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14 The Minkowski bound and finiteness results

14.1 Lattices in real vector spaces

In previous lectures we defined, for an integral domain A, the notion of an A-lattice in a finite
dimensional vector space V over its fraction field K as a finitely generated A-submodule
of V that spans K. We now want to specialize to the case A = Z, in which case every
A-lattice is free as a Z-module (because Z is a PID and a submodule of a vector space is
torsion-free). Rather than working with the fraction field K = Q we will instead work with
its archimedean completion R. We now take V to be a vector space over R and may regard
it as a topological space isomorphic to Rn (by Proposition 10.6, there is a unique topology
on V compatible with the topology on R).

Recall that a subset S of a topological group is discrete if every s ∈ S has an open
neighborhood U for which S ∩ U = {s}; equivalently, the subspace topology on S is the
discrete topology. A subgroup H of a topological group G is said to be cocompact if it is
normal and the quotient G/H is compact.

Definition 14.1. Let V be a real vector space of finite dimension. A (full) lattice in V is
a free Z-module Λ ⊆ V that spans V as a real vector space. Equivalently, Λ is a discrete
cocompact subgroup of V (see Problem Set 7).

Remark 14.2. A discrete subgroup of a Hausdorff topological group is necessarily closed;
see [1, III.2.1.5] for a proof. This is easy to see for lattices: Z is closed in R (it is the
complement of a union of open intervals), so Zn is closed in Rn. Given a lattice Λ in V ,
each Z-basis for Λ determines an isomorphism of topological groups Λ ' Zn and V ' Rn.

Remark 14.3. You might ask why we are using the archimedean completion R of Q rather
than some other completion Qp of Q. The reason is that Z is not a discrete subset of Qp

(elements of Z can be arbitrarily close to 0 under the p-adic metric).

As a locally compact group, V ' Rn has a Haar measure µ that is unique up to a
scaling. Any basis u1, . . . , un for V determines a parallelepiped

F (u1, . . . , un) := {a1u1 + · · ·+ anun : a1, . . . , an ∈ [0, 1)}

that we may view as the unit cube by taking ϕ : V
∼→ Rn to be the isomorphism that

maps (u1, . . . , un) to the standard basis for Rn and normalizing the Haar measure µ so that
µ(F (u1, . . . , un)) = 1. For any measurable set S ⊆ Rn we then have µRn(S) = µ(ϕ(S)),
where µRn denotes the standard Lebesgue measure on Rn.

For any other basis e1, . . . , en of V , if we let E = [eij ] be the matrix whose jth column
expresses ej =

∑
i eijui, in terms of our standard basis u1, . . . , un, then

µ(F (e1, . . . , en)) = |detE| =
√

detEt detE =
√

det(EtE) =
√

det[〈ei, ej〉]ij , (1)

where 〈e,ej〉 is the canonical inner product (the dot product) on Rn. Here we have used the
fact that the determinant of a matrix in Rn×n is the signed volume of the parallelepiped
spanned by its columns (or rows). This is a consequence of the following more general
result, which is independent of the choice of basis or the normalization of µ.
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Proposition 14.4. If T : V → V is a linear transformation on a real vector space V ' Rn
with Haar measure µ, then for every measurable set S we have

µ(T (S)) = |detT |µ(S). (2)

Proof. See [8, Ex. 1.2.21].

If Λ is a lattice e1Z + · · · + enZ in V , the quotient space V/Λ is a compact group
that we may identify with the parallelepiped F (e1, . . . , en) ⊂ V , which forms a set of coset
representatives. More generally, we make the following definition.

Definition 14.5. Let Λ be a lattice in V ' Rn. A fundamental domain for Λ is a measurable
set F ⊆ V such that

V =
⊔
λ∈Λ

(F + λ).

In other words, F is a measurable set of coset representatives for V/Λ. Fundamental domains
exist: if Λ = e1Z + · · ·+ enZ we may take the parallelepiped F (e1, . . . , en).

Proposition 14.6. Let Λ be a lattice in V ' Rn with Haar measure µ. Then µ(F ) = µ(G)
for all fundamental domains F and G for Λ.

