11 Completing extensions, different and discriminant ideals

11.1 Local extensions come from global extensions

Let \hat{L} be a local field. From our classification of local fields (Theorem 9.7), we know \hat{L} is a finite extension of $\hat{K} = \mathbb{Q}_p$ (some prime $p \leq \infty$) or $\hat{K} = \mathbb{F}_q((t))$ (some prime power q). We also know that the completion of a global field at any of its nontrivial absolute values is such a local field (Corollary 9.5). It thus reasonable to ask whether \hat{L} is the completion of a corresponding global field L that is a finite extension of $K = \mathbb{Q}$ or $K = \mathbb{F}_q((t))$.

More generally, for any fixed global field K and local field \hat{K} that is the completion of K with respect to one of its nontrivial absolute values $| |$, we may ask whether every finite extension of local fields \hat{L}/\hat{K} necessarily corresponds to an extension of global fields L/K, where \hat{L} is the completion of L with respect to one of its absolute values (whose restriction to \hat{K} must be equivalent to $| |$). The answer is yes. In order to simplify matters we restrict our attention to the case where \hat{L}/\hat{K} is separable, but this is true in general.

Theorem 11.1. Let K be a global field with a nontrivial absolute value $| |$, and let \hat{K} be the completion of K with respect to $| |$. Every finite separable extension \hat{L} of \hat{K} is the completion of a finite separable extension L of K with respect to an absolute value that restricts to $| |$. Moreover, one can choose L so that \hat{L} is the compositum of L and \hat{K} and $[\hat{L} : \hat{K}] = [L : K]$.

Proof. Let \hat{L}/\hat{K} be a separable extension of degree n. Let us first suppose that $| |$ is archimedean. Then K is a number field and \hat{K} is either \mathbb{R} or \mathbb{C}; the only nontrivial case is when $\hat{K} = \mathbb{C}$ and $n = 2$, and we may then assume that $\hat{L} \simeq \mathbb{C}$ is $\hat{K}(\sqrt{-d})$ where $-d \in \mathbb{Z}_{<0}$ is a nonsquare in K (such a $-d$ exists because K/\mathbb{Q} is finite). We may assume without loss of generality that $| |$ is the Euclidean absolute value on $\hat{K} \simeq \mathbb{R}$ (it must be equivalent to it), and uniquely extend $| |$ to $L = K(\sqrt{-d})$ by requiring $|\sqrt{-d}| = \sqrt{d}$. Then \hat{L} is the completion of L with respect to $| |$, and clearly $[\hat{L} : \hat{K}] = [L : K] = 2$, and \hat{L} is the compositum of L and \hat{K}.

We now suppose that $| |$ is nonarchimedean, in which case the valuation ring of \hat{K} is a complete DVR and $| |$ is induced by the corresponding discrete valuation. By the primitive element theorem (Theorem 4.33), we may assume $\hat{L} = \hat{K}[x]/(f)$ where $f \in \hat{K}[x]$ is monic, irreducible, and separable. The field K is dense in its completion \hat{K}, so we can find a monic $g \in K[x] \subseteq \hat{K}[x]$ that is arbitrarily close to f: such that $\|g - f\|_1 < \delta$ for any $\delta > 0$. It then follows from Proposition 10.30 that $\hat{L} = \hat{K}[x]/(g)$ (and that g is separable). The field \hat{L} is a finite separable extension of the fraction field of a complete DVR, so by Theorem 9.25 it is itself the fraction field of a complete DVR and has a unique absolute value that extends the absolute value $| |$ on \hat{K}.

Now let $L = \hat{K}[x]/(g)$. The polynomial g is irreducible in $\hat{K}[x]$, hence in $K[x]$, so $[L : K] = \deg g = [\hat{L} : \hat{K}]$. The field \hat{L} contains both \hat{K} and L, and it is clearly the smallest field that does (since g is irreducible in $\hat{K}[x]$), so \hat{L} is the compositum of \hat{K} and L. The absolute value on \hat{L} restricts to an absolute value on L extending the absolute value $| |$ on K, and \hat{L} is complete, so \hat{L} contains the completion of L with respect to $| |$. On the other hand, the completion of L with respect $| |$ contains both L and \hat{K}, so it must be \hat{L}. \qed

In the preceding theorem, when the local extension \hat{L}/\hat{K} is Galois one might ask whether the corresponding global extension L/K is also Galois, and whether $\text{Gal}(\hat{L}/\hat{K}) \simeq \text{Gal}(L/K)$. As shown by the following example, this need not be the case.
Example 11.2. Let $K = \mathbb{Q}$, $\bar{K} = \mathbb{Q}_7$ and $\bar{L} = \bar{K}[x]/(x^3 - 2)$. The extension \bar{L}/\bar{K} is Galois because $\bar{K} = \mathbb{Q}_7$ contains ζ_3 (we can lift the root 2 of $x^2 + x + 1 \in \mathbb{F}_7[x]$ to a root of $x^2 + x + 1 \in \mathbb{Q}_7[x]$ via Hensel’s lemma), and this implies that $x^3 - 2$ splits completely in $L_w = \mathbb{Q}_7(\sqrt[3]{2})$. But $L = \bar{K}[x]/(x^3 - 2)$ is not a Galois extension of K because it contains only one root of $x^3 - 2$. However, we can replace K with $\mathbb{Q}(\zeta_3)$ without changing \bar{K} (take the completion of K with respect to the absolute value induced by a prime above 7) or \bar{L}, but now $L = \bar{K}[x]/(x^3 - 2)$ is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing the local fields extension \bar{L}/\bar{K} in a way that ensures that \bar{L}/\bar{K} and L/K have the same automorphism group. Indeed, this is always possible.

