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22 The ring of adeles, strong approximation

22.1 Introduction to adelic rings

Recall that we have a canonical injection

Z ↪→ Ẑ := lim←−
n

Z/nZ '
∏
p

Zp,

that embeds Z into the product of its nonarchimedean completions. Each of the rings Zp
is compact, hence Ẑ =

∏
p Zp is compact (by Tychonoff’s theorem). But notice that if we

consider the analogous product
∏
pQp of the completions of Q, each of the local fields Qp

is locally compact (including the archimedean field Q∞ = R), but the product
∏
pQp is

not locally compact. Local compactness is important to us, because it gives us a Haar
measure (recall that any locally compact group has a translation-invariant measure that is
unique up to scaling), a tool we would very much like to have at our disposal.

To see where the problem arises, recall that for any family of topological spaces (Xi)i∈I
(here the index set I may be any set), the product topology on the set X :=

∏
Xi is, by

definition, the weakest topology that makes the projection maps πi : X → Xi continuous;
this means it is generated by open sets of the form π−1i (Ui) with Ui ⊆ Xi open, and therefore
every open set in X is a (possibly empty) union of open sets of the form∏

i∈S
Ui ×

∏
i∈I−S

Xi,

with S ⊆ I finite and each Ui ⊆ Xi open (these sets form a basis for the topology on X).
In particular, every open set U ⊆ X will have πi(U) = Xi for all but finitely many i ∈ I, so
unless all but finitely many of the Xi are compact, the space X cannot possibly be locally
compact for the simple reason that no compact set C in X contains a nonempty open set
(if it did then we would have πi(C) = Xi compact for all but finitely many i ∈ I). Recall
that for X to be locally compact means that every x ∈ X we have x ∈ U ⊆ C for some
open set U and compact set C (so C is a compact neighborhood of x).

To solve this problem we want to take the product of the fields Qp (or more generally, the
completions of any global field) in a different way that yields a locally compact topological
ring. This leads us to the restricted product which is a purely topological construction, but
one that was invented essentially for the purpose of solving this number-theoretic problem.

22.2 Restricted products

This section is purely about the topology of restricted products; readers familiar with
restricted products should feel free to skip to the next section.

Definition 22.1. Let (Xi) be a family of topological spaces indexed by i ∈ I, and let (Ui)
be a family of open sets Ui ⊆ Xi. The restricted product

∐∏
(Xi, Ui) is the topological space∐∏

(Xi, Ui) :=
{

(xi) ∈
∏

Xi : xi ∈ Ui for almost all i ∈ I
}

with the basis of open sets

B :=
{∏

Vi : Vi ⊆ Xi is open for all i ∈ I and Vi = Ui for almost all i ∈ I
}
,

where almost all means all but finitely many.
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For each i ∈ I we have a projection map πi :
∐∏

(Xi, Ui) → Xi defined by (xi) 7→ xi;
each πi is continuous, since if Ui is an open subset of Xi, then π−1i (Ui) is the union of all
V =

∏
Vi ∈ B with Vi = Ui, which is open.

As sets, we always have ∏
Ui ⊆

∐∏
(Xi, Ui) ⊆

∏
Xi,

but in general the restricted product topology on
∐∏

(Xi, Ui) is not the same as the subspace
topology it inherits as a subset of

∏
Xi; it has more open sets. For example,

∏
Ui is open in∐∏

(Xi, Ui) but not in
∏
Xi, unless Ui = Xi for almost all i, in which case

∐∏
(Xi, Ui) =

∏
Xi

(both as sets and as topological spaces). Thus the restricted product is a generalization of
the direct product and the two coincide if and only if Ui = Xi for almost all i; note that this
is automatically true when I is finite, so only infinite restricted products are interesting.

Remark 22.2. The restricted product does not depend on any particular Ui. Indeed,∐∏
(Xi, Ui) =

∐∏
(Xi, U

′
i)

whenever U ′i = Ui for almost all i; note that the two restricted products are not merely
isomorphic, they are identical, both as sets and as topological spaces. It is thus enough to
specify the Ui for all but finitely many i ∈ I.

Each x ∈ X :=
∐∏

(Xi, Ui) distinguishes a finite subset S = S(x) ⊆ I, namely, the set of
indices i for which xi 6∈ Ui (this may be the empty set). It is thus natural to consider

XS := {x ∈ X : S(x) = S} =
∏
i∈S

Xi ×
∏
i 6∈S

Ui.

