}:=\bigsqcup_{\lambda \in L}(F+\lambda)
$$

is a fundamental domain for Λ^{\prime}, and $\# L=\left[\Lambda: \Lambda^{\prime}\right]=\mu\left(F^{\prime}\right) / \mu(F)$ is finite, since F^{\prime} and F both have finite nonzero measure. We then have

$$
\operatorname{covol}\left(\Lambda^{\prime}\right)=\mu\left(F^{\prime}\right)=(\# L) \mu(F)=\left[\Lambda: \Lambda^{\prime}\right] \operatorname{covol}(\Lambda)
$$

Definition 14.9. Let S be a subset of a real vector space. The set S is symmetric if it is closed under negation, and convex if for every pair of points $x, y \in S$ the line segment $\{t x+(1-t) y: t \in[0,1]\}$ between them lies in S.

Theorem 14.10 (Minkowski's Lattice Point Theorem). Let Λ be a lattice in a real vector space $V \simeq \mathbb{R}^{n}$ with Haar measure μ. If $S \subseteq V$ is a symmetric convex set such that

$$
\mu(S)>2^{n} \operatorname{covol}(\Lambda)
$$

then S contains a nonzero element of Λ.
Proof. See Problem Set 6.

14.2 The canonical inner product

Let K / \mathbb{Q} be a number field of degree n with r real places and s complex places, so that $n=r+2 s$. We then have

$$
\begin{aligned}
& K_{\mathbb{R}}:=K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s} \\
& K_{\mathbb{C}}:=K \otimes_{\mathbb{Q}} \mathbb{C} \simeq \mathbb{C}^{n}
\end{aligned}
$$

(the first isomorphism was proved in Lecture 13 and the second follows from the fact that every étale algebra over a separably closed field splits (see Example 4.30). We have a sequence of injective homomorphisms of topological groups

$$
\begin{equation*}
\mathcal{O}_{K} \hookrightarrow K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}, \tag{3}
\end{equation*}
$$

which are defined as follows:

- the map $\mathcal{O}_{K} \hookrightarrow K$ is inclusion;
- the map $K \hookrightarrow K_{\mathbb{R}}=K \otimes_{\mathbb{Q}} \mathbb{R}$ is the canonical embedding $\alpha \mapsto \alpha \otimes 1$;
- the map $K \hookrightarrow K_{\mathbb{C}}$ is $\alpha \mapsto\left(\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right)$, where $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, which factors through the map $K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ defined below;
- the map $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s} \hookrightarrow \mathbb{C}^{r} \times \mathbb{C}^{2 s} \simeq K_{\mathbb{C}}$ embeds each factor of \mathbb{R}^{r} in a corresponding factor of \mathbb{C}^{r} via inclusion and each \mathbb{C} in \mathbb{C}^{s} is mapped to $\mathbb{C} \times \mathbb{C}$ in $\mathbb{C}^{2 s}$ via $z \mapsto(z, \bar{z})$.

To better understand the last map, note that each \mathbb{C} in \mathbb{C}^{s} arises as $\mathbb{R}[\alpha]=\mathbb{R}[x] /(f) \simeq \mathbb{C}$ for some monic irreducible $f \in \mathbb{R}[x]$ of degree 2 , but when we base-change to \mathbb{C} the field $\mathbb{R}[\alpha]$ splits into the étale algebra $\mathbb{C}[x] /(x-\alpha) \times \mathbb{C}[x] /(x-\bar{\alpha}) \simeq \mathbb{C} \times \mathbb{C}$.

