18.785 Number theory I Fall 2016
Lecture #13 10/25/2016

13 Haar measures and the product formula

We now return to our discussion of local and global fields. Our goal in this lecture is to
prove a generalization of the product formula that you proved for Q and [F4(t) on Problem
Set 1 that applies all global fields. The product formula for a global field K is the identity

[Tkl = 1.
v

valid for all x € K*. Here || ||, denotes the normalized absolute value associated to v, which
ranges over equivalence classes of absolute values on K (also known as places of K). We
will define || ||, in terms of the Haar measure on the completion of K with respect to v.

13.1 Haar measures

Definition 13.1. Let X be a locally compact Hausdorff space. The o-algebra ¥ of X is
the collection of subsets of X generated by the open and closed sets under countable unions
and countable intersections. Its elements are called Borel sets, or simply measurable sets.
A Borel measure on X is a countably additive function

M ¥ — RZO @] {OO}
A Radon measure on X is a Borel measure on X that additionally satisfies

1. u(S) < oo if S is compact,
2. u(S)=inf{uU):S CU, U open},
3. u(S) =sup{u(C):C C S, C compact},

for all Borel sets S € 3.1

Definition 13.2. A topological group that is both locally compact and Hausdorff is called
a locally compact group. A (left) Haar measure p on a locally compact group is a nonzero
Radon measure that is translation invariant, meaning that

u(E) = p(z + E)

for all x € X and Borel sets E (we have written the group operation additively because we
have in mind the additive group of a local field K) .

One defines a right Haar measure analogously, but in most cases they coincide and in
our situation we are working with an abelian group (the additive group of a field), in which
case they necessarily do. The key result on Haar measures, is that they exist and are unique
up to scaling. For compact groups existence was proved by Haar and uniqueness by von
Neumann; the general result for locally compact groups was proved by Weil.

Theorem 13.3 (Weil). Fvery locally compact group G has a Haar measure. If p and p'
are two Haar measure on G, then there is a positive real number X such that p'(S) = Au(S)
for all measurable sets S.

1Some authors additionally require X to be o-compact (a countable union of compact sets). Local fields
are o-compact so this distinction will not concern us.
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Proof. See [3, §7.2]. O

Example 13.4. The standard Euclidean measure on R" is the unique Haar measure on R"
for which the unit cube has measure 1.

The additive group of a local field K is a locally compact group (it is a metric space,
so it is automatically Hausdorff). For compact groups G, it is standard to normalize the
Haar measure so that u(G) = 1, but local fields are never compact and we will always have
u(K) = oco. For nonarchimedean local fields the valuation ring A = B<1(0) is a compact
group, and it is then natural to normalize the Haar measure on K so that pu(A) = 1. But
the key point for us is that there is a unique absolute value on K that is compatible with
every Haar measure p on K (regardless of how p is normalized).

Proposition 13.5. Let K be a local field with discrete valuation v, residue field k, and
absolute value

| o = (Fk) ™0,

and let i be a Haar measure on K. For every x € K and measurable set S C K we have

u(@S) = [2]on(S).

Moreover, the absolute value | |, is the unique absolute value compatible with the topology
on K for which this is true.

Proof. Let A be the valuation ring of K with maximal ideal p. The proposition clearly
holds for x = 0, so let © £ 0. The map ¢,: y — xy is an automorphism of the additive
group of K, and it follows that the composition pu; = po ¢, is a Haar measure on K, hence
a multiple of p, say p, = Az, for some \; € Ryg. Define the function x: K* — R>g by
X(x) == Ay = pz(A)/u(A). Then p, = x(z)p, and for all z,y € K* we have

