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11 Totally ramified extensions and Krasner’s lemma

In the previous lecture we showed that in the AKLB setup, if A is a complete DVR with
maximal ideal p then B is a complete DVR with maximal ideal q and [L : K] = n = eqfq.
Assuming the residue field extension is separable (always true if K is a local field), by
decomposing the extension if necessary we can always reduce to the case that L/K is either
unramified or totally ramified, and we showed that in the unramified case (eq = 1), if K is
a local field then L ' K(ζqn−1). We now consider the totally ramified case (fq = 1).

11.1 Totally ramified extensions of a complete DVR

Definition 11.1. Let A be a DVR with maximal ideal p. A monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ A[x]

is Eisenstein (or an Eisenstein polynomial) if ai ∈ p for 0 ≤ i < n and a0 6∈ p2; equivalently,
vp(ai) ≥ 1 for 0 ≤ i < n and vp(a0) = 1.

Lemma 11.2 (Eisenstein irreducibility). Let A be a DVR with fraction field K and maximal
ideal p, and let f ∈ A[x] be Eisenstein. Then f is irreducible in both A[x] and K[x].

Proof. Suppose f = gh with g, h 6∈ A and put f =
∑

i fix
i, g =

∑
i gix

i, h =
∑

i hix
i. We

have f0 = g0h0 ∈ p−p2, so exactly one of g0, h0 lies in p. Without loss of generality assume
g0 6∈ p, and let i ≥ 0 be the least i for which hi 6∈ p; such an i exists because the reduction
of h(x) modulo p is not zero, since g(x)h(x) ≡ f(x) ≡ xn mod p. We then have

fi = g0hi + g1hi−1 + · · ·+ gi−1h1 + gih0,

with the LHS in p and all but the first term on the RHS in p, which is a contradiction.
Thus f is irreducible in A[x]. Noting that the DVR A is a PID (hence a UFD), f is also
irreducible in K[x], by Gauss’s Lemma.

Remark 11.3. We can apply Lemma 11.2 to a polynomial f(x) over a Dedekind domain A
that is Eisenstein over a localization Ap; the rings Ap and A have the same fraction field K
and f is then irreducible in K[x], hence in A[x].

Proposition 11.4. Let A be a DVR and let f ∈ A[x] be an Eisenstein polynomial. Then
B := A[x]/(f(x)) = A[π] is a DVR with uniformizer π, the image of x in A[x]/(f(x)).

Proof. Let p be the maximal ideal of A. We have f ≡ xn mod p, so by Lemma 10.13 the
ideal q = (p, x) = (p, π) is the only maximal ideal of B. Let f =

∑
fix

i; then p = (f0),
since vp(f0) = 1. Therefore q = (f0, π), and f0 = −f1π − f2π2 − · · · − πn ∈ (π), so q = (π).
The unique maximal ideal of B is thus principal, so B is a DVR and π is a uniformizer.

Theorem 11.5. Assume AKLB, let A be a complete DVR, and let π be any uniformizer
for B. Then L/K is totally ramified if and only if B = A[π] and the minimal polynomial
of π is Eisenstein.

Proof. Let n = [L : K], let p be the maximal ideal of A, let q be the maximal ideal of B
(which we recall is a complete DVR, by Theorem 10.7), and let π be a uniformizer for B
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with minimal polynomial f . If B = A[π] and f is Eisenstein, then as in Proposition 11.4
we have p = qn, so vq extends vp with index eq = n and L/K is totally ramified.

We now suppose L/K is totally ramified. Then vq extends vp with index n, which
implies vq(K) = nZ. The set {π0, π1, π2, . . . , πn−1} is linearly independent over K, since
the valuations 0, . . . , n− 1 are distinct modulo vq(K) = nZ: the valuations of the nonzero
terms in any linear combination z =

∑n−1
i=0 ziπ

i must be distinct and we cannot have z = 0
unless every term is zero. Thus L = K(π).