If we fix a \mathbb{Z}-basis for \mathcal{O}_{K}, the image of this basis is a \mathbb{Q}-basis for K, an \mathbb{R}-basis for $K_{\mathbb{R}}$, and a \mathbb{C}-basis for $K_{\mathbb{C}}$, all of which are vector spaces of dimension $n=[K: \mathbb{Q}]$. We may thus view the injections in (3) as inclusions of topological groups

$$
\mathbb{Z}^{n} \hookrightarrow \mathbb{Q}^{n} \hookrightarrow \mathbb{R}^{n} \hookrightarrow \mathbb{C}^{n} .
$$

The ring of integers \mathcal{O}_{K} is a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^{n}$, which inherits an inner product from the canonical Hermitian inner product on $K_{\mathbb{C}} \simeq \mathbb{C}^{n}$ defined by

$$
\left\langle\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right\rangle:=\sum_{i=1}^{n} a_{i} \bar{b}_{i} \in \mathbb{C} .
$$

For elements $x, y \in K \hookrightarrow K_{\mathbb{R}} \hookrightarrow K_{\mathbb{C}}$ the Hermitian inner product can be computed as

$$
\begin{equation*}
\langle x, y\rangle:=\sum_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})} \sigma(x) \overline{\sigma(y)} \in \mathbb{R}, \tag{4}
\end{equation*}
$$

which is a real number because the non-real embeddings in $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ come in complex conjugate pairs. The inner product defined in (4) is the canonical inner product on $K_{\mathbb{R}}$ (it applies to all of $K_{\mathbb{R}}$, not just the image of K in $K_{\mathbb{R}}$). The topology it induces on $K_{\mathbb{R}}$ is the same as the Euclidean topology on $\mathbb{R}^{r} \times \mathbb{C}^{s}$, but the corresponding norm \|| \| has a different normalization, as we now explain.

If we write the elements of $K_{\mathbb{C}} \simeq \mathbb{C}^{n}$ as vectors $\left(z_{\sigma}\right)$ indexed by $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$, we may identify $K_{\mathbb{R}}$ with its image in $K_{\mathbb{C}}$ as the set

$$
K_{\mathbb{R}}=\left\{\left(z_{\sigma}\right) \in K_{\mathbb{C}}: \bar{z}_{\sigma}=z_{\bar{\sigma}}\right\} .
$$

When $\sigma=\bar{\sigma}$ is a real embedding we have $z \mapsto z_{\sigma} \in \mathbb{R} \subseteq \mathbb{C}$, while for pairs of conjugate complex embeddings $(\sigma, \bar{\sigma})$ we get the embedding $z \mapsto\left(z_{\sigma}, z_{\bar{\sigma}}\right)=\left(z_{\sigma}, \bar{z}_{\sigma}\right)$ of \mathbb{C} into $\mathbb{C} \times \mathbb{C}$ noted above. Each vector $\left(z_{\sigma}\right) \in K_{\mathbb{R}}$ can be written uniquely in the form

$$
\begin{equation*}
\left(w_{1}, \ldots, w_{r}, x_{1}+i y_{1}, x_{1}-i y_{1}, \ldots, x_{s}+i y_{s}, x_{s}-i y_{s}\right) \tag{5}
\end{equation*}
$$

with $w_{i}, y_{j}, z_{j} \in \mathbb{R}$, where each z_{i} corresponds to a z_{σ} with $\sigma=\bar{\sigma}$, and each $\left(x_{j}+i y_{j}, x_{j}-i y_{j}\right)$ corresponds to a complex conjugate pair $\left(z_{\sigma}, z_{\bar{\sigma}}\right)$ with $\sigma \neq \bar{\sigma}$. The canonical inner product then becomes

$$
\left\langle z, z^{\prime}\right\rangle=\sum_{i=1}^{r} w_{i} w_{i}^{\prime}+2 \sum_{j=1}^{s}\left(x_{j} x_{j}^{\prime}+y_{j} y_{j}^{\prime}\right) .
$$

Thus if we take the w_{i}, x_{j}, y_{j} as coordinates for $R^{n} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s} \simeq K_{\mathbb{R}}$ (as \mathbb{R}-vector spaces), in order to normalize the Haar measure μ on $K_{\mathbb{R}}$ so that it is consistent with the Lebesgue measure $\mu_{\mathbb{R}^{n}}$ on \mathbb{R}^{n} we define

$$
\mu(S):=2^{s} \mu_{\mathbb{R}^{n}}(S),
$$

for any measurable set S in $K_{\mathbb{R}}$ that we view as a subset of \mathbb{R}^{n} by expressing it in w_{i}, x_{j}, y_{j} coordinates via the canonical embedding $z \mapsto\left(z_{\sigma}\right)$ as explained above.