_ Hay(A) _ pa(yA) _ x(@)uy(A) _ x(@)x@)ud) _
N ZNG) T @A) T e way O

Thus x is multiplicative, and we claim that in fact x(x) = |z|, for all x € K*. Since
both x and |- |, are multiplicative, it suffices to consider z € A — {0}. For any such =z,
the ideal zA is equal to p*(®), since A is a DVR. The residue field k := A/p is finite, hence
A/zA is also finite; indeed it is a k-vector space of dimension v(x) and has cardinality
[A: zA] = (#k)*®). Writing A as a finite disjoint union of cosets of A, we have

u(A) = [A: 2 Alu(xA) = (#K)'@ x(@)u(A),

and therefore x(z) = (#k)"® = |z|, as claimed. It follows that

w(zS) = p(S) = x(z)u(s) = [x|up(S),

for all z € K and S € ¥. To prove uniqueness, if | | is an absolute value on K that induces
the same topology as | |, then for some 0 < ¢ < 1 we have |z| = |z[§ for all x € K*. Let us
fix v € K* with |z, (take any x with v(x) # 0). If | | also satisfies p(zS) = |z|u(S) then

plad) e - (A
M(A)_H =l (u(A)>’

which implies ¢ = 1, meaning that | | and | |, are the same absolute value. O
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13.2 Places of a global field

Definition 13.6. A place of a global field K is an equivalence class of nontrivial absolute
values on K. We use Mg to denote the set of places of K. For each place v we may use | |,
to denote a representative of its equivalence class, and we use K, to denote the local field
obtained by completing K with respect to | |,; note that K, does not depend on the choice
of the representative | |,. The place v is called archimedean when the absolute value | |, is
archimedean, and is nonarchimedean otherwise. Every nonarchimedean place v arises from
a discrete valuation on K that we may also denote v.

Example 13.7. As proved in Problem Set 1, for K = Q we have
My ={| |, : primes p < oo},

where | |oo denotes the archimedean absolute value on Q. For K = F,(¢) we may identify
M, 1y with the set of irreducible polynomials in [Fy[t] together with the nonarchimedean
absolute value |r|s = q°8". In both cases the places p < oo correspond to primes of K

(nonzero prime ideals of O ), while the place p = oo does not.

Remark 13.8. In contrast with Q, there is nothing special about the absolute value | |oo
on Fy(t), it is an artifact of our choice of the separating element ¢, which we could change
by applying any automorphism t +— (at +b)/(ct +d) of Fy(t). If we put z = 1/t and rewrite
Fq(t) as Fy(z), the absolute value | | on Fg(t) is the same as the absolute value | |, on
[F,(z) corresponding to the irreducible polynomial z € F,[z].

Definition 13.9. If L/K is an extension of global fields, for every place w of L, any absolute
value | |, that represents the equivalence class w restricts to an absolute value on K that
represents a place v of K this v is independent of the choice of | |,. We write w|v to
indicate this relationship and say that w extends v.

A global field L is a finite separable extension of either K = Q or K = F,(t) (for some
finite field F;). Thus every place v of L extends a place p < oo of K. When p < oo we
say that v is a finite place and write v{oo. In this case v arises from a discrete valuation
associated to a prime of L lying above the prime p of K; the finite places of L are in one-
to-one correspondence with the primes of L (nonzero prime ideals of its ring of integers).
When p = oo we call v an infinite place and write v|oco; infinite places do not correspond to
primes of L. If L is a number field the infinite places are precisely the archimedean ones.

Example 13.10. If K is a number field and v|p is a finite place, then K, is a finite separable
extension of Q. If we write

K =~ Q[z]/(f(x)),

then
Ky ~ Qplz]/(9(2)),

for some irreducible g € Qp[z] appearing in the factorization of f in Qp[z]. When v|oo is
an infinite place there are only two possibilities: either K, = R or K, = C.

Definition 13.11. Let K be a number field and let v|oo be an infinite place of K. If
K, >~ R then v is a real place of K. If K,, ~ C then v is a complex place of K.
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Theorem 13.12. Let L/K be a finite separable extension of global fields and let v be a
place of K. Then there is an isomorphism of finite étale K, -algebras

Lok Ky 5[] Lw

wlv
defined by L @ x — (lx, ..., 0x).

For nonarchimedean places this follows from part (v) of Theorem 11.20, but here we
give a more general proof that works for any place of K.

Proof. By Proposition 4.35, L ® g K, is finite étale K,-algebra and therefore isomorphic to
a finite product Hz‘e ; L; of finite separable extensions L;/K,. We need to show that each
L; is the completion L,, of L at a place w|v and every L,, appears exactly once in [], L;.