Notice that XS ∈ B is an open set, and we can view it as a topological space in two ways:
as a subspace of X or as a direct product of certain Xi and Ui. But notice that restricting
the basis B for X to a basis for the subspace XS yields

BS :=
{∏

Vi : Vi ⊆ πi(XS) is open and Vi = Ui = πi(XS) for almost all i ∈ I
}
,

which is just the standard basis for the product topology on XS , so the two coincide.
We have XS ⊆ XT if and only if S ⊆ T , thus if we partially order the finite subsets

S ⊆ I by inclusion, the XS and the inclusion maps iST : XS ↪→ XT form a direct system,
and we can consider the corresponding direct limit

lim−→
S

XS ,

which is the quotient of the coproduct space1
∐
XS by the equivalence relation x ∼ iST (x)

for all x ∈ S ⊆ T . This direct limit is canonically isomorphic to the restricted product X,
which gives us another way to define the restricted product; before proving this list us recall
the general definition of a direct limit of topological spaces.

Definition 22.3. A direct system (or inductive system) in a category is a family of objects
{Xi : i ∈ I} indexed by a directed set I (see Definition 8.15) and a family of morphisms
{fij : Xi → Xj : i ≤ j} such that each fii is the identity and fik = fjk ◦ fij for all i ≤ j ≤ k.

1The topology on the coproduct
∐
XS is the weakest topology that makes all the injections XS ↪→

∐
XS

continuous; its open sets are simply unions of open sets the XS .
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Definition 22.4. Let (Xi, fij) be a direct system of topological spaces. The direct limit
(or inductive limit) of (Xi, fij) is the quotient space

X = lim−→Xi :=
∐
i∈I

Xi/ ∼,

where xi ∼ fij(xi) for all i ≤ j. The pullbacks φi : Xi → X of the quotient map
∐
Xi → X

satisfy φi = φj ◦ fij for i ≤ j.
The topological space X = lim−→Xi has the universal property that if Y is another topo-

logical space with continuous maps ψi : Xi → Y that satisfy ψi = ψj ◦ fij for i ≤ j, then
there is a unique continuous map X → Y for which all of the diagrams

Xi Xj

X

Y

fij

φi

ψi

φj

ψj∃!

commute (this universal property defines the direct limit in any category with coproducts).

We now prove that that
∐∏

(Xi, Ui) ' lim−→XS as claimed above.

Proposition 22.5. Let (Xi) be a family of topological spaces indexed by i ∈ I, let (Ui) be a
family of open sets Ui ⊆ Xi, and let X :=

∐∏
(Xi, Ui) be the corresponding restricted product.

For each finite S ⊆ I define

XS :=
∏
i∈S

Xi ×
∏
i 6∈S

Ui ⊆ X,

and inclusion maps iST : XS ↪→ XT , and let lim−→XS be the corresponding direct limit.
There is a canonical homeomorphism of topological spaces

ϕ : X
∼−→ lim−→XS

that sends x ∈ X to the equivalence class of x ∈ XS(x) ⊆
∐
XS in lim−→XS :=

∐
XS/ ∼,

where S(x) := {i ∈ I : xi 6∈ Ui}.

Proof. To prove that the map ϕ : X → lim−→XS is a homeomorphism, we need to show that
it is (1) a bijection, (2) continuous, and (3) an open map.

(1) For each equivalence class C ∈ lim−→XS :=
∐
XS/ ∼, let S(C) be the intersection of

all the sets S for which C contains an element of
∐
XS in XS . Then S(x) = S(C) for all

x ∈ C, and C contains a unique element for which x ∈ XS(x) ⊆
∐
XS . Thus ϕ is a bijection.

(2) Let U be an open set in lim−→XS =
∐
XS/ ∼. The inverse image V of U in

∐
XS

is open, as are the inverse images VS of V under the canonical injections ι : XS ↪→
∐
XS .

The union of the VS in X is equal to ϕ−1(U) and is an open set in X; thus ϕ is continuous.
(3) Let U be an open set in X. Since the XS form an open cover of X, we can cover U

with open sets US = U ∩XS , and then
∐
US is an open set in

∐
XS . Moreover, for each

x ∈
∐
US , if y ∼ x for some y ∈

∐
XS then y and x must correspond to the same element

in U ; in particular, y ∈
∐
US , so

∐
US is a union of equivalence classes in

∐
XS . It follows

that its image in lim−→XS =
∐
XS/ ∼ is open.
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Proposition 22.5 gives us another way to construct the restricted product
∐∏

(Xi, Ui):
rather than defining it as a subset of

∏
Xi with a modified topology, we can instead construct

it as a limit of direct products that are subspaces of
∏
Xi.