Having fixed a normalized Haar measure μ for $K_{\mathbb{R}}$, we can now compute the covolume of the lattice \mathcal{O}_{K} in $K_{\mathbb{R}}$.

14.3 Covolumes of fractional ideals

Let K be a number field. Recall that a \mathbb{Z}-lattice in the \mathbb{Q}-vector space K is a finitely generated \mathbb{Z} module with \mathbb{Q}-span K. Every \mathbb{Z}-lattice M in K corresponds to a lattice in the \mathbb{R}-vector space $K_{\mathbb{R}}$ under the canonical embedding $K \hookrightarrow K \otimes_{\mathbb{Q}} \mathbb{R}=K_{\mathbb{R}}$: the image of M is still a finitely generated \mathbb{Z}-module, and any \mathbb{Q}-basis for K that lies in M gets mapped to an \mathbb{R}-basis for $K_{\mathbb{R}}$ that lies in the image of M. We may thus view any fractional ideal of \mathcal{O}_{K} (including \mathcal{O}_{K} itself) as a lattice in $K_{\mathbb{R}}$. We now determine the covolume of these lattices.

Proposition 14.11. Let K be a number field with ring of integers \mathcal{O}_{K}. Then

$$
\operatorname{covol}\left(\mathcal{O}_{K}\right)=\sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} .
$$

Proof. Let $e_{1}, \ldots, e_{n} \in \mathcal{O}_{K}$ be a \mathbb{Z}-basis for \mathcal{O}_{K}, let $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, and define $A:=\left[\sigma_{i}\left(e_{j}\right)\right]_{i j} \in \mathbb{C}^{n \times n}$. Viewing $\mathcal{O}_{K} \hookrightarrow K_{\mathbb{R}}$ as a lattice in $K_{\mathbb{R}}$ with basis e_{1}, \ldots, e_{n}, we may use (1) to compute $\operatorname{covol}\left(\mathcal{O}_{K}\right)^{2}=\mu\left(F\left(e_{1}, \ldots, e_{n}\right)\right)^{2}$ as

$$
\begin{aligned}
\operatorname{covol}\left(\mathcal{O}_{K}\right)^{2} & =\operatorname{det}\left[\left\langle e_{i}, e_{j}\right\rangle\right]_{i j}=\operatorname{det}\left[\sum_{k} \sigma_{k}\left(e_{i}\right) \overline{\sigma_{k}\left(e_{j}\right)}\right]_{i j} \\
& =\operatorname{det}\left(A^{\mathrm{t}} \bar{A}\right)=(\operatorname{det} A)(\overline{\operatorname{det} A}) \\
& =|\operatorname{det} A|^{2}=\left|\operatorname{disc} \mathcal{O}_{K}\right|^{2},
\end{aligned}
$$

where the last line follows from Proposition 12.6.
Recall from Remark 6.12 that for number fields K we view the absolute norm

$$
\begin{aligned}
\mathrm{N}: \mathcal{I}_{\mathcal{O}_{K}} & \rightarrow \mathcal{I}_{\mathbb{Z}} \\
I & \mapsto\left[\mathcal{O}_{K}: I\right]_{\mathbb{Z}}
\end{aligned}
$$

as having image in $\mathbb{Q}_{>0}$ by identifying $\mathrm{N}(I)=(t) \in \mathcal{I}_{\mathbb{Z}}$ with $t \in \mathbb{Q}_{>0}$ (here $\left[\mathcal{O}_{K}: I\right]_{\mathbb{Z}}$ is a module index of \mathbb{Z}-lattices in the \mathbb{Q}-vector space K, see Definitions 6.1 and 6.4). For ideals $I \subseteq \mathcal{O}_{K}$ this is just the positive integer $\left[\mathcal{O}_{K}: I\right]_{\mathbb{Z}}=\left[\mathcal{O}_{K}: I\right]$. When $I=(a)$ is a principal fractional ideal with $a \in K$, we may simply write $\mathrm{N}(a):=\mathrm{N}((a))=\left|\mathrm{N}_{K / \mathbb{Q}}(a)\right|$
Corollary 14.12. Let K be a number field and let I be a nonzero fractional ideal of \mathcal{O}_{K}. Then

$$
\operatorname{covol}(I)=\mathrm{N}(I) \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|}
$$