Corollary 11.3. For every finite Galois extension \bar{L}/\bar{K} of local fields there is a correspon-
ding Galois extension of global fields L/K and an absolute value $| |$ on L such that \bar{L} is the completion of L with respect to $| |$, \bar{K} is the completion of K with respect to the restriction of $| |$ to K, and $\text{Gal}(\bar{L}/\bar{K}) \simeq \text{Gal}(L/K)$.

Proof. The archimedean case is already covered by Theorem 11.1 (take $K = \mathbb{Q}$), so we assume \bar{L} is nonarchimedean and note that we may take $| |$ to be the absolute value on both \bar{K} and \bar{L} (by Theorem 9.25). The field \bar{K} is an extension of either \mathbb{Q}_p or $\mathbb{F}_q((t))$, and by applying Theorem 11.1 to this extension we may assume \bar{K} is the completion of a global field K with respect to the restriction of $| |$. As in the proof of the theorem, let $g \in K[x]$ be a monic separable polynomial irreducible in $\bar{K}[x]$ such that $\bar{L} = \bar{K}[x]/(g)$ and define $L := K[x]/(g)$ so that \bar{L} is the compositum of K and L.

Now let M be the splitting field of g over K, the minimal extension of K that contains all the roots of g (which are distinct because g is separable). The field \bar{L} also contains these roots (since \bar{L}/K is Galois) and \bar{L} contains K, so \bar{L} contains a subextension of K isomorphic to M (by the universal property of a splitting field), which we now identify with M; note that \bar{L} is also the completion of M with respect to the restriction of $| |$ to M.

We have a group homomorphism $\varphi : \text{Gal}(\bar{L}/\bar{K}) \to \text{Gal}(M/K)$ induced by restriction, and φ is injective (each $\sigma \in \text{Gal}(\bar{L}/\bar{K})$ is determined by its action on any root of g in M). If we now replace K by the fixed field of the image of φ and replace L with M, the completion of K with respect to the restriction of $| |$ is still equal to \bar{K}, and similarly for L and \bar{L}, and now $\text{Gal}(L/K) = \text{Gal}(\bar{L}/\bar{K})$ as desired. \qed

11.2 Completing a separable extension of Dedekind domains

We now return to our general $AKLB$ setup: A is a Dedekind domain with fraction field K with a finite separable extension L/K, and B is the integral closure of A in L, which is also a Dedekind domain. Recall from Theorem 5.11 that if p is a nonzero prime of A, each prime $q|p$ gives a valuation v_q of L that extends the valuation v_p of K with index e_q, meaning that $v_q|_K = e_q v_p$. Moreover, every valuation of L that extends v_p arises in this way. We now want to look at what happens when we complete K with respect to the absolute value $| |_p$ induced by v_p, and similarly complete L with respect to $| |_q$ for some $q|p$. This includes the case where L/K is an extension of global fields, in which case we get a corresponding extension L_q/K_p of local fields for each $q|p$, but note that L_q/K_p may have strictly smaller degree than L/K because if we write $L \simeq K[x]/(f)$, the irreducible polynomial $f \in K[x]$ need not be irreducible over K_p. Indeed, this will necessarily be the case if there is more than one prime q lying above p; there is a one-to-one correspondence between factors of f
in $K_p[x]$ and primes $q|p$. If L/K is Galois, so is L_q/K_p and each $\text{Gal}(L_q/K_p)$ is isomorphic to the decomposition group D_q (which perhaps helps to explain the terminology).

The following theorem gives a complete description of the situation.

Theorem 11.4. Assume $AKLB$, let p be a prime of A, and let $pB = \prod_{q|p} q^e_q$ be the factorization of pB in B. Let K_p denote the completion of K with respect to $|\cdot|_p$, and let $\hat{\mathfrak{p}}$ denote the maximal ideal of its valuation ring. For each $q|p$, let L_q denote the completion of L with respect to $|\cdot|_q$, and let \hat{q} denote the maximal ideal of its valuation ring. The following hold:

1. Each L_q is a finite separable extension of K_q;
2. Each \hat{q} is the unique prime of L_q lying over \hat{p}.
3. Each \hat{q} has ramification index $e_q = e_q$ and residue field degree $f_q = f_q$.
4. $[L_q : K_p] = e_q f_q$.
5. The map $L \otimes_K K_p \to \prod_{q|p} L_q$ defined by $\ell \otimes x \mapsto (\ell x, \ldots, \ell x)$ is an isomorphism of finite étale K_p-algebras.
6. If L/K is Galois then each L_q/K_p is Galois and we have isomorphisms of decomposition groups $D_q \simeq D_q = \text{Gal}(L_q/K_p)$ and inertia groups $I_q \simeq I_q$.