Let f =
∑n

i=0 fix
i ∈ A[x] be the minimal polynomial of π (note π ∈ q ⊆ B, so π

is integral over A). We have vq(f(π)) = vq(0) = ∞, and this implies that the terms of
f(π) =

∑n
i=0 fiπ

i cannot all have distinct valuations; indeed the valuations of two terms
of minimal valuation must coincide (by the contrapositive of the nonarchimedean triangle
equality). So let i < j be such that vq(aiπ

i) = vq(ajπ
j). As noted above, the valuations of

aiπ
i for 0 ≤ i < n are all distinct modulo n, so i = 0 and j = n. We have

vq(a0π
0) = vq(anπ

n) = vq(π
n) = n

thus vq(a0π
0) = nvp(a0) = n and vp(a0) = 1. And vq(aiπ

i) ≥ vq(a0π
0) = n for 0 < i < n

(since a0π
0 is a term of minimal valuation), and since vq(π

i) < n for i < n we must have
vq(ai) > 0 and therefore vp(ai) > 0. It follows that f is Eisenstein, and Proposition 11.4
then implies that A[π] is a DVR, and in particular, integrally closed, so B = A[π].

Example 11.6. Let K = Q3. As shown in an earlier problem set, there are just three
distinct quadratic extensions of Q3: Q3(

√
2), Q3(

√
3), and Q3(

√
6). The extension Q3(

√
2)

is the unique unramified quadratic extension of Q3, and we note that it can be written as
a cyclotomic extension Q3(ζ8). The other two are both ramified, and can be defined by the
Eisenstein polynomials x2 − 3 and x2 − 6.

Definition 11.7. Assume AKLB with A a complete DVR and separable residue field k of
characteristic p ≥ 0. We say that L/K is tamely ramified if p 6 | eL/K (always true if p = 0 or
if eL/K = 1); note that an unramified extension is also tamely ramified. We say that L/K
is wildly ramified if p|eL/K ; this can occur only when p > 0. If L/K is totally ramified,
then we say it is totally tamely ramified if p 6 | eL/K and totally wildly ramified otherwise.

Example 11.8. Let π be a uniformizer for A. The extension L = K(π1/e) is a totally
ramified extension of degree e, and it is totally wildly ramified if p|e.

Theorem 11.9. Assume AKLB with A a complete DVR and separable residue field k of
characteristic p ≥ 0. Then L/K is totally tamely ramified if and only if L = K(π1/e) for
some uniformizer π of A with p 6 | e.

Proof. Let v be the unique valuation of L extending the valuation of K with index e = eL/K ,
and let πK and πL be uniformizers forA andB, respectively. Then v(πK) = e and v(πL) = 1.
Thus v(πeL) = e = v(πK), so uπK = πeL for some unit u ∈ B×. We have L = K(πL), since
L is totally ramified, by Theorem 11.5, and fL/K = 1 so B and A have the same residue
field k. Let us choose πK so that u ≡ 1 mod q, and let g(x) = xe − u. Then ḡ = xe − 1,
and ḡ′(1) = e 6= 0 (since p 6 | e), so we can use Hensel’s Lemma 9.16 to lift the root 1
of ḡ in k = B/q to a root r of g in B. Now let π = πL/r. Then L = K(π), and

πe = πeL/r
e = πeL/u = πK , so L = K(π

1/e
K ) as desired.
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11.2 Krasner’s lemma

We continue to work with a complete DVR A with fraction field K. In the previous lecture
we proved that the absolute value | | on K can be uniquely extended to any finite extension
L/K by defining |x| := |NL/K(x)|1/n, where n = [L : K] (see Theorem 10.7). As noted in

Remark 10.8, if K is an algebraic closure of K, we can compute the absolute value of any
α ∈ K by simply taking norms from K(α) down to K; this defines an absolute value on K
and it is the unique absolute value on K that extends the absolute value on K.

Lemma 11.10. Let K be the fraction field of a complete DVR with algebraic closure K
and absolute value | | extended to K. For α ∈ K and σ ∈ AutK(K) we have |σ(α)| = |α|.