Each L; is a local field, since it is a finite extension of K, and it has a unique absolute
value | |, that extends the absolute value | |, on K, (for any choice of | |, representing the
place v); this follows from Theorem 10.7 when v is nonarchimedean and is obviously the
case if K, ~ R, C is archimedean, since then either L, = K, or L, ~ C and K, ~ R.?
The map L — L ®k K, ~ [[, L; - L; allows us to view L as a subfield of each L;, so
the absolute value | |, on L; restricts to an absolute value on L that uniquely determines a
place w|v. This defines a map {i € I} — {w|v}; we need to show that it is a bijection and
that the induced map ¢: {L;: 7 € I} — {L, : w|v} sends each L; to an isomorphic Ly,.

We may view L ®x K, ~ [[, L; as an isomorphism of topological rings: on the LHS the
étale K,-algebra L ® g K, is a finite dimensional K,-vector space with a canonical topology
induced by the sup norm, and on the RHS we have the product topology; these topologies
coincide because the absolute value on each L; restricts to the absolute value on K, allowing
us to also view the RHS as a normed K ,-vector space, and all norms on a finite dimensional
vector space over a complete field induce the same topology (Proposition 10.6).

The image of the canonical embedding L — L ®x K, defined by £ — ¢ ® 1 is dense
because K C L is dense in K,: for any nonzero £ ® z in L ®k K, we can approximate it
arbitrarily closely by ¢/y®y = £®1 for some nonzero y € K (and similarly for sums of pure
tensors). The image of L is therefore dense in [[; L;, and in the projection to any L;, or
any L; x Lj (i # j). If ¢ maps L; to L,, then we necessarily have L; ~ L,, by the universal
property of completions (Proposition 8.3): L; is complete, L is dense in L;, and L,, is the
completion of L with respect to the restriction of the absolute value on L; to L.

If ¢ is not injective then some L,, appears as two distinct L; and L; in L® g K, ~ 1L,
but this is impossible because the image of the diagonal embedding L. — L,, X L,, is not
dense but the image of L is dense in L; x L;.

For each w|v we may define a continuous homomorphism of finite étale K,-algebras:

p: L Qg Ky — Ly
{Q@x— lx.

The map ¢ is surjective because its image contains L and is complete, and L,, is the
completion of L. It then follows from Corollary 4.31 that L., is isomorphic one of the

2The isomorphisms K, ~ R and L, ~ C are isomorphism of topological fields whose archimedean
topology is induced by an absolute value; we always view R and C as local fields whose topology is induced
by the standard Euclidean metric. There are plenty of nonarchimedean topologies on R and C (for each
prime p the field isomorphism @p ~ C lets us put an extension of the p-adic absolute value on C which we
can restrict to R), but none correspond to local fields because they are not locally compact.
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factors L; in L ®x K, ~ [] L;; the absolute value on L; must correspond to the place w,
thus ¢(L;) = Ly, and ¢ is surjective. O

Corollary 13.13. Let K be a number field and p < oo a prime of Q. There is a one-to-
one-correspondence

HomQ(K,@p)/Gal(@p/@p) +—— {v € Mg : v|p},
between, Gal(@p/@p)—orbits of Q-embeddings of K into @p and the places v|p of K.

Before proving the corollary, lets make sure we understand the set of Galois orbits on
the LHS. Each o € Gal(Q,/Q,) acts on a Q-embedding 7: K — Q,, by composition: oo
is also a (Q-embedding of K into @p.

Proof. Theorem 13.12 gives us an isomorphism K ®q Q, ~ Hv|p K, of finite étale Q,-
algebras. Each ¢ € Homg, (K ®q Qp,Q,) can therefore be written as ¢ = ¢ o 7w, where
m: K ®gQp — Hv‘p K, — K, is a projection to one of the K, and ¢ € Home(Kv,@p).
The key point is that the image of ¢ is a field (it is an étale Q,-algebra that lies in Q,), and
therefore must be isomorphic to one of the factors in K®qQ, ~ Hv‘ » Ko by Proposition 4.31.

