
18.783 Elliptic Curves Fall 2025

Problem Set #8 Due: 11/12/2025

Description: These problems are related to the material covered in Lectures 14–16.
Your solutions should be written in LaTeX and submitted as a PDF file to Gradescope
by midnight on the date due.

Instructions: Solve any combination of problems that sums to 100 points. Collab-
oration is permitted/encouraged, but you must identify your collaborators (including
any LLMs you discussed the problem set with), as well as any references you consulted
outside the syllabus or lecture notes. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Each student is expected to write their own solutions; it
is fine to discuss problems with others, but your writing must be your own.

In cases where your solution involves writing code, please either include your code
in your write up (as part of the pdf), or the name of a notebook in your 18.783 CoCalc
project containing you code (please use a separate notebook for each problem).

Problem 1. From lattices to elliptic curves (49 points)

In this problem you will explicitly construct an elliptic curve corresponding to a given
lattice L = [1, τ ] by computing the j-invariant

j(L) = 1728
g2(L)

3

g2(L)3 − 27g3(L)2
,

where

g2(L) = 60
∑

m,n∈Z
(m,n) ̸=(0,0)

1

(m+ nτ)4
, and g3(L) = 140

∑
m,n∈Z

(m,n)̸=(0,0)

1

(m+ nτ)6
. (1)

Let τ = (1 +
√
−7)/2, so that the lattice L = [1, τ ] is the ring of integers Q(

√
−7).

(a) As a warmup, use Sage to approximate the complex numbers g2(L) and g3(L) by
summing over lattice points m + nτ with |m|, |n| < 10. To work over the complex
numbers, you will need to set tau=CC((1+sqrt(-7))/2) (by default, Sage will
work with a symbolic representation of τ , the wrapper CC( ) coerces τ to C). Now
define the elliptic curve E : y2 = x3−g2(L)/4x−g3(L)/4 over C using your approx-
imations of g2(L) and g3(L) (use E=EllipticCurve([-g2/4,-g3/4])). Let
z = 0.N , where N is the last 4 digits of your student ID, and compute x = ℘(z;L)
and y = ℘′(z;L) by summing over lattice pointsm+nτ with |m|, |n| < 10. The point
(x, y/2) will then be approximately on the elliptic curve E that you defined. To get
an exact point P ∈ E(C), use E.lift x(x), which will cause sage to choose an ex-
act y-value corresponding to x (with an arbitrary sign choice). You should find that
y-coordinate of P is approximately ±y/2. Now compute 7P in Sage, and compare
its x and y coordinates with ℘(7z) and ℘′(7z)/2 (the sign on the y-coordinate may
be off, don’t worry about this); this corresponds to comparing 7Φ(z) with Φ(7z),
where Φ is the isomorphism C/L → E(C) defined by z 7→ (℘(z), ℘′(z)/2). In your
answer report the values of g2(L) and g3(L) that you computed, along with z, P ,
(℘(z), ℘′(z)/2), 7P , and (℘(7z), ℘′(7z)/2).
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(b) While it will not be apparent from your work in part (a), the elliptic curve E
corresponding to L = [1, τ ] is actually defined over Q, even though g2(L) and g3(L)
are not. To see this we need to compute the j-invariant

j(L) = 1728
g2(L)

3

g2(L)3 − 27g3(L)2
.

Use Sage to approximate j(L) by computing the sums for g2(L) and g2(L) over
lattice points with |m|, |n| < r for increasing values of r = 10, 20, 30, . . ., until you
are convinced you can correctly approximate the real and imaginary parts of j(L) to
one decimal place. You should find that j(L) approaches an integer as r increases.
In your solution list the value of r you used, the complex value of j(L) you computed
(to 8 decimal places), as well as the integer obtained.

(c) Use the j-invariant j = j(L) you computed in part (b) to construct an elliptic curve
E : y2 = x3 + Ax + B over Q using A = 3j(1728 − j) and B = 2j(1728 − j)2.
Over C (and in fact over Q(

√
−7)) End(EC) = End(L) is the ring of integers of

Q(
√
−7). A consequence of this is that for any prime p of good reduction for E, if

we consider the reduction Ep of E modulo p, either −7 is a square root modulo p
and the Frobenius endomorphism πEp corresponds to an element of Q(

√
−7) with

norm p = (t2+7v2)/4 for some v ∈ Z with t = trπE , or −7 is not a square modulo p
and Ep is supersingular with trπE ≡ 0 mod p (we will prove this in later lectures).

