18.783 Elliptic Curves Fall 2025
Problem Set #6 Due: 10/24/2025

Description: These problems are related to the material covered in Lectures 11-12.
Your solutions should be written in LaTeX and submitted as a PDF file to Gradescope
by midnight on the date due.

Instructions: Solve any combination of problems that sums to 100 points. Collab-
oration is permitted/encouraged, but you must identify your collaborators (including
any LLMs you discussed the problem set with), as well as any references you consulted
outside the syllabus or lecture notes. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Each student is expected to write their own solutions; it
is fine to discuss problems with others, but your writing must be your own.

Problem 1. A noncommutative endomorphism ring (24 points)

Let p =7, and consider the finite field F,2, which we may represent explicitly as

Foe ~Fpli]/(i*+ 1) = {a+bi:abeF,}

To create the field F,2 in Sage using this particular representation, use

F7.<x>=PolynomialRing (GF (7))
F49.<1i>=GF (49, modulus=x"2+1)

Now consider the elliptic curve E/FF,2 defined by
y? =2 + (1 +1i)z.

The group of F2-rational points on E is isomorphic to Z/6Z @ Z/6Z and is generated
by the affine points
Py = (i,i), Po=(i+2,21),

which you can construct in Sage using P1=E (i, i) and P2=E (i+2,2*1i). Let mg
denote the Frobenius endomorphism of F.

(a) Prove that 7g = 7 in End(FE).

Since mg corresponds to an integer in End(E), you might be tempted to conclude that
End(FE) ~ Z. But this is far from true.

(b) Show that the p-power Frobenius map 7 of degree p = 7 does not lie in End(E).

(c) Prove that nevertheless End(F) does contain an endomorphism « of degree 7 by
exhibiting an explicit rational map «: E — E that satisfies a® = —7.

ow find an endomorphism S that satisties = —1 (give p explicitly).
d) Now find d hism 8 th isfies 32 1 (give A3 explicitl

(e) Prove that o and 8 do not commute, but a5 = —f« holds.
Conclude that End’(E) is a quaternion algebra.
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Problem 2. The image of Galois (74 points)

Let E/Q be an elliptic curve, let £ be a prime, and let K = Q(E[{]) be the associated
£-torsion field obtained by adjoining the coordinates of all the points in the ¢-torsion
subgroup E[/] to Q. As you proved in Problem Set 3, the /-torsion field K is a Galois
extension of QQ, and the Galois group Gal(K/Q) acts linearly on the vector space

Elf] ~ ZNHL O L)L ~ T3
This induces a group homomorphism
pee: Gal(K/Q) — Aut(E[(]) ~ GLa(Fy)

that maps each field automorphism o € Gal(K/Q) to an element of GLa(Fy) that we
may view as an invertible 2 x 2 matrix with coefficients in Fy, once we have fixed a choice
of basis for E[{] ~ F2.

As you may recall, a homomorphism from a group G to a group of linear transfor-
mations is called a (linear) representation of G. The map pg ¢ is a representation of the
group Gal(K/Q), known as the mod-¢ Galois representation attached to E.!

For each prime p # £ where E has good reduction there is a corresponding Frobenius
element Frob, € Gal(K/Q). To construct Frob, one picks a prime ideal p of the ring
of integers Ok (the integral closure of Z in K) that divides the ideal pOk, and then
considers the decomposition subgroup Dy := {o € Gal(K/Q) : o(p) = p}. Our conditions
on p ensure that D, is naturally isomorphic to Gal(F,/F,), where Fy, := Og/p is the
residue field of p, which necessarily contains F,, as a subfield (because p contains pOr);
the isomorphism is given by restricting o € D, to Ok and reducing modulo p to obtain
an automorphism of Ok /p = F,. The Galois group Gal(FF,/F,) is cyclic, generated by
the Frobenius automorphism 7: x — z”, and we take Frob, to be the inverse image of 7
under the natural isomorphism D, — Gal(F,/F,). Now Frob, depends on our choice
of the prime ideal p dividing pOg, but different choices lead to conjugate elements, and
since the representation pg¢: Gal(K/Q) ~ GLy(IFy) is only determined up to conjugacy
in any case (it depends on a choice of basis for E[¢]), this ambiguity will not concern us.

The property of Frob,, that is relevant to us here is that we can make the identification

pEe(Froby) = 1, € End(E,[{]) ~ GLo(Fy).