Proof. We first note that the K_p and the L_q are all fraction fields of complete DVRs; this follows from Proposition 8.18 (note: we are not assuming they are local fields, in particular, their residue fields need not be finite).

1. For each $q|p$ the embedding $K \hookrightarrow L$ induces an embedding $K_p \hookrightarrow L_q$ via the map $[(a_n)] \mapsto [(a_n)]$ on equivalence classes of Cauchy sequences; a sequence (a_n) that is Cauchy in K with respect to $|\cdot|_p$, is also Cauchy in L with respect to $|\cdot|_q$ because v_q extends v_p.

We then view K_p as a subfield of L_q, which also contains L. There is thus a K-algebra homomorphism $\phi_q: L \otimes_K K_p \to L_q$ defined by $\ell \otimes x \mapsto \ell x$, which we may view as a linear map of K_p vector spaces. We claim that ϕ_q is surjective.

If $\alpha_1, \ldots, \alpha_m$ is any basis for L_q then its determinant with respect to \mathcal{B}, i.e., the $m \times m$ matrix whose jth row contains the coefficients of α_j when written as a linear combination of elements of \mathcal{B}, must be nonzero. The determinant is a polynomial in the entries of this matrix, hence a continuous function with respect to the topology on L_q induced by the absolute value $|\cdot|_q$. It follows that if we replace $\alpha_1, \ldots, \alpha_m$ with ℓ_1, \ldots, ℓ_m chosen so that $|\alpha_j - \ell_j|_q$ is sufficiently small, the matrix of ℓ_1, \ldots, ℓ_m with respect to \mathcal{B} must also be nonzero, and therefore ℓ_1, \ldots, ℓ_m is also a basis for L_q. We can thus choose a basis $\ell_1, \ldots, \ell_m \subseteq L$, since L is dense in its completion L_q. But then $\{\ell_j\} = \{\phi_q(\ell_j \otimes 1)\} \subseteq \text{im} \phi_q$ spans L_q, so ϕ_q is surjective as claimed.

The K_p-algebra $L \otimes_K K_p$ is the base change of a finite étale algebra, hence finite étale, by Proposition 4.34. It follows that L_q is a finite separable extension of K_p: it certainly has finite dimension as a K_p-vector space, since ϕ_q is surjective, and it is separable because every $\alpha \in L_q$ is the image $\phi_q(\beta)$ of an element $\beta \in L \otimes_K K_p$ that is a root of a separable (but not necessarily irreducible) polynomial $f \in K_p[x]$, as explained after Definition 4.29; we then have $0 = \phi_q(0) = \phi_q(f(\beta)) = f(\alpha)$, so α is a root of f, hence separable.

2. The valuation rings of K_p and L_q are complete DVRs, so this follows immediately from Theorem 9.20.

3. The valuation v_q extends v_p with index e_q. The valuation v_p extends v_p with index e_q, and it follows that v_q extends v_p with index e_q and therefore $e_q = e_q$. The residue field of \hat{p} is the same as that of p: for any Cauchy
sequence \((a_n)\) over \(K\) the \(a_n\) will eventually all have the same image in the residue field at \(p\) (since \(v_p(a_n - a_m) > 0\) for all sufficiently large \(m\) and \(n\)). Similar comments apply to each \(\hat{q}\) and \(q\), and it follows that \(f_{\hat{q}} = f_q\).

(4) It follows from (2) that \([L_q : K_p] = e_q f_{\hat{q}}\), since \(\hat{q}\) is the only prime above \(\hat{p}\), and (3) then implies \([L_q : K_p] = e_q f_q\).

(5) Let \(\phi = \prod_{q|p} \phi_q\), where \(\phi_q\) are the surjective \(K_q\)-algebra homomorphisms defined in the proof of (1). Then \(\phi: L \otimes_K K_p \rightarrow \prod_{q|p} L_q\) is a \(K_q\)-algebra homomorphism. Applying (4) and the fact that base change preserves dimension (see Proposition 4.34):

\[
\dim_{K_p} (L \otimes_K K_p) = \dim_K L = [L : K] = \sum_{q|p} e_q f_q = \sum_{q|p} [L_q : K_p] = \dim_{K_p} \left(\prod_{q|p} L_q \right).
\]

The domain and range of \(\phi\) thus have the same dimension, and \(\phi\) is surjective (since the \(\phi_q\) are), so it is an isomorphism.

(6) We now assume \(L/K\) is Galois. Each \(\sigma \in D_q\) acts on \(L\) and respects the valuation \(v_q\), since it fixes \(q\) (if \(x \in q^n\) then \(\sigma(x) \in \sigma(q^n) = q^n\)). It follows that if \((x_n)\) is a Cauchy sequence in \(L\), then so is \((\sigma(x_n))\), thus \(\sigma\) is an automorphism of \(L_q\), and it fixes \(K_p\). We thus have a group homomorphism \(\varphi: D_q \rightarrow \text{Aut}_{K_p}(L_q)\).