Proof. Let $n=[K: \mathbb{Q}]$. Since $\operatorname{covol}(b I)=b^{n} \operatorname{covol}(I)$ and $\mathrm{N}(b I)=b^{n} \mathrm{~N}(I)$ for any $b \in \mathbb{Z}_{\geq 0}$, without loss of generality we may assume $I \subseteq \mathcal{O}_{K}$ (replace I with a suitable $b I$ if not). Applying Propositions 14.8 and 14.11, we have

$$
\operatorname{covol}(I)=\left[\mathcal{O}_{K}: I\right] \operatorname{covol}\left(\mathcal{O}_{K}\right)=\mathrm{N}(I) \operatorname{covol}\left(\mathcal{O}_{K}\right)=\mathrm{N}(I) \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|}
$$

as claimed.

14.4 The Minkowski bound

Theorem 14.13 (Minkowski bound). Let K be a number field of degree $n=r+2 s$ with s complex places. Define the Minkowski constant m_{K} for K as the positive real number

$$
m_{K}:=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} .
$$

For every nonzero fractional ideal I of \mathcal{O}_{K} there is a nonzero $a \in I$ for which

$$
\mathrm{N}(a) \leq m_{K} \mathrm{~N}(I)
$$

Before proving the theorem we first prove a lemma.
Lemma 14.14. Let K be a number field of degree $n=r+2 s$ with r real and s complex places. For each $t \in \mathbb{R}_{>0}$, the volume of the convex symmetric set

$$
S_{t}:=\left\{\left(z_{\sigma}\right) \in K_{\mathbb{R}}: \sum\left|z_{\sigma}\right| \leq t\right\} \subseteq K_{\mathbb{R}}
$$

with respect to the normalized Haar measure μ on $K_{\mathbb{R}}$ is

$$
\mu\left(S_{t}\right)=2^{r} \pi^{s} \frac{t^{n}}{n!}
$$

Proof. As in (5), we may uniquely write each $\left(z_{\sigma}\right) \in \mathcal{K}_{\mathbb{R}}$ in the form

$$
\left(w_{1}, \ldots, w_{r}, x_{1}+i y_{1}, x_{1}-i y_{1} \ldots, x_{s}+i y_{s}, x_{s}-i y_{s}\right)
$$

with $w_{i}, x_{j}, y_{j} \in \mathbb{R}$. We will have $\sum_{\sigma}\left|z_{\sigma}\right| \leq t$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{r}\left|w_{i}\right|+\sum_{j=1}^{s} 2 \sqrt{\left|x_{j}\right|^{2}+\left|y_{j}\right|^{2}} \leq t \tag{6}
\end{equation*}
$$

We now compute the volume of this region in \mathbb{R}^{n} by relating it to the volume of the simplex

$$
U:=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}: \sum u_{i} \leq t \text { and } u_{i} \geq 0\right\} \subseteq \mathbb{R}^{n},
$$

which is $\mu_{\mathbb{R}^{n}}(U)=t^{n} / n$! (the volume of the standard simplex in \mathbb{R}^{n} scaled by a factor of t).
If we view all the w_{i}, x_{j}, y_{j} as fixed except the last pair $\left(x_{s}, y_{s}\right)$, then $\left(x_{s}, y_{s}\right)$ ranges over a disk of some radius $d \in[0, t / 2]$ determined by (6) (the value of d depends on the fixed values of w_{i}, x_{j}, y_{j} for $1 \leq i \leq r$ and $1 \leq j \leq s-1$). If we replace (x_{s}, y_{s}) with (u_{n-1}, u_{n}) ranging over the triangular region bounded by $u_{n-1}+u_{n} \leq 2 d$ and $u_{n-1}, u_{n} \geq 0$, we need to incorporate a factor of $\pi / 2$ to account for the difference between $\left(2 d^{2}\right) / 2=2 d^{2}$ and πd^{2}; repeat this s times. Similarly, we now hold everything but w_{r} fixed and replace w_{r} ranging over $[-d, d]$ for some $d \in[0, t]$ with u_{r} ranging over $[0, d]$, and incorporate a factor of 2 to account for this change of variable; repeat r times. We then have