Here E,/F, is the reduction of the elliptic curve E/Q modulo p obtained by reduc-
ing the coefficients of an integral equation y?> = 2® + Az + B for E/Q modulo p, and
7y € End(Ep[4]) is the restriction of the Frobenius endomorphism 7, to the (-torsion
subgroup E,[¢]. Both sides of the equality above are determined only up to conju-
gacy (each depends on a choice of basis), so there is no harm in making this identifica-
tion, provided that we keep this in mind. The key point is that the conjugacy class of
pEe(Froby,) = m, € GLa(F) is uniquely determined. In particular, we have

tr pg,¢(Frob,) = tr g, mod ¢ and det pg ¢(Frob,) = p mod /.

(recall that we have assumed p # ¢).

'One can replace the f-torsion field K = Q(E[{]) with any algebraic extension of K, including an
algebraic closure of Q, but the representation is still determined by its restriction to K.



The Chebotarev density theorem implies that for any conjugacy class C of Gal(K/Q),
the proportion of primes p (over p < B as B — oo) for which Frob, lies in C' is exactly
#C/#Gal(K/Q). Asymptotically, we can think of each prime p as being assigned a
uniformly random Frobenius element Frob, € Gal(K/Q) which is mapped by pg/ to a
uniformly random element of the image of pg, in GL2(F,). For a typical elliptic curve
E/Q, the representation pg, is surjective and its image is all of GLa(F¢), but this is
not always the case. Number theorists (and others) are very interested in understanding
these exceptional cases. The image of pg ¢ has a direct impact on the statistical behavior
of E,[{] as p varies. For instance, the proportion of primes p for which E,[¢] = E,(Fy)[/]
is precisely 1/# im ppg ¢, since this occurs if and only if pg ¢(Frob,) = 7 is the identity.

In this problem you will attempt to determine the image of pg, for various elliptic
curves F/Q by analyzing the statistics of m; as p # ¢ varies over primes of good reduc-
tion, by comparing these statistics to the corresponding statistics for various candidate
subgroups of GLa(IFy).

(a) Prove that for £ = 2 the image of pgo in GLg(F2) is isomorphic to the Galois
group of the splitting field of the cubic f(z) := 2% + Az + B. Conclude that (up to
conjugacy) every possible subgroup of GLy(FF2) arises as the image of pg o for some
elliptic curve E'/Q and give an explicit example of each case.

For £ > 2, not every subgroup of GLy(F,) can arise as the image of pg .

(b) Prove that there exists a set of primes p of good reduction for £ whose reductions
modulo ¢ generate (Z/¢Z)* (this fact is implied by Dirichlet’s theorem on primes
in arithmetic progressions, and by the Chebotarev density theorem, but you should
give an elementary argument that does not rely on these results). Conclude that
the image of pp ¢ must contain elements of every possible determinant (all of F}).

For ¢ = 3 there are, up to conjugacy, 9 candidate subgroups G of GLy(F3) for the image
of pg3. These are listed in Table 1, and can also be found in this Sage notebook.

group order description generators
Cy 2 cyclic ((2) (1))
Do=C2 4 dihedral ((2) ‘13) <(2) g)
D3~S; 6 dihedral ((1) é), ((1) g)
Di~S; 6  dihedral ((2) }) ((2) g’)
Cs 8 cyclic G (1])

Dy 8  dihedral ((2) (1’) (‘1) g)
Dy 12 dibedral G 3) <(1) é)
SD1g 16 semi-dihedral G 1), ((1) é)
GLy(F3) 48 general linear ((2) (1)), (; é)

Table 1. Candidates for the image of pg 3 in GLa(F3).
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(c)

The determinant det A, trace tr A, and multiplicative order |A| of a matrix A in
GLy(Fy) are invariant under conjugation. Prove that the pair (det A, tr A) does not
determine the conjugacy class of A in GLa(F3), but the triple (det A, tr A, |A|) does.

Part (c) implies that we can get more information about 7 if, in addition to computing
its trace, we also compute its multiplicative order in the ring End(E,[¢]).

(d)

(e)

(f)

(g)

Devise and prove a criterion for computing the order of my in GLo(F2) based on
the number of roots the cubic f(x) has in F,, where y? = f(z) is the Weierstrass
equation for E.

Modify the function trace_mod that was used in our implementation of Schoof’s
algorithm in Lecture 8 (which can be found in this Sage notebook) so that it also
computes the order of my and returns both the trace ¢, and the order |my| of 7.

Important: The order of m, must be computed modulo the full division polyno-
mial 1, not modulo one of its factors. So compute |m| before computing gg, which
is the first place where a division-by-zero error could occur, causing h to be replaced
by a proper factor. Also, be sure to compute || only the first time through the loop
when you know that h = 1y, don’t accidentally recompute it if the loop repeats.