Proof. The elements α and σ(α) must have the same minimal polynomial f ∈ K[x] (since
σ(f(α)) = f(σ(α))), so NK(α)/K(α) = f(0) = NK(σ(α))/K(σ(α)), by Proposition 4.44. It

follows that |σ(α)| = |NK(σ(α))/K(α)|1/n = |NK(α)/K(α)|1/n = |α|, where n = deg f .

Definition 11.11. Let K be the fraction field of a complete DVR with absolute value
| | extended to an algebraic closure K. For α, β ∈ K, we say that β belongs to α if
|β − α| < |β − σ(α)| for all σ ∈ AutK(K) with σ(α) 6= α, that is, β is strictly closer to
α than it is to any of its conjugates. By the nonarchimedean triangle inequality, this is
equivalent to requiring that |β − α| < |α− σ(α)| for all σ(α) 6= α.

Lemma 11.12 (Krasner’s lemma). Let K be the fraction field of a complete DVR and let
α, β ∈ K with α separable. If β belongs to α then K(α) ⊆ K(β).

Proof. Suppose not. Then α 6∈ K(β), so there is an automorphism σ ∈ AutK(β)(K/K(β))
for which σ(α) 6= α (here we are using the separability of α: the extension K(α, β)/K(β)
is separable and nontrivial, so there must by an element of HomK(β)(K(α, β),K) that

moves α). By Lemma 11.10, for any σ ∈ AutK(β)(K/K(β)) we have

|β − α| = |σ(β − α)| = |σ(β)− σ(α)| = |β − σ(α)|,

since σ fixes β. But this contradicts the hypothesis that β belongs to α, since σ(α) 6= α.

Remark 11.13. Krasner’s lemma can also be viewed as another version of “Hensel’s
lemma” in the sense that it characterizes Henselian fields (fraction fields of Henselian rings);
although named after Krasner [1] it was proved earlier by Ostrowksi [2].

Definition 11.14. For a field K with absolute value | | we define the L1-norm on K[x] via

‖f‖1 :=
∑
i

|fi|,

where f =
∑

i fix
i ∈ K[x].

Lemma 11.15. Let K be a field with absolute value | | and let f =
∏n
i=1(x − αi) ∈ K[x]

have roots α1, . . . , αn ∈ L, where L/K is a field with an absolute value that extends | |.
Then |α| < ‖f‖1 for every root α of f .

Proof. Exercise.
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Proposition 11.16. Let K be the fraction field of a complete DVR and let f ∈ K[x] be a
monic irreducible separable polynomial. There is a positive real number δ = δ(f) such that
for every monic polynomial g ∈ K[x] with ‖f − g‖1 < δ the following holds:

Every root β of g belongs to a root α of f for which K(β) = K(α).

In particular, g is separable and irreducible.

Proof. We first note that we can always pick δ < 1, in which case any monic g ∈ K[x] with
‖f − g‖1 < δ must have the same degree as f , so we can assume deg g = deg f . Let us fix
an algebraic closure K of K with absolute value | | extending the absolute value on K. Let
α1, . . . , αn be the roots of f in K, and write

f(x) =
∏
i

(x− αi) =
n∑
i=0

fix
i.

Let ε be the lesser of 1 and the minimum distance |αi − αj | between any two distinct roots
of f . We now define

δ := δ(f) :=

(
ε

2(‖f‖1 + 1)

)n
> 0,

and note that δ < 1, since ‖f‖1 ≥ 1 and ε ≤ 1. Let g =
∑

i gix
i be a monic polynomial of

degree n with |f − g|1 < δ; then

‖g‖1 ≤ ‖f‖1 + ‖f − g‖1 < ‖f‖1 + δ.

For any root β be of g in K we have

|f(β)| = |f(β)− g(β)| = |(f − g)(β)| =

∣∣∣∣∣
n∑
i=0

(fi − gi)βi
∣∣∣∣∣ ≤

n∑
i

|fi − gi||β|i.