$$
\mu\left(S_{t}\right)=2^{s} \mu_{\mathbb{R}^{n}}\left(S_{t}\right)=2^{s}\left(\frac{\pi}{2}\right)^{s} 2^{r} \mu_{\mathbb{R}^{n}}(U)=2^{r} \pi^{s} \frac{t^{n}}{n!}
$$

as desired. This completes the proof of the lemma.
Proof of Theorem 14.13. Let I be a nonzero fractional ideal of \mathcal{O}_{K}. By Theorem 14.10 and Corollary 14.12, if we choose t so that

$$
\mu\left(S_{t}\right)>2^{n} \operatorname{covol}(I)=2^{n} \mathrm{~N}(I) \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|},
$$

then S_{t} will contain a nonzero element $a \in I$ satisfying

$$
\sum_{\sigma}|\sigma(a)| \leq t
$$

where σ ranges over the n elements of $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$. By Lemma 14.14, we want t to satisfy

$$
2^{r} \pi^{s} \frac{t^{n}}{n!}=\mu\left(S_{t}\right)>2^{n} \mathrm{~N}(I) \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|},
$$

equivalently,

$$
t^{n}>\frac{2^{n-r} n!}{\pi^{s}} N(I) \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|}=n!\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} \mathrm{N}(I)=n^{n} m_{K} \mathrm{~N}(I)
$$

Let us now pick t so that $\left(\frac{t}{n}\right)^{n}>m_{K} \mathrm{~N}(I)$. Then S_{t} contains $a \in I$ with $\mathrm{N}(a) \leq t$ Recalling that the geometric mean is bounded above by the arithmetic mean, we then have

$$
\mathrm{N}(a)=\left(\mathrm{N}(a)^{1 / n}\right)^{n}=\left(\prod_{\sigma}|\sigma(a)|^{1 / n}\right)^{n} \leq\left(\frac{1}{n} \sum_{\sigma}|\sigma(a)|\right)^{n} \leq\left(\frac{t}{n}\right)^{n}
$$

Taking the limit as $\left(\frac{t}{n}\right)^{n} \rightarrow m_{K} \mathrm{~N}(I)$ from above yields $\mathrm{N}(a) \leq m_{K} \mathrm{~N}(I)$.

14.5 Finiteness of the ideal class group

Recall that the ideal class group $\operatorname{cl} \mathcal{O}_{K}$ is the quotient of the ideal group of \mathcal{O}_{K} by its subgroup of principal fractional ideals. We now use the Minkowski bound to prove that every ideal class $[I] \in \operatorname{cl} \mathcal{O}_{K}$ can be represented by an ideal $I \subseteq \mathcal{O}_{K}$ of small norm. It will then follow that the ideal class group is finite.

Theorem 14.15. Let K be a number field. Every ideal class in $\operatorname{cl} \mathcal{O}_{K}$ contains an ideal $I \subseteq \mathcal{O}_{K}$ of absolute norm $\mathrm{N}(I) \leq m_{K}$, where m_{K} is the Minkowski constant for K.

Proof. Let $[J]$ be an ideal class of \mathcal{O}_{K} represented by the nonzero fractional ideal J. By Theorem 14.13, the fractional ideal J^{-1} contains a nonzero element a for which

$$
\mathrm{N}(a) \leq m_{K} \mathrm{~N}\left(J^{-1}\right)=m_{K} \mathrm{~N}(J)^{-1},
$$

and therefore $\mathrm{N}(a J)=\mathrm{N}(a) \mathrm{N}(J) \leq m_{K}$. We have $a \in J^{-1}$, thus $a J \subseteq J^{-1} J=\mathcal{O}_{K}$, so $I=a J$ is an \mathcal{O}_{K}-ideal in the ideal class $[J]$ with $\mathrm{N}(I) \leq m_{K}$ as desired.

Lemma 14.16. Let K be a number field and let $M>1$ be a real number. The set of ideals $I \subseteq \mathcal{O}_{K}$ with $\mathrm{N}(I) \leq M$ is finite.