Now address the first part of (c¢) in a different way: pick an elliptic curve F/Q and
find two primes p and p’ for which 73 € End(E,[3]) and 75 € End(E,/[3]) have the
same characteristic polynomial but different orders in GL2(F3).

Write a program that, given an elliptic curve E, a prime ¢, and an upper bound N,
enumerates the primes p < N distinct from £ for which E has good reduction, and for
each E,, computes the triple (det my, tr 7y, |m|). You can use prime_range (N+1)
to efficiently enumerate primes p < N. Keep a count of how often each distinct triple
occurs (use a dictionary, as in the group_stats function in this Sage notebook).
Normalize the counts by dividing by the number of primes p you used, yielding a
ratio for each triple.

For ¢ = 3, use your program to provisionally determine the isomorphism class of the
image of pg 3 for each of the ten elliptic curves below, by comparing the statistics
computed by your program with the corresponding statistics for each of the 9 can-
didate subgroups of GLy(F3). With N around 5000 or 10000 you should be able to
easily distinguish among the possibilities. The curves below are also listed in the
notebook linked to above.

P =x3+x yP=a3+1

y? = x> + 432 Vv=x>+ax+1

y? = a3 + 21z + 26 y? =3 — 112z + 784

y? = 23 — 3915z + 113670 y? = 23 — 3348z — 74547

y? = 23 4 5805z — 285714 y? = 23 4 6525092 — 621544482

Your computations in part (f) should find two curves with im pg 3 ~ S3, which could
be either of the groups labelled D3 and Dj in the table above.. These nonconjugate
subgroups of GLy(F3) cannot be distinguished by sampling Frobenius elements be-
cause they have exactly the same distribution of GLg(F3)-conjugacy classes. Show
that you when im pg 3 >~ S3 you can determine whether im pg 3 is conjugate to D3
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(h)

(i)

or Dj by computing the torsion subgroup of E(Q), which you can do in Sage using
E.torsion_subgroup (). Use this to determine which of the two curves in (f)
with im pg 3 ~ S3 corresponds to D3 and which corresponds to Dj, assuming that
we view matrices in GLa(F3) as acting on the left.

Note that if a given triple (det 73, tr 73, |m3]) occurs for some E,, but does not occur in
a candidate subgroup G C GLg(F3), you can immediately rule out G as a possibility
for the image of pg 3. Analyze the 8 candidate subgroups in Table 1 to find a pair
of triples that arise in GL2(F3) but do not both arise in any of its proper subgroups.
If for a given curve E/Q you can find both of these triples for some E, and E,,,
then you have unconditionally proved that pg 3 is surjective.

Use this to devise an algorithm that attempts to prove pg3 is surjective. Your
algorithm should return true as soon as it can determine im pgp 3 = GL2(F3) (this
should happen quite quickly, if it is true). If this fails to happen after computing
triples for E, for every prime up to, say, 10000, then your algorithm should give up
and return false. You can think of this as a Monte Carlo algorithm with one-sided
error: the “randommness” comes from the assumption that the Frobenius elements
Frob,, are uniformly and independently distributed over Gal(K/Q) as p varies. If
your program returns true, then pg 3 is definitely surjective; if it returns false
it is almost certainly not surjective, but there is a small probability of error. Give
an upper bound on the probability of error under the assumption that Frobenius
elements are independent and uniformly distributed.

Using 27 .random_element (-100, 100), generate random elliptic curves E/Q of
the form y? = 23 + Az + B, with A and B uniformly distributed over the interval
[—100,100]. Excluding cases where AB(4A43 4+ 27B?) = 0, use your program to test
whether the mod-3 Galois representation pg 3 is surjective or not. List five curves
for which your program returns false, and provisionally identify the image of pg 3
in each such case as in part 3 above (you may need to test a few thousand curves).

Problem 3. ECPP (74 points)

Let us define an elliptic curve primality proof (ECPP) for p as a sequence of certificates
C1,Cs,...,Ck, where each certificate C; is of the form (p;, A;, B;, zi, yi, pi+1) with p1 = p
and py41 < (logp)*. In each certificate C;, the primes p; and p; 11 satisfy

(/pi +1)” < pis1 < (Vi +1)°/2, (1)

and P; = (x;,v;) is a point of order p;;1 on E;: y? = 23 + A;z + B; over Fp,.

()

(b)

Let p be the least prime greater than 2128. N +3%4, where N is the first four digits of
your student ID (use the next _prime function in Sage to compute p). Construct a
short elliptic curve primality proof for p; this means each prime p;;1 should be close
to the lower bound in (1) (you should not need more than 6 or 7 certificates). Note:
the Goldwasser-Kilian algorithm typically will not produce a proof this short, it
will have p;41 closer to the upper bound in (1), so you will need to do something
slightly different.