We now specialize to the case of interest, where we are forming a restricted product
using a family (Xi)i∈I of locally compact spaces and a family of open subsets (Ui) that
are almost all compact. Under these conditions the restricted product

∐∏
(Xi, Ui) is locally

compact, even though the product
∏
Xi is not unless the index set I is finite.

Proposition 22.6. Let (Xi)i∈I be a family of locally compact topological spaces and let
(Ui)i∈I be a corresponding family of open subsets Ui ⊆ Xi almost all of which are compact.
Then the restricted product X :=

∐∏
(Xi, Ui) is locally compact.

Proof. We first note that for each finite set S ⊆ I the topological space

XS :=
∏
i∈S

Xi ×
∏
i 6∈S

Ui

can be viewed as a finite product of locally compact spaces, since all but finitely many of
the Ui are compact and the product of these is compact (by Tychonoff’s theorem), hence
locally compact. A finite product of locally compact spaces is always locally compact, since
we can construct compact neighborhoods as products of compact neighborhoods in each
factor (the key point is that in a finite product, products of open sets are open); thus the
XS are all locally compact, and the XS cover X (since each x ∈ X lies in XS(x)). It follows
that X is locally compact, since each x ∈ XS has a compact neighborhood x ∈ U ⊆ C ⊆ XS

that is also a compact neighborhood in X (every open cover of C in X restricts to an open
cover of C in XS that must have a finite subcover, so C is compact in X, and U is open
in X because XS is open).

22.3 The ring of adeles

Recall that for a global field K (finite extension of Q or Fq(t)), we use MK to denote the
set of places of K (equivalence classes of absolute values), and for any v ∈ MK we use Kv

to denote the corresponding local field (the completion of K with respect to v), and define
Ov := Kv when v is nonarchimedean.2

Definition 22.7. Let K be a global field. The adele ring3 of K is the restricted product

AK :=
∐∏

(Kv,Ov)v∈MK
,

which we may view as a subset (but not a subspace!) of
∏
vKv; indeed

AK =
{

(av) ∈
∏

Kv : av ∈ Ov for almost all v
}
,

and for each a ∈ AK we use av to denote its projection in Kv; we make AK a ring by
defining addition and multiplication component-wise (closure is clear).

For each finite set of places S we have the subring of S-adeles

AK,S :=
∏
v∈S

Kv ×
∏
v 6∈S
Ov,

2Per Remark 22.2, as far as the topology goes it doesn’t matter how we define Ov at the archimedean
places, but we would like every Ov to be a topological ring, which motivates this choice.

3In French one writes adèle, but it is common practice to omit the accent when writing in English.
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which is a direct product of topological rings. By Proposition 22.5, AK ' lim−→AK,S is the
direct limit of the S-adele rings, which makes it clear that AK is also a topological ring.

The canonical embeddings K ↪→ Kv induce the canonical embedding

K ↪→ AK
x 7→ (x, x, x, . . .)

since for each x ∈ K we have x ∈ Ov for all but finitely many v. The image of K in AK
forms the subring of principal adeles (which of course is also a field).

We extend the normalized absolute value ‖ ‖v of Kv (see Definition 12.28) to AK via

‖a‖v := ‖av‖v,

and define the adelic absolute value (or adelic norm)

‖a‖ :=
∏

v∈MK

‖a‖v ∈ R≥0

which we note converges because ‖a‖v ≤ 1 for almost all v. For ‖a‖ 6= 0 this is equal to the
size of the MK-divisor (‖a‖v) we defined in Lecture 14 (see Definition 14.1). For any nonzero
principal adele a we necessarily have ‖a‖ = 1, by the product formula (Theorem 12.32).

Example 22.8. For K = Q the adele ring AQ is the union of the rings

AQ,S = R×
∏
p∈S

Qp ×
∏
p 6∈S

Zp.

Taking S = ∅ yields the ring AZ := R ×
∏
p<∞ Zp ' R × Ẑ of integral adeles. We can also

write AQ as

AQ =

a ∈ ∏
p≤∞

Qp : ‖a‖p ≤ 1 for almost all p

 .

Proposition 22.9. The adele ring AK of a global field K is locally compact and Hausdorff.