By Lemma 11.15, we have |β| < ‖g‖1, and ‖g‖1 ≥ 1, so ‖g‖i1 ≤ ‖g‖n1 for 0 ≤ i ≤ n. Thus

|f(β)| < ‖f − g‖1 · ‖g‖n1 < δ(‖f‖1 + δ)n < δ(‖f‖1 + 1)n ≤ (ε/2)n,

and

|f(β)| =
n∏
i=1

|β − αi| < (ε/2)n,

so |β − αi| < ε/2 for some unique αi to which β must belong (by our choice of ε).
By Krasner’s lemma, K(α) ⊆ K(β), and we have n = [K(α) : K] ≤ [K(β) : K] ≤ n, so

K(α) = K(β). The minimal polynomial h of β is separable and irreducible, and it divides g
and has the same degree. Both g and h are monic, so g = h is separable and irreducible.

11.3 Local extensions come from global extensions

Let L̂ be a local field. From our classification of local fields (Theorem 9.10), we know L̂ is
a finite extension of K̂ = Qp (some prime p ≤ ∞) or K̂ = Fq((t)) (some prime power q).
We also know that the completion of a global field at any of its nontrivial absolute values
is such a local field (Corollary 9.8). It thus reasonable to ask whether L̂ is the completion
of a corresponding global field L that is a finite extension of K = Q or K = Fq(t).

More generally, for any fixed global field K and local field K̂ that is the completion of K
with respect to one of its nontrivial absolute values | |, we may ask whether every finite
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extension of local fields L̂/K̂ necessarily corresponds to an extension of global fields L/K,
where L̂ is the completion of L with respect to one of its absolute values (whose restriction
to K must be equivalent to | |). The answer is yes. In order to simplify matters we restrict
our attention to the case where L̂/K̂ is separable, but this is true in general.

Theorem 11.17. Let K be a global field with a nontrivial absolute value | |, and let K̂
be the completion of K with respect to | |. Every finite separable extension L̂ of K̂ is the
completion of a finite separable extension L of K with respect to an absolute value that
restricts to | |. Moreover, one can choose L so that L̂ is the compositum of L and K̂ and
[L̂ : K̂] = [L : K].

Proof. Let L̂/K̂ be a separable extension of degree n. Let us first suppose that | | is
archimedean. Then K is a number field and K̂ is either R or C; the only nontrivial case is
when K̂ = R and n = 2, and we may then assume that L̂ ' C is K̂(

√
−d) where −d ∈ Z<0

is a nonsquare in K (such a −d exists because K/Q is finite). We may assume without
loss of generality that | | is the Euclidean absolute value on K̂ ' R (it must be equivalent
to it), and uniquely extend | | to L = K(

√
−d) by requiring |

√
−d| =

√
d. Then L̂ is

the completion of L with respect to | |, and clearly [L̂ : K̂] = [L : K] = 2, and L̂ is the
compositum of L and K̂.

We now suppose that | | is nonarchimedean, in which case the valuation ring of K̂ is a
complete DVR and | | is induced by the corresponding discrete valuation. By the primitive
element theorem (Theorem 4.12), we may assume L̂ = K̂[x]/(f) where f ∈ K̂[x] is monic,
irreducible, and separable. The field K is dense in its completion K̂, so we can find a monic
g ∈ K[x] ⊆ K̂[x] that is arbitrarily close to f : such that ‖g−f‖1 < δ for any δ > 0. It then
follows from Proposition 11.16 that L̂ = K̂[x]/(g) (and that g is separable). The field L̂ is
a finite separable extension of the fraction field of a complete DVR, so by Theorem 10.7 it
is itself the fraction field of a complete DVR and has a unique absolute value that extends
the absolute value | | on K̂.

Now let L = K[x]/(g). The polynomial g is irreducible in K̂[x], hence in K[x], so
[L : K] = deg g = [L̂ : K̂]. The field L̂ contains both K̂ and L, and it is clearly the smallest
field that does (since g is irreducible in K̂[x]), so L̂ is the compositum of K̂ and L. The
absolute value on L̂ restricts to an absolute value on L extending the absolute value | | on
K, and L̂ is complete, so L̂ contains the completion of L with respect to | |. On the other
hand, the completion of L with respect | | contains both L and K̂, so it must be L̂.