It follows that we can identify the set Homg, (K ®q Qp, Q,) with the disjoint union of

sets | ], Homg, (K, @,). We then have bijections of finite sets

Homg(K,Q,) «— Homg, (K ®g Qp, Q,)
oo UHome(Km@p)-

vlp

Each Homg, (K., Q,) is a Gal(Q,/Qp)-orbit in Homg, (K ®g Qp,Q,): if we write K, as
Qp(a) where a € K, has minimal polynomial f € Qp[z], we have a bijection between Q,-

embeddings K, — @p and roots of f in @p, and Gal(Q,,/Q,) acts transitively on both. [

The corollary implies that Homg (X, C)/Gal(C/R) is in bijection with the set {v|oo} of
archimedean places of K; note that Gal(C/R) is just a group of order 2 whose non-trivial
element is complex conjugation. We can partition {v|oo} into real and complex places,
based on whether K, ~ R or K, ~ C. Each real place corresponds to an element of
Homg (K, R); these are fixed by Gal(C/R) and thus correspond to trivial Gal(C/R)-orbits
of Homg(K, C) (orbits of size one). Each complex place corresponds to a Gal(C/R)-orbit
of size two in Homg(K, C); these are conjugate pairs of embeddings K — C whose image
does not lie in R.

Definition 13.14. Let K be a number field. Elements of Homg(K,R) are real embeddings
and elements of Homg (K, C) whose image does not lie in R are complex embeddings.

There is a one-to-one correspondence between real embeddings and real places, but
complex embeddings come in conjugate pairs; and each pair corresponds to a single complex
place.

Corollary 13.15. Let K be a number field with r real places and s complex places. Then

[K: Q] =r+2s.
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Proof. Recall that [K : Q] = #Homg(K,C) (write K = Q[z]/(f(x)) and note that the
elements of Homg (K, C) are determined by choosing a root of f in C to be the image of z).
The action of Gal(C/R) on Homg (K, C) has r orbits of size 1, and s orbits of size 2. O

Example 13.16. Let K = Q[z]/(2® — 2). There are three embeddings K — C, one for
each root of z3 — 2; explicitly:

(1) z — V2, (2) s 2™/ . /2, (3) @ /3. /2,

The first embedding is real, while the second two are complex and conjugate to each other.
Thus K has r = 1 real place and s = 1 complex place, and we have [ : Q] =1-14+2-1=3.

We conclude this section with a result originally due to Brill [2], which relates the parity
of the number of complex places to the sign of the absolute discriminant of a number field.

Proposition 13.17. Let K be a number field with s complex places, and let o, ..., a, be
a Z-basis for Og. The sign of Dk = disc(au,...,a,) € Z is (—1)°.

Proof. Let Homg(K,C) = {o1,...,0,} and consider the matrix A = [o;(a;)];; with de-
terminant det A =: x + yi € C; recall that Dx = (det A)2, by Proposition 12.6. Each
real embedding o; corresponds to a row of A fixed by complex conjugation, while each

pair of complex conjugate embeddings o;,d; corresponds to a pair of rows of A that are
interchanged by complex conjugation. Swapping two rows negates the determinant, thus

r+yi=det A= (—1)°det A = (—1)%(z — yi).
Either (—1)* = 1, in which case y = 0 and Dg = 22 has sign +1 = (—1)%, or (-1)* = —1,
in which case x = 0 and Dg = —y? has sign —1 = (—1)°. O
13.3 The product formula for global fields

Definition 13.18. Let K be a global field. For each place v of K the normalized absolute
value || ||: Ky — R>p on the completion of K at v is defined by

p(xS)
u(S)

[]lo =

where p is a Haar measure on K, and S is any measurable set with u(S) # 0 (we can always
take S = A, = {x € K, : |z|, <1} of K,).

This definition is independent of the choice of p and S (by Theorem 13.3). If v is
nonarchimedean then the normalized absolute value || ||, is precisely the absolute value | |,
defined in Proposition 13.5. If v is a real place then the normalized absolute value || ||, is
just the usual Euclidean absolute value | |g on R, since for the Euclidean Haar measure ug
on R we have ug(zS) = |z|rpur(S) for every measurable set S. But when v is a complex
place the normalized absolute value || ||, is the square of the Euclidean absolute value | |¢
on C, since in C we have pc(zS) = |z|Zuc(9).