Proof 1. As a lattice in $K_{\mathbb{R}} \simeq \mathbb{R}^{n}$, the additive group $\mathcal{O}_{K} \simeq \mathbb{Z}^{n}$ has only finitely many subgroups I of index m for each positive integer $m \leq M$, since $\left[\mathbb{Z}^{n}: I\right]=m$ implies

$$
(m \mathbb{Z})^{n} \subseteq I \subseteq \mathbb{Z}^{n}
$$

and $(m \mathbb{Z})^{n}$ has finite index $m^{n}=\left[\mathbb{Z}^{n}: m \mathbb{Z}^{n}\right]=[\mathbb{Z}: m \mathbb{Z}]^{n}$ in \mathbb{Z}^{n}.
The proof of Lemma 14.16 is effective: the number of ideals $I \subseteq \mathcal{O}_{K}$ with $\mathrm{N}(I) \leq M$ clearly cannot exceed M^{n+1}. But in fact we can give a much better bound than this.

Proof 2. Let I be an ideal of absolute norm $\mathrm{N}(I) \leq M$ and let $I=\mathfrak{p}_{1} \cdots \mathfrak{p}_{k}$ be its factorization into (not necessarily distinct) prime ideals. Then $M \geq \mathrm{N}(I)=\mathrm{N}\left(\mathfrak{p}_{1}\right) \cdots \mathrm{N}\left(\mathfrak{p}_{k}\right) \geq 2^{k}$, since the norm of each \mathfrak{p}_{i} is a prime power, and in particular, at least 2 . It follows that $k \leq \log _{2} M$ is bounded, independent of I. Each prime ideal \mathfrak{p} lies above some prime $p \leq M$, of which there are $\pi(M) \approx M / \log M \leq M$ (here $\pi(x)$ is the prime counting function), and for each prime p the number of primes $\mathfrak{p} \mid p$ is at most n. Thus there are at most $(n \pi(M))^{\log _{2} M} \leq(n M)^{\log _{2} M}$ ideals of norm at most M in \mathcal{O}_{K}.

Corollary 14.17. Let K be a number field. The ideal class group of \mathcal{O}_{K} is finite.
Proof. By Theorem 14.15, each ideal class is represented by an ideal of norm at most m_{K}, and distinct ideal classes must be represented by distinct ideals. By Lemma 14.16, the number of such ideals is finite.

Remark 14.18. For imaginary quadratic fields $K=\mathbb{Q}(\sqrt{-d})$ it is known that the class number $h_{K}:=\# \mathrm{cl} \mathcal{O}_{K}$ tends to infinity as $d \rightarrow \infty$ ranges over square-free integers. This was conjectured by Gauss in his Disquisitiones Arithmeticae [3] and proved by Heilbronn [5] in 1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [6].

This implies that there are only a finite number of imaginary quadratic fields with any particular class number. It was conjectured by Gauss that there are exactly 9 imaginary quadratic fields with class number one, but this was not proved until the 20th century
by Stark [7] and Heegner [4]. ${ }^{1}$ Complete lists of imaginary quadratic fields for each class number $h_{K} \leq 100$ are now available [9].

The situation for real quadratic fields is quite different; it is generally believed that there are infinitely many real quadratic fields with class number $1 .{ }^{2}$

Corollary 14.19. Let K be a number field of degree n with s complex places. Then

$$
\left|\operatorname{disc} \mathcal{O}_{K}\right| \geq\left(\frac{n^{n}}{n!}\right)^{2}\left(\frac{\pi}{4}\right)^{2 s}>\frac{1}{2 \pi n}\left(\frac{\pi e^{2}}{4}\right)^{n}
$$

Proof. The absolute norm of an integral ideal is a positive integer. By Theorem 14.15,

$$
m_{K}=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|} \geq 1
$$

The first lower bound on $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ follows from $s \leq n / 2$, and the second follows from

$$
n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

an explicit version of Stirling's approximation.
We note that $\pi e^{2} / 4>5.8$, so the minimum value of $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ increases exponentially with $n=[K: \mathbb{Q}]$. The lower bounds for $n \in[2,7]$ given by the corollary are listed below, along with the least value of $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ that actually occurs. As can be seen in the table, $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ appears to grow substantially faster than the corollary suggests. Better lower bounds can be proved using more advanced techniques, but a significant gap still remains.