In the preceding theorem, when the local extension L̂/K̂ is Galois one might ask whether
the corresponding global extension L/K is also Galois, and whether Gal(L̂/K̂) ' Gal(L/K).
As shown by the following example, this need not be the case.

Example 11.18. Let K = Q, K̂ = Q7 and L̂ = K̂[x]/(x3 − 2). The extension L̂/K̂ is
Galois because K̂ = Q7 contains ζ3 (we can lift the root 2 of x2 + x + 1 ∈ F7[x] to a root
of x2 + x+ 1 ∈ Q7[x] via Hensel’s lemma), and this implies that x3 − 2 splits completely in
Lw = Q7(

3
√

2). But L = K[x]/(x3 − 2) is not a Galois extension of K because it contains
only one root of x3 − 2. However, we can replace K with Q(ζ3) without changing K̂ (take
the completion of K with respect to the absolute value induced by a prime above 7) or L̂,
but now L = K[x]/(x3 − 2) is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing
the local fields extension L̂/K̂ in a way that ensures that L̂/K̂ and L/K have the same
automorphism group. Indeed, this is always possible.
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Corollary 11.19. For every finite Galois extension L̂/K̂ of local fields there is a corre-
sponding Galois extension of global fields L/K and an absolute value | | on L such that
L̂ is the completion of L with respect to | |, K̂ is the completion of K with respect to the
restriction of | | to K, and Gal(L̂/K̂) ' Gal(L/K).

Proof. The archimedean case is already covered by Theorem 11.17 (take K = Q), so we
assume L̂ is nonarchimedean and note that we may take | | to be the absolute value on
both K̂ and on L̂ (by Theorem 10.7). The field K̂ is an extension of either Qp or Fq((t)),
and by applying Theorem 11.17 to this extension we may assume K̂ is the completion of
a global field K with respect to the restriction of | |. As in the proof of the theorem, let
g ∈ K[x] be a monic separable polynomial irreducible in K̂[x] such that L̂ = K̂[x]/(g) and
define L := K[x]/(g) so that L̂ is the compositum of K̂ and L.

Now let M be the splitting field of g over K, the minimal extension of K that contains
all the roots of g (which are distinct because g is separable). The field L̂ also contains these
roots (since L̂/K̂ is Galois) and L̂ contains K, so L̂ contains a subextension of K isomorphic
to M (by the universal property of a splitting field), which we now identify with M ; note
that L̂ is also the completion of M with respect to the restriction of | | to M .

We have a group homomorphism ϕ : Gal(L̂/K̂) → Gal(M/K) induced by restriction,
and ϕ is injective (each σ ∈ Gal(L̂/K̂) is determined by its action on any root of g in M). If
we now replace K by the fixed field of the image of ϕ and replace L with M , the completion
of K with respect to the restriction of | | is still equal to K̂, and similarly for L and L̂, and
now Gal(L/K) = Gal(L̂/K̂) as desired.

11.4 Completing a separable extension of Dedekind domains

We now return to our general AKLB setup: A is a Dedekind domain with fraction field K
with a finite separable extension L/K, and B is the integral closure of A in L, which is also
a Dedekind domain. Recall from Theorem 9.2 that if p is a nonzero prime of A, each prime
q|p gives a valuation vq of L that extends the valuation vp of K with index eq, meaning
that vq|K = eqvp. Moreover, every valuation of L that extends vp arises in this way. We
now want to look at what happens when we complete K with respect to the absolute value
| |p induced by vp, and similarly complete L with respect to | |q for some q|p. This includes
the case where L/K is an extension of global fields, in which case we get a corresponding
extension Lq/Kp of local fields for each q|p, but note that Lq/Kp may have strictly smaller
degree than L/K because if we write L ' K[x]/(f), the irreducible polynomial f ∈ K[x]
need not be irreducible over Kp. Indeed, this will necessarily be the case if there is more
than one prime q lying above p; there is a one-to-one correspondence between factors of f
in Kp[x] and primes q|p. If L/K is Galois, so is Lq/Kp and each Gal(Lq/Kp) is isomorphic
to the decomposition group Dq (which perhaps helps to explain the terminology).