For all primes 3 < p < 1000 where E has good reduction verify that

(i) if
(−7

p

)
= 1 then 4p = t2 + 7v2 for some v ∈ Z, where t = trπEp ;

(ii) if
(−7

p

)
= −1 then t = trπEp ≡ 0 mod p, so Ep is supersingular.

This is very unlikely to happen by chance, so we can take this as a heuristic confir-
mation that E has complex multiplication by Q(

√
−7) (we don’t need to prove it,

if your calculations in (a) and (b) were correct it must hold, but this is a good way
to catch mistakes).

Using (1) to approximate g2(L) and g3(L) is inefficient because the sums converge very
slowly; a better approach is to use their q-expansions. If we put q = exp(2πiτ) then

g2([1, τ ]) =
4π4

3

(
1 + 240

∞∑
k=1

k3qk

1− qk

)
and g3([1, τ ]) =

8π6

27

(
1− 504

∞∑
k=1

k5qk

1− qk

)
;

see [2, p. 275].

(d) Repeat part (b) using the q-expansion formulas for g2(L) and g3(L), truncating
the sums after 1000 terms. Extend the precision of your computations by defin-
ing CC=ComplexField(500), and use q=CC(exp(2*pi*sqrt(-1)*tau)) to
compute q (important: use tau=(1+sqrt(-7))/2, coercing τ to C before com-
puting q will result in a loss of precision). Compare the resulting approximation to
j(L) to the one you computed in part (b) by listing the real and imaginary parts of
both approximations to 8 decimal places.
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(e) Use your improved algorithm to compute the j-invariant of the lattice L = [1,
√
−7].

Assuming it is a rational integer, construct the corresponding elliptic curve and
heuristically verify that it also has CM by Q(

√
−7) (note that in this case L is not

the maximal order in Q(
√
−7)).

(f) Now let L = [1, (1 +
√
−23)/2] be the ring of integers of Q(

√
−23). After approx-

imating j(L) you will find that it does not appear to be a rational integer. But it
is an algebraic integer. Use Sage to find its minimal polynomial using the algdep
method with a degree bound of 4 and the optional use digits parameter set to
100 (you should get a monic polynomial of degree 3; if not, you have made a mistake
or are not using enough precision).

(g) Let H(x) be the minimal polynomial you computed in part (f) and let D = −23.
Find a prime p for which

(
D
p

)
= 1 and H(x) splits completely into linear factors

in Fp[x], and let r be one of its roots. Construct an elliptic curve E/Fp with j-
invariant r and compute its trace of Frobenius t. Verify that 4p = t2−v2D for some
integer v. Repeat this verification for every prime p < 1000 for which

(
D
p

)
= 1 and

H(x) splits completely in Fp[x]. Now use this method to construct an elliptic curve
with CM by Q(

√
D) over a 256-bit finite field.

Problem 2. From elliptic curves to lattices (49 points)

We now consider the problem of determining the lattice L corresponding to an elliptic
curve E : y2 = x3 + Ax + B. This is known as “computing the periods” of E, and
involves computing approximate solutions to certain elliptic integrals associated to E,
as explained in [2, §9.4]. To simplify matters, we will focus on the case where A and B
are real numbers.

Given two positive real numbers a and b, define the sequences {an} and {bn} as
follows:

a0 = a, b0 = b, an =
an−1 + bn−1

2
, bn =

√
an−1bn−1. (2)

As proven in [2, Prop. 9.23], these sequences both converge to a common limit M(a, b),
which is defined as the arithmetic-geometric mean (AGM) of a and b. As with Newton
iteration, the rate of convergence is doubly exponential, which makes the arithmetic-
geometric mean a powerful tool for numerical algorithms.

When the cubic f(x) = x3 + Ax + B has three real roots e1 < e2 < e3, we can
compute a lattice L = [ω1, ω2] for E via the formulas

ω1 =
π

M(
√
e3 − e1,

√
e3 − e2)

,

ω2 =
πi

M(
√
e3 − e1,

√
e2 − e1)

,

as proven in [2, Thm. 9.26]. When f(x) = x3 +Ax+B has just one real root e1, we let
e2 =

√
3e21 +A and use the formulas

ω1 =
2π

M(2
√
e2,

√
2e2 + 3e1)

,

ω2 = −ω1

2
+

πi

M(2
√
e2,

√
2e2 − 3e1)

.
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The resulting lattice L = [ω1, ω2] then satisfies g2(L) = −4A and g3(L) = −4B, so that
the elliptic curve y2 = 4x3−g2(L)x−g3(L) corresponding to the torus C/L is isomorphic
to our original curve E.