Proof. Local compactness follows from Proposition 22.6, since the local fields Kv are all
locally compact and all but finitely many Ov are valuation rings of a nonarchimedean local
field, hence compact (Ov = {x ∈ Kv : ‖x‖v ≤ 1} is a closed ball in a metric space).
If x, y ∈ AK are distinct then xv 6= yv for some v ∈ MK , and since Kv is Hausdorff
we can separate xv and yv by open sets whose inverse images under the projection map
πv : AK → Kv are open sets separating x and y; thus AK is Hausdorff.

Proposition 22.9 implies that the additive group of AK (which is sometimes denoted A+
K

to emphasize that we are viewing it as a group rather than a ring) is a locally compact group,
and therefore has a Haar measure that is unique up to scaling. Each of the completions Kv

is a local field with a Haar measure µv that we normalize as follows:

• µv(Ov) = 1 for all nonarchimedean v;

• µv(S) = µR(S) for Kv ' R, where µR(S) is the standard Euclidean measure on R;

• µv(S) = 2µC(S) for Kv ' C, where µC(S) is the standard Euclidean measure on
C ' R× R.
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Note that the normalization of µv at the archimedean places is consistent with the canonical
measure µ on KR ' Rr × Cs ' Rn induced by the canonical inner product on KR ⊆ KC
that we defined in Lecture 13 (see §13.2).

We now define a measure µ on AK as follows. We take as a basis for the σ-algebra of
measurable sets all sets of the form

∏
v Bv with µv(Bv) <∞ for all v ∈ MK and Bv = Ov

for almost all v. We then define

µ

(∏
v

Bv

)
:=
∏
v

µv(Bv).

It is easy to verify that µ is a Radon measure, and it is clearly translation invariant since
each of the Haar measures µv is translation invariant and addition is defined component-
wise; note that for any x ∈ AK and measurable set B =

∏
v Bv the set x+B =

∏
v(xv+Bv)

is also measurable, since xv + Bv = Ov whenever xv ∈ Ov and Bv = Ov, and this applies
to almost all v. It follows from uniqueness of the Haar measure (up to scaling) that µ is a
Haar measure on AK which we henceforth adopt as our normalized Haar measure on AK .

We now want to understand the behavior of the adele ring AK under base change. Note
that the canonical embedding K ↪→ AK makes AK a K-vector space, and if L/K is any
finite separable extension of K (also a K-vector space), we may consider the tensor product

AK ⊗ L,

which is also an L-vector space. As a topological K-vector space, the topology on AK ⊗ L
is just the product topology on [L : K] copies of of AK (this applies whenever we take a
tensor product of topological vector spaces, one of which has finite dimension).

Proposition 22.10. Let L be a finite separable extension of a global field K. There is a
canonical isomorphism of topological rings

AK ⊗K L ' AL

in which the canonical embeddings of L ' K ⊗K L into AK ⊗K L and L into AL agree.

Proof. The LHS AK ⊗K L is isomorphic to the restricted product∐∏
v
(Kv ⊗K L,Ov ⊗OK

OL).

Explicitly, each element of AK ⊗K L is a finite sum of elements of the form (av)⊗ x, where
(av) ∈ AK and x ∈ L, and there is a natural isomorphism

AK ⊗K L
∼−→
∐∏

v∈MK

(Kv ⊗K L,Ov ⊗OK
OL)

(av)⊗ x 7→ (av ⊗ x)

that is both a ring isomorphism and a homeomorphism of topological spaces.
On the RHS we have AL :=

∐∏
w∈ML

(Lw,Ow). But note that Kv ⊗K L '
∏
w|v Lw, by

Theorem 11.4 and Ov⊗OK
OL '

∏
w|vOw, by Corollary 11.7. These isomorphisms preserve

both the algebraic and the topological structures of both sides, and it follows that

AK ⊗K L '
∐∏

v∈MK

(Kv ⊗K L,Ov ⊗OK
OL) '

∐∏
w∈ML

(Lw,Ow) = AL

is an isomorphism of topological rings. The image of x ∈ L in AK ⊗K L via the canonical
embedding of L into AK ⊗K L is 1⊗ x = (1, 1, 1, . . .)⊗ x, whose image (x, x, x, . . .) ∈ AL is
equal to the image of x ∈ L under the canonical embedding of L into its adele ring AL.
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Corollary 22.11. Let L be a finite separable extension of a global field K of degree n. There
is a canonical isomorphism of topological K-vector spaces (and locally compact groups)

AL ' AK ⊕ · · · ⊕ AK
that identifies AK with the direct sum of n copies of AK , and this isomorphism restricts to
an isomorphism L ' K ⊕ · · · ⊕K of the principal adeles of AL with the n-fold direct sum
of the principal adeles of AK .