The following theorem gives a complete description of the situation.

Theorem 11.20. Assume AKLB, let p be a prime of A, and let pB =
∏

q|p q
eq be the

factorization of pB in B. Let Kp denote the completion of K with respect to | |p, and let p̂
denote the maximal ideal of its valuation ring. For each q|p, let Lq denote the completion
of L with respect to | |q, and let q̂ denote the maximal ideal of its valuation ring. The
following hold:

(1) Each Lq is a finite separable extension of Kp;

(2) Each q̂ is the unique prime of Lq lying over p̂.
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(3) Each q̂ has ramification index eq̂ = eq and residue field degree fq̂ = fq.

(4) [Lq : Kp] = eqfq;

(5) The map L ⊗K Kp →
∏

q|p Lq defined by ` ⊗ x 7→ (`x, . . . , `x) is an isomorphism of
finite étale Kp-algebras.

(6) If L/K is Galois then each Lq/Kp is Galois and we have isomorphisms of decompo-
sition groups Dq ' Dq̂ = Gal(Lq/Kp) and inertia groups Iq ' Iq̂.

Proof. We first note that the Kp and the Lq are all fraction fields of complete DVRs; this
follows from Proposition 8.11 (note: we are not assuming they are local fields, in particular,
their residue fields need not be finite).

(1) For each q|p the embedding K ↪→ L induces an embedding Kp ↪→ Lq via the map
[(an)] 7→ [(an)] on equivalence classes of Cauchy sequences; a sequence (an) that is Cauchy
in K with respect to | |p, is also Cauchy in L with respect to | |q because vq extends vp.
We thus view Kp as a subfield of Lq, which also contains L. There is thus a K-algebra
homomorphism φq : L ⊗K Kp → Lq defined by ` ⊗ x 7→ `x, which we may view as a linear
map of Kp vector spaces. We claim that φq is surjective.

If α1, . . . , αm is any basis for Lq then its determinant with respect to B, i.e., the m×m
matrix whose jth row contains the coefficients of αj when written as a linear combination
of elements of B, must be nonzero. The determinant is a polynomial in the entries of this
matrix, hence a continuous function with respect to the topology on Lq induced by the
absolute value | · |q. It follows that if we replace α1, . . . , αm with `1, . . . , `m chosen so that
|αj−`j |q is sufficiently small, the matrix of `1, . . . , `m with respect to B must also be nonzero,
and therefore `1, . . . , `m is also a basis for Lq. We can thus choose a basis `1, . . . , `m ∈ L,
since L is dense in its completion Lq. But then {`j} = {φq(`j ⊗ 1)} ⊆ imφq spans Lq, so φq
is surjective as claimed.

The Kp-algebra L⊗K Kp is the base change of a finite étale algebra, hence finite étale,
by Proposition 4.33. It follows that Lq is a finite separable extension of Kp: it certainly
has finite dimension as a Kp-vector space, since φq is surjective, and it is separable because
every α ∈ Lq is the image φq(β) of an element β ∈ L ⊗K Kp that is a root of a separable
(but not necessarily irreducible) polynomial f ∈ Kp[x], as explained after Definition 4.28;
we then have 0 = φq(0) = φq(f(β)) = f(α), so α is a root of f , hence separable.

(2) The valuation rings of Kp and Lq are complete DVRs, so this follows immediately
from Theorem 10.1.

(3) The valuation vq̂ extends vq with index 1, which in turn extends vp with index eq.
The valuation vp̂ extends vp with index 1, and it follows that vq̂ extends vp̂ with index eq
and therefore eq̂ = eq. The residue field of p̂ is the same as that of p: for any Cauchy
sequence (an) over K the an will eventually all have the same image in the residue field at p
(since vp(an − am) > 0 for all sufficiently large m and n). Similar comments apply to each
q̂ and q, and it follows that fq̂ = fq.