Proof. Using the translation invariance and countable additivity of µ (note that Λ ' Zn is
a countable set) along with the fact that Λ is closed under negation, we obtain

µ(F ) = µ(F ∩ V ) = µ

(
F ∩

⊔
λ∈Λ

(G+ λ)

)
= µ

(⊔
λ∈Λ

(F ∩ (G+ λ))

)
=
∑
λ∈Λ

µ(F ∩ (G+ λ)) =
∑
λ∈Λ

µ((F − λ) ∩G) =
∑
λ∈Λ

µ((G+ λ) ∩ F ).

The proposition then follows by symmetry (swap F and G in the derivation above).

Definition 14.7. Let Λ be a lattice in V ' Rn with Haar measure µ. The covolume
covol(Λ) of Λ is the volume µ(F ) of any fundamental domain F for Λ.

Note that volumes and covolumes depend on the normalization of the Haar measure µ,
but ratios of them do not. Regardless of the normalization, the covolume of a lattice Λ is
finite (because Λ is cocompact) and nonzero (because Λ is discrete).

Proposition 14.8. If Λ′ ⊆ Λ are lattices in a real vector space V of finite dimension then

covol(Λ′) = [Λ : Λ′] covol(Λ)

Proof. Fix a fundamental domain F for Λ and a set of coset representatives L for Λ/Λ′.
Then

F ′ :=
⊔
λ∈L

(F + λ)

is a fundamental domain for Λ′, and #L = [Λ : Λ′] = µ(F ′)/µ(F ) is finite, since F ′ and F
both have finite nonzero measure. We then have

covol(Λ′) = µ(F ′) = (#L)µ(F ) = [Λ : Λ′] covol(Λ).
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Definition 14.9. Let S be a subset of a real vector space. The set S is symmetric if it
is closed under negation, and convex if for every pair of points x, y ∈ S the line segment
{tx+ (1− t)y : t ∈ [0, 1]} between them lies in S.

Theorem 14.10 (Minkowski’s Lattice Point Theorem). Let Λ be a lattice in a real
vector space V ' Rn with Haar measure µ. If S ⊆ V is a symmetric convex set such that

µ(S) > 2n covol(Λ)

then S contains a nonzero element of Λ.

Proof. See Problem Set 6.

14.2 The canonical inner product

Let K/Q be a number field of degree n with r real places and s complex places, so that
n = r + 2s. We then have

KR := K ⊗Q R ' Rr × Cs

KC := K ⊗Q C ' Cn

(the first isomorphism was proved in Lecture 13 and the second follows from the fact that
every étale algebra over a separably closed field splits (see Example 4.30). We have a
sequence of injective homomorphisms of topological groups

OK ↪→ K ↪→ KR ↪→ KC, (3)

which are defined as follows:

• the map OK ↪→ K is inclusion;

• the map K ↪→ KR = K ⊗Q R is the canonical embedding α 7→ α⊗ 1;

• the map K ↪→ KC is α 7→ (σ1(α), . . . , σn(α)), where HomQ(K,C) = {σ1, . . . , σn},
which factors through the map KR ↪→ KC defined below;

• the map KR ' Rr×Cs ↪→ Cr×C2s ' KC embeds each factor of Rr in a corresponding
factor of Cr via inclusion and each C in Cs is mapped to C×C in C2s via z 7→ (z, z̄).

To better understand the last map, note that each C in Cs arises as R[α] = R[x]/(f) ' C
for some monic irreducible f ∈ R[x] of degree 2, but when we base-change to C the field
R[α] splits into the étale algebra C[x]/(x− α)× C[x]/(x− ᾱ) ' C× C.

If we fix a Z-basis for OK , the image of this basis is a Q-basis for K, an R-basis for KR,
and a C-basis for KC, all of which are vector spaces of dimension n = [K : Q]. We may
thus view the injections in (3) as inclusions of topological groups

Zn ↪→ Qn ↪→ Rn ↪→ Cn.