If \(\sigma \in D_q\) acts trivially on \(L_q\) then it acts trivially on \(L \subseteq L_q\), so \(\ker \varphi\) is trivial. Also,

\[e_q f_q = [D_q] \leq \#\text{Aut}_{K_p}(L_q) \leq [L_q : K_p] = e_q f_q,
\]

by Theorem 11.4, so \(\#\text{Aut}_{K_p}(L_q) = [L_q : K_p]\) and \(L_q/K_p\) is Galois, and this also shows that \(\varphi\) is surjective and therefore an isomorphism. There is only one prime \(\hat{q}\) of \(L_q\), and it is necessarily fixed by every \(\sigma \in \text{Gal}(L_q/K_p)\), so \(\text{Gal}(L_q/K_p) \cong D_q\). The inertia groups \(I_q\) and \(I_{\hat{q}}\) both have order \(e_q = e_{\hat{q}}\), and \(\varphi\) restricts to a homomorphism \(I_q \rightarrow I_{\hat{q}}\), so the inertia groups are also isomorphic.

\[\square\]

Corollary 11.5. Assume \(AKLB\) and let \(p\) be a prime of \(A\). For every \(\alpha \in L\) we have

\[N_{L/K}(\alpha) = \prod_{q|p} N_{L_q/K_q}(\alpha) \quad \text{and} \quad T_{L/K}(\alpha) = \prod_{q|p} T_{L_q/K_q}(\alpha),\]

where we view \(\alpha\) as an element of \(L_q\) via the canonical embedding \(L \hookrightarrow L_q\).

Proof. The norm and trace are defined as the determinant and trace of \(K\)-linear maps \(L \xrightarrow{\times \alpha} L\) that are unchanged upon tensoring with \(K_p\); the corollary then follows from the isomorphism in part (5) of Theorem 11.4, which commutes with the norm and trace. \[\square\]

Remark 11.6. Theorem 11.4 can be stated more generally in terms of (equivalence classes of) absolute values (or \(\text{places}\)). Rather than working with a prime \(p\) of \(K\) and primes \(q\) of \(L\) above \(p\), one works with an absolute value \(|\cdot|_v\) of \(K\) (for example, \(|\cdot|_p\) and inequivalent absolute values \(|\cdot|_w\) of \(L\) that extend \(|\cdot|_v\). Places will be discussed further in the next lecture.

Corollary 11.7. Assume \(AKLB\) with \(A\) a DVR with maximal ideal \(p\). Let \(pB = \prod q^e_q\) be the factorization of \(pB\) in \(B\). Let \(\hat{A}\) denote the completion of \(A\), and for each \(q|p\), let \(\hat{B}_q\) denote the completion of \(B_q\). Then \(B \otimes_A \hat{A} \simeq \prod_{q|p} \hat{B}_q\).
Proof. Since A is a DVR (and therefore a torsion-free PID), the ring extension B/A is a free A module of rank $n := [L : K]$, and therefore $B \otimes_A \hat{A}$ is a free \hat{A}-module of rank n. And $\prod q \hat{B}_q$ is a free \hat{A}-module of rank $\sum q|\mathfrak{p} e_q j_q = n$. These two \hat{A}-modules lie in isomorphic K_p-vector spaces, $L \otimes_K K_p \simeq \prod L_q$, by part (5) of Theorem 11.4. To show that they are isomorphic it suffices to check that they are isomorphic after reducing modulo \hat{p}, the maximal ideal of \hat{A}.

For the LHS, note that $\hat{A}/\hat{p} \simeq A/p$, so

$$B \otimes_A \hat{A}/\hat{p} \simeq B \otimes_A A/p \simeq B/pB.$$

On the RHS we have

$$\prod q \hat{B}_q/\hat{p} \hat{B}_q \simeq \prod q \hat{B}_q/p \hat{B}_q \simeq \prod q \hat{B}_q/p B_q = \prod q B_q/q^{e_q} B_q$$

which is isomorphic to B/pB on the LHS because $pB = \prod q q^{e_q}$.

\[\square\]

11.3 The different ideal

We continue in our usual AKLB setup: A is a Dedekind domain, K is its fraction field, L/K is a finite separable extension, and B is the integral closure of A in L (a Dedekind domain with fraction field L). We would like to understand the primes that ramify in L/K, that is, the primes q of B for which $e_q > 1$, or, at a coarser level, primes \mathfrak{p} of A that have a ramified prime q lying above them. Our main tool for doing so is the different ideal $\mathcal{D}_{B/A}$, a fractional ideal of B that will give us an exact answer to this question: the primes of B that ramify are exactly those that divide the different ideal, and $v_q(\mathcal{D}_{B/A})$ will give us information about the ramification index e_q (its exact value in the tamely ramified case).

Of course we could just define $\mathcal{D}_{B/A}$ to have the properties we want, but the key is to define it in a way that makes it independently computable, allowing us to determine the primes q that ramify in B, which we typically do not know \emph{a priori}.

Recall from Lecture 4 the trace pairing $L \times L \to K$ defined by $(x, y) \mapsto T_{L/K}(xy)$. Since L/K is separable, this pairing is nondegenerate, by Proposition 4.58. For any A-module $M \subseteq L$, we defined the dual A-module

$$M^* := \{x \in L : T_{L/K}(xm) \in A \ \forall m \in M\}$$

(see Definition 4.59). Note that if $M \subseteq N$ are two A-modules in L, then it is clear from the definition that $N^* \subseteq M^*$ (taking duals reverses inclusions).