(4) It follows from (2) that [Lq : Kp] = eq̂fq̂, since q̂ is the only prime above p̂, and (3)
then implies [Lq : Kp] = eqfq.

(5) Let φ =
∏

q|p φq, where φq are the surjective Kp-algebra homomorphisms defined in
the proof of (1). Then φ : L ⊗K Kp →

∏
q|p Lq is a Kp-algebra homomorphism. Applying

(4) and the fact that base change preserves dimension (see Proposition 4.33):

dimKp (L⊗K Kp) = dimK L = [L : K] =
∑
q|p

eqfq =
∑
q|p

[Lq : Kp] = dimKp

∏
q|p

Lq

 .
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The domain and range of φ thus have the same dimension, and φ is surjective (since the φq
are), so it is an isomorphism.

(6) We now assume L/K is Galois. Each σ ∈ Dq acts on L and respects the valuation vq,
since it fixes q (if x ∈ qn then σ(x) ∈ σ(qn) = σ(q)n = qn). It follows that if (xn) is a Cauchy
sequence in L, then so is (σ(xn)), thus σ is an automorphism of Lq, and it fixes Kp. We
thus have a group homomorphism ϕ : Dq → AutKp(Lq).

If σ ∈ Dq acts trivially on Lq then it acts trivially on L ⊆ Lq, so kerϕ is trivial. Also,

eqfq = |Dq| ≤ #AutKp(Lq) ≤ [Lq : Kp] = eqfq,

by Theorem 11.20, so #AutKp(Lq) = [Lq : Kp] and Lq/Kp is Galois, and this also shows
that ϕ is surjective and therefore an isomorphism. There is only one prime q̂ of Lq, and it
is necessarily fixed by every σ ∈ Gal(Lq/Kp), so Gal(Lq/Kp) ' Dq̂. The inertia groups Iq
and Iq̂ both have order eq = eq̂, and ϕ restricts to a homomorphism Iq → Iq̂, so the inertia
groups are also isomorphic.

Corollary 11.21. Assume AKLB and let p be a prime of A. For every α ∈ L we have

NL/K(α) =
∏
q|p

NLq/Kp
(α) and TL/K(α) =

∑
q|p

TLq/Kq
(α).

where we view α as an element of Lq via the canonical embedding L ↪→ Lq.

Proof. The norm and trace are defined as the determinant and trace of K-linear maps

L
×α−→ L that are unchanged upon tensoring with Kp; the corollary then follows from the

isomorphism in part (5) of Theorem 11.20, which commutes with the norm and trace.

Remark 11.22. Theorem 11.20 can be stated more generally in terms of (equivalence
classes of) absolute values (or places). Rather than working with a prime p of K and
primes q of L above p, one works with an absolute value | |v of K (for example, | |p) and
inequivalent absolute values | |w of L that extend | |v. Places will be discussed further in
the next lecture.

Corollary 11.23. Assume AKLB with A a DVR with maximal ideal p. Let pB =
∏

qeq

be the factorization of pB in B. Let Â denote the completion of A, and for each q|p, let B̂q

denote the completion of Bq. Then B ⊗A Â '
∏

q|p B̂q.

Proof. Since A is a DVR (and therefore a torsion-free PID), the ring extension B/A is a
free A module of rank n := [L : K], and therefore B ⊗A Â is a free Â-module of rank n.
And

∏
B̂q is a free Â-module of rank

∑
q|p eqfq = n. These two Â-modules lie in isomorphic

Kp-vector spaces, L ⊗K Kp '
∏
Lq, by part (5) of Theorem 11.20. To show that they

are isomorphic it suffices to check that they are isomorphic after reducing modulo p̂, the
maximal ideal of Â.

For the LHS, note that Â/p̂ ' A/p, so

B ⊗A Â/p̂ ' B ⊗A A/p ' B/pB.

On the RHS we have∏
q|p

B̂q/p̂B̂q '
∏
q|p

B̂q/pB̂q '
∏
q|p

Bq/pBq =
∏
q|p

Bq/q
eqBq

which is isomorphic to B/pB on the LHS because pB =
∏

q|p q
eq .
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