	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
lower bound from Corollary 14.19	3	11	46	210	1014	5014
minimum value of \mid disc $\mathcal{O}_{K} \mid$	3	23	275	4511	92799	2306599

Corollary 14.20. If K is a number field other than \mathbb{Q} then $\left|\operatorname{disc} \mathcal{O}_{K}\right|>1$. Equivalently, there are no nontrivial unramified extensions of \mathbb{Q}.

Theorem 14.21. For $M \in \mathbb{R}$ the set of number fields K with $\left|\operatorname{disc} \mathcal{O}_{K}\right|<M$ is finite.
Proof. Since we know that $\left|\operatorname{disc} \mathcal{O}_{K}\right| \rightarrow \infty$ as $n \rightarrow \infty$, it suffices to prove this for each fixed degree $n=[K: \mathbb{Q}]$.

Case 1: Let K be a totally real field (so every place $v \mid \infty$ is real) with $\left|\operatorname{disc} \mathcal{O}_{K}\right|<M$. Then $r=n$ and $s=0$, so $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s}=\mathbb{R}^{n}$. Consider the convex symmetric set

$$
S:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in K_{\mathbb{R}} \simeq \mathbb{R}^{n}:\left|x_{1}\right| \leq \sqrt{M} \text { and }\left|x_{i}\right|<1 \text { for } i>1\right\} .
$$

Then

$$
\mu(S)=2 \sqrt{M} 2^{n-1}=2^{n} \sqrt{M}>2^{n} \sqrt{\left|\operatorname{disc} \mathcal{O}_{K}\right|}=2^{n} \operatorname{covol}\left(\mathcal{O}_{K}\right)
$$

[^0]so S contains a nonzero element $a \in \mathcal{O}_{K} \subseteq K \hookrightarrow K_{\mathbb{R}}$ that we may write as $a=\left(a_{\sigma}\right)=$ $\left(\sigma_{1}(a), \ldots, \sigma_{n}(a)\right)$, where the σ_{i} are the n embeddings of K into \mathbb{C}, all of which are real embeddings. We have
$$
\mathrm{N}(a)=\left|\prod \sigma_{i}(a)\right| \geq 1
$$
and $\left|a_{2}\right|, \ldots,\left|a_{n}\right|<1$, so $\left|a_{1}\right|>1>\left|a_{i}\right|$ for $i=2, \ldots, n$. In particular, $a_{1} \neq a_{i}$ for any $i>1$.
We now claim that $K=\mathbb{Q}(a)$. If not, each $a_{i}=\sigma_{i}(a)$ would be repeated $[K: \mathbb{Q}(a)]>1$ times in the vector $\left(a_{1}, \ldots, a_{n}\right)$, since there must be $[K: \mathbb{Q}(a)]$ elements of $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ that fix $\mathbb{Q}(a)$, namely, those lying in the kernel of the map $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C}) \rightarrow \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}(a), \mathbb{C})$ induced by restriction. But this is impossible since $a_{i} \neq a_{1}$ for $i \neq 1$.

The minimal polynomial $f \in \mathbb{Z}[x]$ of a is a monic irreducible polynomial of degree n. The roots of $f(x)$ in \mathbb{C} are precisely the $a_{i}=\sigma_{i}(a) \in \mathbb{R}$, all of which are bounded by $\left|a_{i}\right| \leq \sqrt{M}$. The coefficients of $f(x)$ are elementary symmetric functions of its roots, hence also bounded in absolute value, and they are integers, so there are only finitely many possibilities for $f(x)$, given the bound M, hence only finitely many totally real number fields K of degree n.