(a) Implement an algorithm in Sage to approximate M(a, b) using (2). Using your
algorithm, compute the RHS of the identity1∫ 1

0

dz√
1− z4

=
π

2M(1,
√
2)
,

use Sage to compute the LHS, and verify that these values agree to, say, 100 decimal
places. You will need to extend the precision of the real field to do this: use
RR=RealField(1000) to get 1000 bits of precision, and then be sure to coerce
the arguments to M(a, b) into RR using M(RR(a),RR(b)). To compute the LHS
in Sage, use RR(integral(1/sqrt(1-x**4),x,0,1)).

(b) Using the formulas above, approximate the periods ω1 and ω2 associated to the
elliptic curve E : y2 = x3 − 35x − 98. Compute the ratio τ = ω2/ω1, so that L is
homothetic to [1, τ ], and then compute the j-invariant j(L) and compare it to j(E).
Attempt to identify τ as an algebraic number in a quadratic field using the algdep
method in Sage, with the degree bound set to 2. In your answers, just list your
values for ω1, ω2, τ , and j(L) out to 16 decimal places, even though you may need
to use higher precision in your computations, and list the polynomial computed by
algdep.

(c) Do the same thing for the elliptic curves

E1 : y
2 = x3 − 7x+ 6,

E2 : y
2 = x3 − 608x+ 5776,

E3 : y
2 = x3 − 34790720x+ 78984748304.

In cases where you are able to provisionally identify τ as an algebraic number in a
quadratic field K = Q(

√
D), heuristically test whether Ei has CM by K by checking

if it has supersingular reduction modulo good primes p < 1000 for which
(
D
p

)
= −1

(see the discussion in part (c) of Problem 1 for why the motivation of this test). For
the Ei where this test is successful, it may be that τ is an algebraic number but not
an algebraic integer. Show that in each such case τ is equivalent under the action
of SL2(Z) to an algebraic integer with real part 0 or −1/2.

(d) Lastly, compute the periods for an elliptic curve that is defined over R but not over Q
(or any number field). Let N be the last 4 digits of your student ID, and compute
the periods for E : y2 = x3 + πx+N , where π = 3.1415 . . . is transcendental.

Problem 3. The modular group SL2(Z) (49 points)

Let Γ = SL2(Z) and let H = {z ∈ C : im z > 0} be the upper half plane. For each
γ =

(
a b
c d

)
∈ Γ and τ ∈ H, define

γτ =
aτ + b

cτ + d
.

1This identity was of great interest to Gauss; the quantity 1/M(1,
√
2) = 0.8346268 . . . is known as

Gauss’s constant. A proof can be found in [1, Ex. VI.6.12-14] (NB: there is a typo in part (f) of Exercise
VI.6.14 in [1]: the quantity M(1,

√
2) should appear in the denominator, as above).

4



Let S =
(
0 −1
1 0

)
and let T = ( 1 1

0 1 ).

(a) Prove that Γ is generated by S and T .

(b) Prove that γτ ∈ H for all γ ∈ Γ and τ ∈ H.

(c) Prove that the map from Γ×H to H that sends (γ, τ) to γτ is a group action.

(d) Compute the stabilizers of i := eπi/2 and ρ := e2πi/3 under the action of Γ. Express
the elements of each stabilizer in terms of S and T .

(e) Prove that the stabilizer of every element of H that is not Γ-equivalent to i or ρ is
the subgroup of order 2 consisting of ±I, where I is the 2× 2 identity matrix.

The extended upper half plane H∗ is defined as H∪P1(Q), where P1(Q) is the projec-
tive line over Q, consisting of all projective points (x : y) with integer coordinates. One
can view P1(Q) as Q∪{∞}, where Q consists of the points x/y = (x : y) with y ̸= 0 and
∞ is the point (1 : 0) “at infinity”. We extend the action of Γ to H∗ by defining

γ(x : y) = (ax+ by : cx+ dy)

for each γ =
(
a b
c d

)
∈ Γ and (x : y) ∈ P1(Q).

(f) Prove that the elements of P1(Q) are all Γ-equivalent.

(g) Compute the stabilizers of 0 = (0 : 1) and ∞ = (1 : 0).

(h) Compute the stabilizer of (x : y) when xy ̸= 0.

Problem 4. Survey (2 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-
blowing”), and how difficult you it (1 = “trivial,” 10 = “brutal”). Also estimate the
amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.

Collaborators/Sources:
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