Remark 13.19. When v is a complex place the normalized absolute value || ||, is not an
absolute value, because it does not satisfy the triangle inequality. For example, if K = Q(%)
and v|oo is the complex place of K then |1, = [1|2 =1 but

11+ 10l = [12]lo = 212 = 4> 2 = [1[lo + 1]
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Nevertheless, the normalized absolute value || ||, is always multiplicative and compatible
with the topology on K, in the sense that the open balls Bo,.(z) :={y € K, : |ly—x|, < r}
are a basis for the topology on K,; these are the properties that we care about for the
product formula (and for the topology on the ring of adéles A g that we will see later).

Lemma 13.20. Let L/K be a finite separable extension of global fields, let v be a place
of K and let w|v be a place of L. Then

]l = INL,, /., (2)]]o-

Proof. The lemma is trivially true if [L,, : K,] = 1 so assume [L,, : K,] > 1. If v is
archimedean then L,, ~ C and K, ~ R, in which case for any =z € L,, we have

lzllw = u(@8)/u(S) = |2lt = l2Zlr = [Ne/r(2)lr = INL, /5, (@)l

where | |g and | |c are the Euclidean absolute values on R and C.

We now assume v is nonarchimedean. Let 7, and 7, be uniformizers for the local fields
K, and L,, respectively, and let f be the degree of the corresponding residue field extension
ky/k,. Without loss of generality, we may assume z = mlﬁ(x)
only on w(z). Theorem 6.9 and Proposition 13.5 imply

Nz, (Tl = 7 llo = Fho)

so |INp, /k, (®)|lv = (#k,) /@) Proposition 13.5 then implies

lzllo = (#k) ™ = (ko) T = |INL, /e, (@) - O

Remark 13.21. Note that if v is a nonarchimedean place of K extended by a place w|v
of L/K, the absolute value || ||, is not the unique absolute value on L,, that extends the
absolute value on || ||, on K, given by Theorem 10.7, it differs by a power of n = [L,, : K,],
but it is equivalent to it. It might seem strange to use a normalization here that does
not agree with the one we used when considering extensions of local fields in Lecture 9.
The difference is that here we are thinking about a single global field K that has many
different completions K, and we want the normalized absolute values on the various K,
to be compatible (so that the product formula will hold). By contrast, in Lecture 9 we
considered various extensions L, of a single local field K, and wanted to normalize the
absolute values on the L,, compatibly so that we could work in K, and any of its extensions
(all the way up to K,) using the same absolute value. These two objectives cannot be met
simultaneously and it is better to use the “right” normalization in each setting.

, since ||z||, = |z|, depends

Theorem 13.22 (PrRODUCT FORMULA). Let L be a global field. For all x € L™ we have
IT Izl =1,
vEMp,
where || ||, denotes the normalized absolute value for each place v € M.
Proof. The global field L is a finite separable extension of K = Q or K = F,(t).> Let p be

a place of K. By Theorem 13.12, any basis for L as a K-vector space is also a basis for

Lok Ky~ ] L

vlp

3Here we are using the fact that if F is the field of constants of L (the largest finite field in L), then L
is a finite extension of F4(z) and we can choose some t € Fq(z) — Fq so that Fq(z) ~ Fq(¢) and L/Fq(¢) is
separable (such a t is called a separating element).
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as a K,-vector space. Thus

Nik () = Npgr,)/x, (@) = [ [No,/x, (2).
vlp

Taking normalized absolute values on both sides yields
INLyw @), = TTINz, k@)l = [T 12l
vlp vlp

We now take the product of both sides over all places p € My to obtain

IT Ne@lls=TT TTlelo=TI lzle-

PEM i PEMK vlp veMy,
The LHS is equal to 1, by the product formula for K proved on Problem Set 1. O

With the product formula in hand, we can now give an axiomatic definition of a global
field, which up to now we have simply defined as a finite extension of Q or Fy(t), due to
Emil Artin and George Whaples [1].

Definition 13.23. A global field is a field K whose completion at each of its places v € Mg
is a local field, and which has a product formula of the form

H Hva = 17

vEME

where each normalized absolute value || ||,: K, — Rx>q satisfies || ||, = | [J' for some
absolute value | |, representing v and some fixed m, € Rg.

Theorem 13.24 (Artin-Whaples). Every global field is a finite extension of Q or Fy(t).

Proof. See Problem Set 7. O
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