Case 2: K has r real and $s>0$ complex places, and $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s}$. Now let

$$
S:=\left\{\left(w_{1}, \ldots, w_{r}, z_{1}, \ldots, z_{s}\right) \in K_{\mathbb{R}}:\left|z_{1}\right|^{2}<c \sqrt{M} \text { and }\left|w_{i}\right|,\left|z_{j}\right|<1(j>1)\right\}
$$

with c chosen so that $\mu(S)>2^{n} \operatorname{covol}\left(\mathcal{O}_{K}\right)$ (the exact value of c depends on s and n). The argument now proceeds as in case 1: we get a nonzero $a \in \mathcal{O}_{K} \cap S$ with $K=\mathbb{Q}(a)$, and only a finite number of possible minimal polynomials $f \in \mathbb{Z}[x]$ for a.

Lemma 14.22. Let K be a number field of degree n. For each prime $p \in \mathbb{Z}$ we have

$$
v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq n\left(\log _{p} n+1\right)-1
$$

In particular, $v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq n\left(\log _{2} n+1\right)-1$ for all primes $p \in \mathbb{Z}$.
Proof. We have

$$
\left|\operatorname{disc} \mathcal{O}_{K}\right|_{p}=\left|N_{K / \mathbb{Q}}\left(\mathcal{D}_{K / \mathbb{Q}}\right)\right|_{p}=\prod_{v \mid p}\left|\mathcal{D}_{K_{v} / \mathbb{Q}_{p}}\right|_{v},
$$

where $\mathcal{D}_{K_{v} / \mathbb{Q}_{p}}$ denotes the different ideal. It follows from Theorem 12.26 that

$$
v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq \sum_{v \mid p}\left(e_{v}-1+e_{v} v_{p}\left(e_{v}\right)\right),
$$

where e_{v} is the ramification index of K_{v} / \mathbb{Q}_{p}. We have $\sum_{v \mid p} e_{v} \leq n$ and $v_{p}\left(e_{v}\right) \leq \log _{p}(n)$, so

$$
v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right) \leq n\left(\log _{p} n+1\right)-1 .
$$

Remark 14.23. The bound in Lemma 14.22 is tight; it is achieved by $K=\mathbb{Q}[x] /\left(x^{p^{e}}-p\right)$, for example.

Theorem 14.24 (Hermite). Let S be a finite set of places of \mathbb{Q}, and let $n \in \mathbb{Z} \mathbb{Z}_{>1}$. The number of extensions K / \mathbb{Q} of degree n unramified outside of S is finite.

Proof. By the lemma, since n is fixed, the valuation $v_{p}\left(\operatorname{disc} \mathcal{O}_{K}\right)$ is bounded for each $p \in S$ and most be zero for $p \notin S$. Thus $\left|\operatorname{disc} \mathcal{O}_{K}\right|$ is bounded and the theorem then follows from Proposition 14.21.

References

[1] Nicolas Bourbaki, General Topology: Chapters 1-4, Springer, 1995.
[2] Henri Cohen and Hendrik W. Lenstra Jr., Heuristics on class groups of number fields, in Number Theory (Noordwijkerhout 1983), Lecture Notes in Mathematics 1068, Springer, 1984, 33-62.
[3] Carl F. Gauss, Disquisitiones Arithmeticae, Göttingen (1801), English translation by Arthur A. Clark, revised by William C. Waterhouse, Spring-Verlag 1986 reprint of Yale University Press 1966 edition.
[4] Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227253.
[5] Hans Heilbronn, On the class number in imaginary quadratic fields, Quart. J. of Math. Oxford 5 (1934), 150-160.
[6] Joseph Oesterlé, La probléme de Gauss sur le nombre de classes, Enseign. Math. 34 (1988), 43-67.
[7] Harold Stark, A complete determination of the complex quadratic fields of class-number one, Mich. Math. J. 14 (1967), 1-27.
[8] Terence Tao, An introduction to measure theory, Graduate Studies in Mathematics 126, AMS, 2010.
[9] Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), 907-938.

[^0]: ${ }^{1}$ Heegner's 1952 result [4] was essentially correct but contained some gaps that prevented it from being generally accepted until 1967 when Stark gave a complete proof in [7].
 ${ }^{2}$ In fact it is conjectured that $h_{K}=1$ for approximately 75.446% of real quadratic fields with prime discriminant; this follows from the Cohen-Lenstra heuristics [2].