Theorem 22.12. Let L be a global field. The principal adeles L ↪→ AL are a discrete
subgroup of the additive group of AL and the quotient AL/L of topological groups is compact.

Proof. Let K be the rational subfield of L (so K = Q or K = Fq(t)). It follows from the
previous corollary, that if the theorem holds for K then it holds for L, so we will prove the
theorem for K. Let us identify K ↪→ AK with its image in AK (the principal adeles).

To show that the topological group K is discrete in AK , it suffices to show that 0 is an
isolated point. Consider the open set

U = {a ∈ AK : ‖a‖∞ < 1 and ‖a‖v ≤ 1 for all v <∞},

where the place v = ∞ is the archimedean place when K = Q and the nonarchimedean
place corresponding to the degree valuation v∞(f/g) = deg f−deg g when K = Fq(t)). The
product formula (Theorem 12.32) implies ‖a‖ = 1 for all nonzero principal adeles a ∈ AK ,
so the only principal adele in U is 0. Thus K is a discrete subgroup of AK .

To prove that the quotient AK/K is compact, we consider the set

W := {a ∈ AK : ‖a‖v ≤ 1 for all v}.

Let S = {∞} ⊆MK and put U∞ = {x ∈ K∞ : ‖x‖∞ ≤ 1}. Then

W = U∞ ×
∏
v 6∈S
Ov ⊆ AK,S

is a product of compact sets and therefore compact as a subspace of AK,S ⊆ AK .
We now show that W contains a complete set of coset representatives for K in AK . Let

a = (av) be any element of AK . We claim a = b+ c for some b ∈W and c ∈ K.
For v <∞, let xv = 0 if ‖av‖ ≤ 1 (true for almost all v), and otherwise choose xv ∈ K

so that ‖av − xv‖v ≤ 1 and ‖xv‖w ≤ 1 for w 6= v; such a xv exists by the “pretty strong”
approximation theorem (Theorem 3.29). Now let c′ =

∑
v<∞ xv ∈ K ⊆ AK (this is a finite

sum because almost all the xv are zero), and choose x∞ ∈ OK so that

‖a∞ − c′∞ − x∞‖∞ ≤ 1.

When K = Q we can take x∞ ∈ Z to be the nearest integer to the rational number
a∞ − c′∞. When K = Fq(t), if a∞ − c′∞ = f/g with f, g ∈ Fq[t] relatively prime, we can
write f = hg + f ′ for some h, f ′ ∈ Fq[t] with deg f ′ < deg g and let x∞ = −h.

Now let c :=
∑

v≤∞ xv ∈ K ⊆ AK , and let b := a− c. Then a = b+ c, with c ∈ K, and
we claim that b ∈W . For each v <∞ we have xw ∈ Ov for all w 6= v and

‖b‖v = ‖a− c‖v =

∥∥∥∥∥∥av −
∑
w≤∞

xw

∥∥∥∥∥∥
v

≤ max (‖av − xv‖v,max({‖xw‖v : w 6= v})) ≤ 1,

by the nonarchimedean triangle inequality. For v = ∞ we have ‖b‖∞ = ‖a∞ − c∞‖ =
‖a∞ − c′∞ − x∞‖ ≤ 1 by our choice of x∞, and therefore b ∈W as claimed.

Thus W surjects onto AK/K under the quotient map AK � AK/K. The quotient map
is continuous, so the image AK/K of the compact set W must be compact.
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22.4 Strong approximation

We are now ready to prove the strong approximation theorem (Theorem 3.27) that we
recorded back in Lecture 3 but have so far not used.4 In order to prove it we first prove an
adelic version of the Blichfeldt-Minkowski lemma.

Lemma 22.13 (Blichfeldt-Minkowski lemma). Let K be a global field. There is a positive
constant C such that for any x ∈ AK with ‖x‖ > C there exists a nonzero principal adele
y ∈ K ⊆ AK for which ‖y‖v ≤ ‖x‖v for all v ∈MK .