The ring of integers OK is a lattice in KR ' Rn, which inherits an inner product from
the canonical Hermitian inner product on KC ' Cn defined by

〈(a1, . . . , an), (b1, . . . , bn)〉 :=

n∑
i=1

aib̄i ∈ C.
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For elements x, y ∈ K ↪→ KR ↪→ KC the Hermitian inner product can be computed as

〈x, y〉 :=
∑

σ∈HomQ(K,C)

σ(x)σ(y) ∈ R, (4)

which is a real number because the non-real embeddings in HomQ(K,C) come in complex
conjugate pairs. The inner product defined in (4) is the canonical inner product on KR (it
applies to all of KR, not just the image of K in KR). The topology it induces on KR is the
same as the Euclidean topology on Rr×Cs, but the corresponding norm ‖ ‖ has a different
normalization, as we now explain.

If we write the elements of KC ' Cn as vectors (zσ) indexed by σ ∈ HomQ(K,C), we
may identify KR with its image in KC as the set

KR = {(zσ) ∈ KC : z̄σ = zσ̄}.

When σ = σ̄ is a real embedding we have z 7→ zσ ∈ R ⊆ C, while for pairs of conjugate
complex embeddings (σ, σ̄) we get the embedding z 7→ (zσ, zσ̄) = (zσ, z̄σ) of C into C × C
noted above. Each vector (zσ) ∈ KR can be written uniquely in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1, . . . , xs + iys, xs − iys), (5)

with wi, yj , zj ∈ R, where each zi corresponds to a zσ with σ = σ̄, and each (xj+iyj , xj−iyj)
corresponds to a complex conjugate pair (zσ, zσ̄) with σ 6= σ̄. The canonical inner product
then becomes

〈z, z′〉 =

r∑
i=1

wiw
′
i + 2

s∑
j=1

(xjx
′
j + yjy

′
j).

Thus if we take the wi, xj , yj as coordinates for Rn ' Rr × Cs ' KR (as R-vector spaces),
in order to normalize the Haar measure µ on KR so that it is consistent with the Lebesgue
measure µRn on Rn we define

µ(S) := 2sµRn(S),

for any measurable set S in KR that we view as a subset of Rn by expressing it in wi, xj , yj
coordinates via the canonical embedding z 7→ (zσ) as explained above.

Having fixed a normalized Haar measure µ for KR, we can now compute the covolume
of the lattice OK in KR.

14.3 Covolumes of fractional ideals

Let K be a number field. Recall that a Z-lattice in the Q-vector space K is a finitely
generated Z module with Q-span K. Every Z-lattice M in K corresponds to a lattice in
the R-vector space KR under the canonical embedding K ↪→ K ⊗Q R = KR: the image of
M is still a finitely generated Z-module, and any Q-basis for K that lies in M gets mapped
to an R-basis for KR that lies in the image of M . We may thus view any fractional ideal
of OK (including OK itself) as a lattice in KR. We now determine the covolume of these
lattices.

Proposition 14.11. Let K be a number field with ring of integers OK . Then

covol(OK) =
√
|discOK |.
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Proof. Let e1, . . . , en ∈ OK be a Z-basis for OK , let HomQ(K,C) = {σ1, . . . , σn}, and define
A := [σi(ej)]ij ∈ Cn×n. Viewing OK ↪→ KR as a lattice in KR with basis e1, . . . , en, we may
use (1) to compute covol(OK)2 = µ(F (e1, . . . , en))2 as

covol(OK)2 = det[〈ei, ej〉]ij = det

[∑
k

σk(ei)σk(ej)

]
ij

= det(AtA) = (detA)(detA)

= |detA|2 = |discOK |2,

where the last line follows from Proposition 12.6.

Recall from Remark 6.12 that for number fields K we view the absolute norm

N: IOK
→ IZ

I 7→ [OK : I]Z

as having image in Q>0 by identifying N(I) = (t) ∈ IZ with t ∈ Q>0 (here [OK : I]Z is a
module index of Z-lattices in the Q-vector space K, see Definitions 6.1 and 6.4). For ideals
I ⊆ OK this is just the positive integer [OK : I]Z = [OK : I]. When I = (a) is a principal
fractional ideal with a ∈ K, we may simply write N(a) := N((a)) = |NK/Q(a)|

Corollary 14.12. Let K be a number field and let I be a nonzero fractional ideal of OK .
Then

covol(I) = N(I)
√
|discOK |

Proof. Let n = [K :Q]. Since covol(bI) = bn covol(I) and N(bI) = bnN(I) for any b ∈ Z≥0,
without loss of generality we may assume I ⊆ OK (replace I with a suitable bI if not).
Applying Propositions 14.8 and 14.11, we have

covol(I) = [OK :I] covol(OK) = N(I) covol(OK) = N(I)
√
| discOK |

as claimed.