If M is a free A-lattice (see Definition 6.1) then it has an A-module basis e_1, \ldots, e_n that is also a K-basis for L. The dual A-module M^* is then also a free A-lattice, and it has the dual basis e_1^*, \ldots, e_n^*, which is the unique K-basis for L that satisfies

$$T_{L/K}(e_i^* e_j) = \delta_{ij} := \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}$$

(see Proposition 4.54) and also an A-module basis for M^*.

Every B-module $M \subseteq L$ (including all fractional ideals of B) is also a (not necessarily free) A-module in L, and in this case the dual A-module M^* is also a B-module: for any $x \in M^*$, $b \in B$, and $m \in M$ we have $T((bx)m) = T(b \cdot x(m)) \in A$, since $bm \in M$ and $x \in M^*$, so $bx \in M^*$. If M is a finitely generated as a B-module, then it is a fractional ideal of B (by definition), and provided it is nonzero, it is invertible, since B is a Dedekind domain, and therefore an element of the ideal group \mathcal{I}_B. We now show that $M^* \in \mathcal{I}_B$.

18.785 Fall 2015, Lecture #11, Page 5
Proposition 11.11. Assume AKLB and suppose $M \in I_B$. Then $M^* \in I_B$.

Proof. Since M is a B-module, so is M^* (as noted above), and M^* is clearly nonzero: if $M = \frac{1}{b}I$ with $b \in B$ nonzero and I a B-ideal, then $bm \in B$ and $T_{L/K}(bm) \in A$ for all $m \in M$ so $b \in M^*$. We just need to check that M^* is finitely generated. Here we use the standard trick: find a free submodule of M, take its dual to get a free module that contains M^*, and then note that M^* is a submodule of a noetherian module.

Let e_1, \ldots, e_n be a K-basis for L. By clearing denominators, we may assume the e_i lie in B (since $L = \text{Frac} B$). If m is any element of M, then me_1, \ldots, me_n is a K-basis for L that lies in M. Let C be the free A-submodule of M generated by me_1, \ldots, me_n; this is a free A-lattice, and it follows that $M^* \subseteq C^*$ is contained in the free A-lattice C^*, which is obviously finitely generated. As a finitely generated module over a noetherian ring, the A-module C^* is a noetherian module, which means that every A-submodule of C^* is finitely generated, including M^*. We have $A \subseteq B$, so if M^* is finitely generated as an A-module, it is certainly finitely generated as a B-module. \qed

Definition 11.9. Assume AKLB. The inverse different ideal (or codifferent) of B is the dual of B as an A-module:

$$B^* := \{x \in L : T_{L/K}(xb) \in A \ \forall b \in B\} \in \mathcal{I}_B.$$

The different ideal (or different) $D_{B/A}$ is the inverse of B^* as a fractional B-ideal.

To justify the name, we should check that $D_{B/A}$ is actually an ideal, not just a fractional ideal. The dual module B^* clearly contains 1, since $T_{L/K}(1 \cdot b) = T_{L/K}(b) \in A$ for all $b \in B$. It follows that

$$D_{B/A} = (B^*)^{-1} = (B : B^*) = \{x \in L : xB^* \subseteq B\} \subseteq B,$$

so $D_{B/A}$ is indeed a B-ideal.

We now show that the different respects localization and completion.

Proposition 11.10. Assume AKLB, let S be a multiplicative subset of A. Then

$$S^{-1}D_{B/A} = D_{S^{-1}B/S^{-1}A}.$$

Proof. Since taking inverses respects localization, it suffices to show that $S^{-1}B^* = (S^{-1}B)^*$, where $(S^{-1}B)^*$ denotes the dual of $S^{-1}B$ as an $S^{-1}A$-module in L. If $x = s^{-1}y \in S^{-1}B^*$ with $s \in S$ and $y \in B^*$, and $m = t^{-1}b \in S^{-1}B$ with $t \in S$ and $b \in B$ then

$$T_{L/K}(xm) = (st)^{-1}T_{L/K}(yb) \in S^{-1}A,$$

since the trace is K-linear and $S \subseteq A \subseteq K$; this shows that $S^{-1}B^* \subseteq (S^{-1}B)^*$. For the reverse inclusion, let $\{b_i\}$ be a finite set of generators for B as an A-module and let $x \in (S^{-1}B)^*$. For each b_i we have $T_{L/K}(xb_i) \in S^{-1}A$, since $(S^{-1}B)^*$ is an $S^{-1}B$-module and therefore a B-module. So each $T_{L/K}(xb_i) = s_i^{-1}a_i$ for some $s_i \in S$ and $a_i \in A$. If we now put $s = \prod s_i$ (a finite product), then $T_{L/K}(sxb_i) \in A$ for all b_i (here we are again using the K-linearity of $T_{L/K}$). So $sx \in B^*$, and therefore $x \in S^{-1}B^*$ as desired. \qed

Proposition 11.11. Assume AKLB and let $q \mid p$ be a prime of B. Then

$$D_{B_q/A_p} = D_{B/A} \cdot \hat{B}_q.$$
Proof. We can assume without loss of generality that A is a DVR by localizing at \mathfrak{p}. Let $\hat{L} := L \otimes \hat{K}$. By (5) of Theorem 11.4, we have $\hat{L} = \prod_{q\mid \mathfrak{p}} \hat{L}_q$. This is not a field, in general, but $T_{L/K}$ is defined as for any ring extension, and we have $T_{L/K}(x) = \sum_{q\mid \mathfrak{p}} T_{L_q/K}(x)$.