Proof. Let c0 := covol(K) be the measure of a fundamental region for K in AK under our
normalized Haar measure µ on AK (by Theorem 22.12, K is cocompact so c0 is finite). Now
define

c1 := µ
({
z ∈ AK : ‖z‖v ≤ 1 and ‖z‖v ≤ 1

4 if v is archimedean
})
.

Then c1 6= 0, since K has only finitely many archimedean places, and we put C := c0/c1.
5

Suppose x ∈ AK satisfies ‖x‖ > C. We know that ‖x‖v ≤ 1 for all almost all v, so
‖x‖ > C implies that ‖x‖v = 1 for almost all v. Let us now consider the set

T :=
{
t ∈ AK : ‖t‖v ≤ ‖x‖v and ‖t‖v ≤ 1

4‖x‖v if v is archimedean
}
.

From the definition of c1 we have

µ(T ) = c1‖x‖ > c1C = c0;

this follows from the fact that the Haar measure on AK is the product of the normalized
Haar measures µv on each of the Kv. Since µ(T ) > c0, the set T cannot lie in a fundamental
region forK, so there must be distinct t1, t2 ∈ T with the same image in AK/K, equivalently,
whose difference y = t1 − t2 is a nonzero element of K ⊆ AK . We then have

‖t1 − t2‖v ≤


max(‖t1‖v, ‖t2‖v) ≤ ‖x‖v nonarch. v;

‖t1‖v + ‖t2‖v ≤ 2 · 14‖x‖v ≤
1
2‖x‖v real v;

(‖t1 − t2‖1/2v )2 ≤ (‖t1‖1/2v + ‖t2‖1/2v )2 ≤ (2 · 12‖x‖
1/2
v )2 ≤ ‖x‖v complex v.

Here we have used the fact that the normalized absolute value ‖ ‖v satisfies the nonar-
chimedean triangle inequality when v is nonarchimedean, ‖ ‖v satisfies the archimedean

triangle inequality when v is real, and ‖ ‖1/2v satisfies the archimedean triangle inequality
when v is complex. Thus ‖y‖v = ‖t1 − t2‖ ≤ ‖x‖v for all places v ∈MK as desired.

Theorem 22.14 (Strong Approximation). Let K be a global field and let MK = S t
T t{w} be a partition of the places of K with S finite. For each v ∈ S, let av be an element
of K and let εv ∈ R>0. Then there exists an x ∈ K for which

‖x− av‖v ≤ εv for all v ∈ S,
‖x‖v ≤ 1 for all v ∈ T,

(with no constraint on ‖x‖w).

4We have made do with the pretty strong approximation theorem (Theorem 3.29).
5With our canonical normalization of µ we will actually get the same C for all K, but we don’t need this.

With a little more care one can show that in fact C = 1 works.
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Proof. Let W = {z ∈ AK : ‖z‖v ≤ 1 for all v ∈ MK} as in the proof of Theorem 22.12.
Then W contains a complete set of coset representatives for K ⊆ AK , so AK = K + W .
For any nonzero u ∈ K ⊆ AK we also have AK = K + uW : given c ∈ AK write u−1c ∈ AK
as u−1c = a + b with a ∈ K and b ∈ W and then c = ua + ub with ua ∈ K and ub ∈ uW .
Now choose z ∈ AK such that

0 < ‖z‖v ≤ εv for v ∈ S, 0 < ‖z‖v ≤ 1 for v ∈ T, ‖z‖w > C
∏
v 6=w
‖z‖−1v ,

where C is the constant in Lemma 22.13 (this is clearly possible). We then have ‖z‖ > C,
and by Lemma 22.13 there is a nonzero u ∈ K ⊆ AK with ‖u‖v ≤ ‖z‖v for all v ∈MK .

Now consider the adele a = (av) ∈ AK with av = 0 for v 6∈ S (for v ∈ S the value of av
is given by the hypothesis of the theorem). We have AK = K + uW , so a = x+ y for some
x ∈ K and y ∈ uW . Therefore

‖x− av‖ = ‖y‖v ≤ ‖u‖v ≤ ‖z‖v ≤

{
εv for v ∈ S,
1 for v ∈ T,

as desired.

Remark 22.15. Theorem 22.14 can be generalized to algebraic groups (the global field K
can be viewed as the algebraic group GL1(K), an affine line); see [1] for a survey.

Corollary 22.16. Let K be a global field and let w be any place of K. Then K is dense in
the restricted product

∐∏
v 6=w(Kv,Ov).
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