14.4 The Minkowski bound

Theorem 14.13 (Minkowski bound). Let K be a number field of degree n = r + 2s with s
complex places. Define the Minkowski constant mK for K as the positive real number

mK :=
n!

nn

(
4

π

)s√
|discOK |.

For every nonzero fractional ideal I of OK there is a nonzero a ∈ I for which

N(a) ≤ mKN(I).

Before proving the theorem we first prove a lemma.

Lemma 14.14. Let K be a number field of degree n = r + 2s with r real and s complex
places. For each t ∈ R>0, the volume of the convex symmetric set

St :=
{

(zσ) ∈ KR :
∑
|zσ| ≤ t

}
⊆ KR

with respect to the normalized Haar measure µ on KR is

µ(St) = 2rπs
tn

n!
.
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Proof. As in (5), we may uniquely write each (zσ) ∈ KR in the form

(w1, . . . , wr, x1 + iy1, x1 − iy1 . . . , xs + iys, xs − iys)

with wi, xj , yj ∈ R. We will have
∑

σ |zσ| ≤ t if and only if

r∑
i=1

|wi|+
s∑
j=1

2
√
|xj |2 + |yj |2 ≤ t. (6)

We now compute the volume of this region in Rn by relating it to the volume of the simplex

U := {(u1, . . . , un) ∈ Rn :
∑

ui ≤ t and ui ≥ 0} ⊆ Rn,

which is µRn(U) = tn/n! (the volume of the standard simplex in Rn scaled by a factor of t).
If we view all the wi, xj , yj as fixed except the last pair (xs, ys), then (xs, ys) ranges over

a disk of some radius d ∈ [0, t/2] determined by (6) (the value of d depends on the fixed
values of wi, xj , yj for 1 ≤ i ≤ r and 1 ≤ j ≤ s − 1). If we replace (xs, ys) with (un−1, un)
ranging over the triangular region bounded by un−1 + un ≤ 2d and un−1, un ≥ 0, we need
to incorporate a factor of π/2 to account for the difference between (2d2)/2 = 2d2 and πd2;
repeat this s times. Similarly, we now hold everything but wr fixed and replace wr ranging
over [−d, d] for some d ∈ [0, t] with ur ranging over [0, d], and incorporate a factor of 2 to
account for this change of variable; repeat r times. We then have

µ(St) = 2sµRn(St) = 2s
(π

2

)s
2rµRn(U) = 2rπs

tn

n!

as desired. This completes the proof of the lemma.

Proof of Theorem 14.13. Let I be a nonzero fractional ideal of OK . By Theorem 14.10 and
Corollary 14.12, if we choose t so that

µ(St) > 2n covol(I) = 2nN(I)
√
| discOK |,

then St will contain a nonzero element a ∈ I satisfying∑
σ

|σ(a)| ≤ t,

where σ ranges over the n elements of HomQ(K,C). By Lemma 14.14, we want t to satisfy

2rπs
tn

n!
= µ(St) > 2nN(I)

√
|discOK |,

equivalently,

tn >
2n−rn!

πs
N(I)

√
| discOK | = n!

(
4

π

)s√
|discOK |N(I) = nnmKN(I).

Let us now pick t so that
(
t
n

)n
> mKN(I). Then St contains a ∈ I with N(a) ≤ t Recalling

that the geometric mean is bounded above by the arithmetic mean, we then have

N(a) =
(

N(a)1/n
)n

=

(∏
σ

|σ(a)|1/n
)n
≤

(
1

n

∑
σ

|σ(a)|

)n
≤
(
t

n

)n
,

Taking the limit as
(
t
n

)n → mKN(I) from above yields N(a) ≤ mKN(I).
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14.5 Finiteness of the ideal class group

Recall that the ideal class group clOK is the quotient of the ideal group of OK by its
subgroup of principal fractional ideals. We now use the Minkowski bound to prove that
every ideal class [I] ∈ clOK can be represented by an ideal I ⊆ OK of small norm. It will
then follow that the ideal class group is finite.