Now let $\hat{B} := B \otimes \hat{A}$. By Corollary 11.7, $\hat{B} = \prod_{q\mid \mathfrak{p}} \hat{B}_q$, and therefore $\hat{B}^* \simeq \prod_{q\mid \mathfrak{p}} \hat{B}_q^*$ (since the trace is just a sum of traces). It follows that $B^* \simeq B^* \otimes_A \hat{A}$. Thus B^* generates the fractional ideal $\hat{B}_q^* \subseteq \mathcal{I}_{\hat{A}}$. Taking inverses, $\mathcal{D}_{B/A} = (B^*)^{-1}$ generates $(\hat{B}_q^*)^{-1} = \mathcal{D}_{\hat{B}_q/\hat{A}}$. \(\Box\)

11.4 The discriminant

Definition 11.12. Let B/A be a ring extension with B free as an A-module. For any $e_1, \ldots, e_n \in B$ we define the discriminant

$$\text{disc}(e_1, \ldots, e_n) = \det[T_{B/A}(e_ie_j)]_{i,j} \in A,$$

where $T_{B/A}(b)$ is the trace from B to A (see Definition 4.40).\(^1\)

We have in mind the case where e_1, \ldots, e_n is a basis for L as a K-vector space. In our usual $AKLB$ setup, if $e_1, \ldots, e_n \in B$ then $\text{disc}(e_1, \ldots, e_n) \in A$.

Proposition 11.13. Let L/K be a finite separable extension of degree n, and let Ω/K be a field extension for which there are distinct $\sigma_1, \ldots, \sigma_n \in \text{hom}_K(L, \Omega)$. For any $e_1, \ldots, e_n \in L$

$$\text{disc}(e_1, \ldots, e_n) = (\det[\sigma_i(e_j)]_{i,j})^2.$$

Furthermore, for any $x \in L$

$$\text{disc}(1, x, x^2, \ldots, x^{n-1}) = \prod_{i<j} (\sigma_i(x) - \sigma_j(x))^2.$$

Note that such an Ω exists, since L/K is separable (just take a normal closure).

Proof. For $1 \leq i, j \leq n$ we have $T_{L/K}(e_ie_j) = \sum_{k=1}^n \sigma_k(e_ie_j)$, by Theorem 4.44. Therefore

$$\text{disc}(e_1, \ldots, e_n) = \det[T_{L/K}(e_ie_j)]_{i,j}$$

$$= \det ([\sigma_k(e_i)]_{ik}[\sigma_k(e_j)]_{kj})$$

$$= \det ([\sigma_k(e_i)]_{ik}[\sigma_k(e_j)]_{jk})$$

$$= (\det[\sigma_i(e_j)]_{i,j})^2$$

since the determinant is multiplicative and invariant under taking transposes.

Now let $x \in L$ and define $e_i := x^{i-1}$ for $1 \leq i \leq n$. Then

$$\text{disc}(1, x, x^2, \ldots, x^{n-1}) = (\det[\sigma_i(x^{i-1})]_{i,j})^2 = \prod_{i<j} (\sigma_i(x) - \sigma_j(x))^2,$$

since $[\sigma_i(x^{j-1})]_{i,j}$ is a Vandermonde matrix. \(\Box\)

\(^1\)This definition is consistent with Definition 4.49 where we defined the discriminant of a bilinear pairing.
Definition 11.14. For a polynomial \(f(x) = \prod_i (x - \alpha_i) \), the **discriminant** of \(f \) is

\[
\text{disc}(f) := \prod_{i<j} (\alpha_i - \alpha_j)^2.
\]

Equivalently, if \(A \) is a Dedekind domain, \(f \in A[x] \) is a monic separable polynomial, and \(\alpha \) is the image of \(x \) in \(A[x]/(f(x)) \), then

\[
\text{disc}(f) = \text{disc}(1, \alpha, \alpha^2, \ldots, \alpha^{n-1}) \in A.
\]

Example 11.15. \(\text{disc}(x^2 + bx + c) = b^2 - 4c \) and \(\text{disc}(x^3 + ax + b) = -4a^3 - 27b^2 \).

Now assume \(AKLB \) and let \(M \) be an \(A \)-lattice in \(L \) (Definition 6.1). Then \(M \) is a finitely generated \(A \)-module that contains a basis for \(L \) as a \(K \)-vector space, but we would like to define the discriminant of \(M \) in a way that does not require us to choose a basis.

Let us first consider the case where \(M \) is a free \(A \)-lattice. If \(e_1, \ldots, e_n \in M \subseteq L \) and \(e'_1, \ldots, e'_n \in M \subseteq L \) are two bases for \(M \), then

\[
\text{disc}(e'_1, \ldots, e'_n) = u^2 \text{disc}(e_1, \ldots, e_n)
\]

for some unit \(u \in A^\times \); this follows from the fact that the change of basis matrix \(P \in A^{n \times n} \) is invertible and its determinant is therefore a unit \(u \). This unit gets squared because we need to apply the change of basis twice in order to change \(T(e_i e_j) \) to \(T(e'_i e'_j) \). Explicitly, writing bases as row-vectors, let \(e = (e_1, \ldots, e_n) \), \(e' = (e'_1, \ldots, e'_n) \) and suppose \(e' = eP \). We then have

\[
\text{disc}(e') = \det[T_{L/K}(e'_i e'_j)]_{ij} = \det[T_{L/K}(eP_i (eP)_j)]_{ij} = \det[P^t T_{L/K}(e e_j) P]_{ij} = (\det P^t) \text{disc}(e)(\det P) = (\det P)^2 \text{disc}(e),
\]

where we have (repeatedly) used the fact that \(T_{L/K} \) is \(A \)-linear.

This actually gives us an unambiguous definition when \(A = \mathbb{Z} \): the only units in \(\mathbb{Z} \) are \(u = \pm 1 \), so we always have \(u^2 = 1 \) and get the same discriminant no matter which basis we choose. In general we want to take the principal fractional ideal of \(A \) generated by \(\text{disc}(e_1, \ldots, e_n) \), which does not depend on the choice of basis. This suggests how we should define the discriminant of \(M \) in the general case, where \(M \) is not necessarily free.

Definition 11.16. Assume \(AKLB \) and let \(M \) be an \(A \)-lattice in \(L \). The **discriminant** \(D(M) \) of \(M \) is the \(A \)-module generated by the set \(\{ \text{disc}(e_1, \ldots, e_n) : e_1, \ldots, e_n \in M \} \).

In the case that \(M \) is free, \(D(M) \) is equal to the principal fractional ideal generated by \(\text{disc}(e_1, \ldots, e_n) \), for any fixed basis \(e = (e_1, \ldots, e_n) \). For any \(n \)-tuple \(e' = (e'_1, \ldots, e'_n) \) of elements in \(L \), we can write \(e' = eP \) for some (not necessarily invertible) matrix \(P \); we will have \(\text{disc}(e') = 0 \) whenever \(e' \) is not a basis.

Lemma 11.17. Assume \(AKLB \) and let \(M \subseteq M' \) be free \(A \)-lattices in \(L \). If \(D(M) = D(M') \) then \(M = M' \).
Proof. Fix bases e and e' for M and M'. If $D(M) = (\text{disc}(e)) = (\text{disc}(e')) = D(M')$ as fractional ideals of A, then the change of basis matrix from M' to M is invertible over A, which implies $M' \subseteq M$ and therefore $M = M'$.

In general, $D(M)$ is a fractional ideal of A, but it need not be principal.

Proposition 11.18. Assume $AKLB$ and let M be an A-lattice in L. Then $D(M) \in \mathcal{I}_A$.

Proof. The A-module $D(M)$ is nonzero because M contains a K-basis e_1, \ldots, e_n for L and $\text{disc}(e_1, \ldots, e_n) \neq 0$ because the trace pairing is nondegenerate, and it is clearly a submodule of the fraction field K of A (it is generated by determinants of matrices with entries in K). To show that $D(M)$ is finitely generated as an A-module we use the usual trick: show that it is a submodule of a noetherian module. Let N be the free A-lattice generated by a K-basis of L in M. Since N is finitely generated, we can pick a nonzero $a \in A$ such that $M \subseteq a^{-1}N$. Then $D(M) \subset D(a^{-1}N)$, and since $a^{-1}N$ is a free A-lattice, $D(a^{-1}N)$ is finitely generated and therefore a noetherian module, since A is noetherian. Every submodule of a noetherian module is finitely generated, so $D(M)$ is finitely generated.

Definition 11.19. Assume $AKLB$. The *discriminant* of L/K is the discriminant of B as an A-module:

$$D_{L/K} := D_{B/A} := D(B) \in \mathcal{I}_A.$$

Note that $D_{L/K}$ is a fractional ideal (in fact an ideal, by Corollary 11.24 below), not an element of A (but see Remark 11.21 below).

Example 11.20. Consider the case $A = \mathbb{Z}$, $K = \mathbb{Q}$, $L = \mathbb{Q}(i)$, $B = \mathbb{Z}[i]$. Then B is a free \mathbb{Z}-basis with basis $(1, i)$ and we can compute $D_{L/K}$ in three ways:

- $\text{disc}(1, i) = \det \begin{bmatrix} T_{L/K}(1 \cdot 1) & T_{L/K}(1 \cdot i) \\ T_{L/K}(i \cdot 1) & T_{L/K}(i \cdot i) \end{bmatrix} = \det \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} = -4.$

- The non-trivial automorphism of L/K fixes 1 and sends i to $-i$, so we could instead compute $\text{disc}(1, i) = \left(\det \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \right)^2 = (-2i)^2 = -4.$

- We have $B = \mathbb{Z}[i] = \mathbb{Z}[x]/(x^2 + 1)$ and can compute $\text{disc}(x^2 + 1) = -4$.