Theorem 14.15. Let K be a number field. Every ideal class in clOK contains an ideal
I ⊆ OK of absolute norm N(I) ≤ mK , where mK is the Minkowski constant for K.

Proof. Let [J ] be an ideal class of OK represented by the nonzero fractional ideal J . By
Theorem 14.13, the fractional ideal J−1 contains a nonzero element a for which

N(a) ≤ mKN(J−1) = mKN(J)−1,

and therefore N(aJ) = N(a)N(J) ≤ mK . We have a ∈ J−1, thus aJ ⊆ J−1J = OK , so
I = aJ is an OK-ideal in the ideal class [J ] with N(I) ≤ mK as desired.

Lemma 14.16. Let K be a number field and let M > 1 be a real number. The set of ideals
I ⊆ OK with N(I) ≤M is finite.

Proof 1. As a lattice in KR ' Rn, the additive group OK ' Zn has only finitely many
subgroups I of index m for each positive integer m ≤M , since [Zn :I] = m implies

(mZ)n ⊆ I ⊆ Zn,

and (mZ)n has finite index mn = [Zn :mZn] = [Z :mZ]n in Zn.

The proof of Lemma 14.16 is effective: the number of ideals I ⊆ OK with N(I) ≤ M
clearly cannot exceed Mn+1. But in fact we can give a much better bound than this.

Proof 2. Let I be an ideal of absolute norm N(I) ≤M and let I = p1 · · · pk be its factoriza-
tion into (not necessarily distinct) prime ideals. Then M ≥ N(I) = N(p1) · · ·N(pk) ≥ 2k,
since the norm of each pi is a prime power, and in particular, at least 2. It follows that
k ≤ log2M is bounded, independent of I. Each prime ideal p lies above some prime p ≤M ,
of which there are π(M) ≈ M/ logM ≤ M (here π(x) is the prime counting function),
and for each prime p the number of primes p|p is at most n. Thus there are at most
(nπ(M))log2M ≤ (nM)log2M ideals of norm at most M in OK .

Corollary 14.17. Let K be a number field. The ideal class group of OK is finite.

Proof. By Theorem 14.15, each ideal class is represented by an ideal of norm at most mK ,
and distinct ideal classes must be represented by distinct ideals. By Lemma 14.16, the
number of such ideals is finite.

Remark 14.18. For imaginary quadratic fields K = Q(
√
−d) it is known that the class

number hK := # clOK tends to infinity as d → ∞ ranges over square-free integers. This
was conjectured by Gauss in his Disquisitiones Arithmeticae [3] and proved by Heilbronn [5]
in 1934; the first fully explicit lower bound was obtained by Oesterlé in 1988 [6].

This implies that there are only a finite number of imaginary quadratic fields with any
particular class number. It was conjectured by Gauss that there are exactly 9 imaginary
quadratic fields with class number one, but this was not proved until the 20th century
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by Stark [7] and Heegner [4].1 Complete lists of imaginary quadratic fields for each class
number hK ≤ 100 are now available [9].

The situation for real quadratic fields is quite different; it is generally believed that there
are infinitely many real quadratic fields with class number 1.2

Corollary 14.19. Let K be a number field of degree n with s complex places. Then

| discOK | ≥
(
nn

n!

)2 (π
4

)2s
>

1

2πn

(
πe2

4

)n
.

Proof. The absolute norm of an integral ideal is a positive integer. By Theorem 14.15,

mK =
n!

nn

(
4

π

)s√
|discOK | ≥ 1.

The first lower bound on |discOK | follows from s ≤ n/2, and the second follows from

n! ≥
√

2πn
(n
e

)n
,

an explicit version of Stirling’s approximation.

We note that πe2/4 > 5.8, so the minimum value of |discOK | increases exponentially
with n = [K :Q]. The lower bounds for n ∈ [2, 7] given by the corollary are listed below,
along with the least value of |discOK | that actually occurs. As can be seen in the table,
|discOK | appears to grow substantially faster than the corollary suggests. Better lower
bounds can be proved using more advanced techniques, but a significant gap still remains.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

lower bound from Corollary 14.19 3 11 46 210 1014 5014
minimum value of | discOK | 3 23 275 4511 92799 2306599

Corollary 14.20. If K is a number field other than Q then | discOK | > 1. Equivalently,
there are no nontrivial unramified extensions of Q.

Theorem 14.21. For M ∈ R the set of number fields K with |discOK | < M is finite.

Proof. Since we know that |discOK | → ∞ as n→∞, it suffices to prove this for each fixed
degree n = [K : Q].

Case 1: Let K be a totally real field (so every place v|∞ is real) with | discOK | < M .
Then r = n and s = 0, so KR ' Rr × Cs = Rn. Consider the convex symmetric set

S := {(x1, . . . , xn) ∈ KR ' Rn : |x1| ≤
√
M and |xi| < 1 for i > 1}.

Then
µ(S) = 2

√
M2n−1 = 2n

√
M > 2n

√
|discOK | = 2n covol(OK),

1Heegner’s 1952 result [4] was essentially correct but contained some gaps that prevented it from being
generally accepted until 1967 when Stark gave a complete proof in [7].

2In fact it is conjectured that hK = 1 for approximately 75.446% of real quadratic fields with prime
discriminant; this follows from the Cohen-Lenstra heuristics [2].
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so S contains a nonzero element a ∈ OK ⊆ K ↪→ KR that we may write as a = (aσ) =
(σ1(a), . . . , σn(a)), where the σi are the n embeddings of K into C, all of which are real
embeddings. We have

N(a) =
∣∣∣∏σi(a)

∣∣∣ ≥ 1

and |a2|, . . . , |an| < 1, so |a1| > 1 > |ai| for i = 2, . . . , n. In particular, a1 6= ai for any i > 1.
We now claim that K = Q(a). If not, each ai = σi(a) would be repeated [K : Q(a)] > 1

times in the vector (a1, . . . , an), since there must be [K : Q(a)] elements of HomQ(K,C)
that fix Q(a), namely, those lying in the kernel of the map HomQ(K,C)→ HomQ(Q(a),C)
induced by restriction. But this is impossible since ai 6= a1 for i 6= 1.

The minimal polynomial f ∈ Z[x] of a is a monic irreducible polynomial of degree n. The
roots of f(x) in C are precisely the ai = σi(a) ∈ R, all of which are bounded by |ai| ≤

√
M .

The coefficients of f(x) are elementary symmetric functions of its roots, hence also bounded
in absolute value, and they are integers, so there are only finitely many possibilities for f(x),
given the bound M , hence only finitely many totally real number fields K of degree n.

Case 2: K has r real and s > 0 complex places, and KR ' Rr × Cs. Now let

S := {(w1, . . . , wr, z1, . . . , zs) ∈ KR : |z1|2 < c
√
M and |wi|, |zj | < 1 (j > 1)}

with c chosen so that µ(S) > 2n covol(OK) (the exact value of c depends on s and n). The
argument now proceeds as in case 1: we get a nonzero a ∈ OK ∩ S with K = Q(a), and
only a finite number of possible minimal polynomials f ∈ Z[x] for a.

Lemma 14.22. Let K be a number field of degree n. For each prime p ∈ Z we have

vp(discOK) ≤ n(logp n+ 1)− 1.

In particular, vp(discOK) ≤ n(log2 n+ 1)− 1 for all primes p ∈ Z.

Proof. We have

|discOK |p = |NK/Q(DK/Q)|p =
∏
v|p

|DKv/Qp
|v,

where DKv/Qp
denotes the different ideal. It follows from Theorem 12.26 that

vp(discOK) ≤
∑
v|p

(ev − 1 + evvp(ev)),

where ev is the ramification index of Kv/Qp. We have
∑

v|p ev ≤ n and vp(ev) ≤ logp(n), so

vp(discOK) ≤ n(logp n+ 1)− 1.

Remark 14.23. The bound in Lemma 14.22 is tight; it is achieved by K = Q[x]/(xp
e − p),

for example.

Theorem 14.24 (Hermite). Let S be a finite set of places of Q, and let n ∈ Z>1. The
number of extensions K/Q of degree n unramified outside of S is finite.

Proof. By the lemma, since n is fixed, the valuation vp(discOK) is bounded for each p ∈ S
and most be zero for p 6∈ S. Thus | discOK | is bounded and the theorem then follows from
Proposition 14.21.
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