In every case the discriminant ideal $D_{L/K}$ is $(-4) = (4)$.

Remark 11.21. If $A = \mathbb{Z}$ then B is the ring of integers of the number field L, and B is a free \mathbb{Z}-lattice, because it is a torsion-free module over a PID and therefore a free module. In this situation it is customary to define the *absolute discriminant* D_L of the number field L to be the *integer* $\text{disc}(e_1, \ldots, e_n) \in \mathbb{Z}$, for any basis (e_1, \ldots, e_n) of B, rather than the ideal it generates. As noted above, this integer is independent of the choice of basis because $u^2 = 1$ for any $u \in \mathbb{Z}^\times$; in particular, the sign of D_L is well defined. In the example above, the absolute discriminant is $D_L = -4$ (not 4).

We now show that the discriminant respects localization.

Proposition 11.22. Assume $AKLB$ and let S be a multiplicative subset of A. Then $S^{-1}D_{B/A} = D_{S^{-1}B/S^{-1}A}$.
Proof. Let \(x = s^{-1} \text{disc}(e_1, \ldots, e_n) \in S^{-1}D_{B/A} \) for some \(s \in S \) and \(e_1, \ldots, e_n \in B \). Then \(x = s^{2n-1} \text{disc}(s^{-1} e_1, \ldots, s^{-1} e_n) \) lies in \(D_{S^{-1}B/S^{-1}A} \). This proves the forward inclusion.

Conversely, for any \(e_1, \ldots, e_n \in S^{-1}B \) we can choose a single \(s \in S \subseteq A \) so that each \(se_i \) lies in \(B \). We then have \(\text{disc}(e_1, \ldots, e_n) = s^{-2n} \text{disc}(se_1, \ldots, se_n) \in S^{-1}D_{B/A} \), which proves the reverse inclusion.

We have now defined two different ideals associated to a finite separable extension of Dedekind domains \(B/A \) in the AKLB setup. We have the different \(D_{B/A} \), which is a fractional ideal of \(B \), and the discriminant \(D_{B/A} \), which is a fractional ideal of \(A \). We now relate these two ideals in terms of the ideal norm \(N_{B/A} : \mathcal{I}_B \rightarrow \mathcal{I}_A \), which for \(I \in \mathcal{I}_B \) is defined as \(N_{B/A}(I) := (B : I)_A \), where \((B : I)_A \) is the module index (see Definitions 6.2 and 6.5). We recall that \(N_{B/A}(I) \) is also equal to the ideal generated by the image of \(I \) under the field norm \(N_{L/K} \); see Corollary 6.8.

Theorem 11.23. Assume AKLB. Then \(D_{B/A} = N_{B/A}(D_{B/A}) \).

Proof. The different respects localization at any prime \(\mathfrak{p} \) of \(A \) (see Proposition 11.10), and we just proved that this is also true of the discriminant. Since \(A \) is a Dedekind domain, the \(A \)-modules on both sides of the equality are determined by the intersections of their localization, so it suffices to consider the case that \(A = A_p \) is a DVR, and in particular a PID. In this case \(B \) is a free \(A \)-lattice in \(L \) (torsion-free over a PID implies free), and we can choose a basis \(e_1, \ldots, e_n \) for \(B \) as an \(A \)-module. The dual \(A \)-module

\[
B^* = \{ x \in L : T_{L/K}(xb) \in A \ \forall b \in B \} \in \mathcal{I}_B
\]

is also a free \(A \)-lattice in \(L \), with basis \(e_1^*, \ldots, e_n^* \) uniquely determined by \(T_{L/K}(e_i^* e_j) = \delta_{ij} \).

If \(M \) is any free \(A \)-lattice with basis \(m_1, \ldots, m_n \), then \([T_{L/K}(m_i e_j)]_{ij} \) is precisely the change of basis matrix from \(e_1^*, \ldots, e_n^* \) to \(m_1, \ldots, m_n \). Applying this to the free \(A \)-lattice \(B \), we then have

\[
D_{B/A} = (\det[T_{L/K}(e_i e_j)]_{ij}) = (B^* : B)_A
\]

by the definition of the module index for free \(A \)-modules (see Definition 6.2).

For any \(I \in \mathcal{I}_B \) we have \((B : I) = I^{-1} = (I^{-1} : B) \) as \(B \)-modules, and it follows that \((B : I)_A = (I^{-1} : B)_A \). Applying this with \(I^{-1} = B^* \) gives

\[
D_{B/A} = (B^* : B)_A = (B : (B^*)^{-1})_A = (B : D_{B/A})_A = N_{B/A}(D_{B/A})
\]

as claimed.

Corollary 11.24. Assume AKLB. The discriminant \(D_{B/A} \) is an \(A \)-ideal.

Proof. The different \(D_{B/A} \) is a \(B \)-ideal, and the field norm \(N_{L/K} \) sends elements of \(B \) to \(A \); it follows that \(D_{B/A} = N_{B/A}(D_{B/A}) = (N_{L/K}(x) : x \in D_{B/A}) \) is an \(A \)-ideal.