Give an algorithm for verifying an elliptic curve primality proof and analyze its
complexity. Express your answer solely in terms of n = log p and assume the worst-
case (so the proof might not be as short as the one you generated in (a)).



(c) Analyze the asymptotic complexity of constructing an elliptic curve primality proof
using the Goldwasser-Kilian algorithm given in class, under the heuristic assumption
that the orders of random elliptic curves over IF;,, have factorizations comparable to
random integers in the interval [p,2p]. Assume that trial division and the Miller-
Rabin test are used for attempted factorizations. Use an O(n°loglogn) complexity
bound for point-counting via Schoof’s algorithm.

(d) Now suppose that you want to construct an elliptic curve primality proof that can
always be verified in O(nM(n)) time, where n = logp. Under the heuristic as-
sumption above, give a probabilistic algorithm for constructing such a proof whose
expected running time is bounded by Ly|a, ¢, using the smallest value of « that
you can (hint: you can make o < 1/2). Your answer should include a high-level
description of the algorithm and a (heuristically proven) bound on its complexity.

Problem 4. Pomerance proofs (74 points)

A Pomerance proof is a special form of an elliptic curve primality proof that involves
just a single certificate (p, A, zo, k) and uses a Montgomery curve? By? = 23 + Az? +
over F), on which there is a point (zo,yo) of order 2% > (¢p + 1)® > 271, Neither the
y-coordinate nor B is needed to verify the certificate (no matter what x% + Am% + x is,
there exists a nonzero B and a yg that will work and the verifier does not need to know
what they are in order to double a point in Montgomery coordinates, see Section 10.9 of
the Lecture notes). But the verifier should check that ged(A42 — 4, p) = 1 (to ensure that
the curve is not singular), and that ged(zx—1,p) = 1 and z; = 0 mod p, where z, is the
z-coordinate of 2™ (xg : yo : 20)-

Every prime p has a Pomerance proof, but for a general prime p no efficient algorithm
is known for finding one. In this problem you will develop a very efficient algorithm to
construct a Pomerance proof for primes of a special form.

Let us first convince ourselves Pomerance proofs actually do prove primality, and
that every sufficiently large prime has a Pomerance proof; for the latter we need the
following theorem, which we will prove later in the course.

Theorem 1. Let p be a prime. For every integer N in the Hasse interval

Hp)=[p+1-2yp, p+1+2/p

there exists an elliptic curve E/F, for which E(F,) is a cyclic group of order N.

(a) Show that Pomerance certificates (p, A, zo, k) € Z4, exist only for prime integers p.

(b) Using the theorem above, prove that every prime p > 31 has a Pomerance proof.

Now let E be the elliptic curve y* = 2 + 8 over F,,.

(c) Using the formula #E(F,) =p+1+ Zmer (x:S;FS), prove that for every odd prime
p =2 mod 3 we have #E(F,) =p+ 1.

2See the last few sections of the notes from Lecture 10 for information about Montgomery curves.



(d) Prove that for any prime p = 11 mod 12 the curve E/F, can be put in Montgomery
form By? = 23 4+ Az? + z. Give a deterministic algorithm that computes A and B
in time O(nM(n)), where n = log p.

(e) Design a Las Vegas algorithm that takes as input an integer p = 3-2™¢—1 with ¢ odd
and 2™ > (¥/p+ 1)? and outputs a Pomerance proof for prime p and a Miller-Rabin
witness for composite p. Analyze the expected running time of your algorithm as a
function of n = log p.

(f) Implement your algorithm and use it to construct a Pomerance proof for a prime of
the form p = 2F - 3™ — 1 that is greater than 2990, Be sure to format your answer
so that all of the digits in the certificate you construct fit on the page.

(g) As noted above, no efficient algorithm is known for constructing Pomerance proofs
in general. On the other hand, there certainly is an algorithm; for example, one
could simply enumerate all the possible certificates (clearly a finite set) and attempt
to verify them. But you can certainly do better than this. Give the most efficient
algorithm you can come up with for constructing a Pomerance proof for a given
prime p > 31 and bound its complexity. Your algorithm need not be deterministic,
and you should feel free to assume any heuristics that you believe are reasonable.

Problem 5. Quaternion algebras (74 points)

Throughout this problem k is a field whose characteristic is not 2, and a division k-
algebra is a k-algebra that is a division ring (every nonzero element is invertible). Recall
that a quaternion algebra over k is a k-algebra H with elements «, 5 € H satisfying
a?, 5% € kX and a8 = —pPa such that 1,«, 3, af is a basis for H as a k-vector space.
The Hamilton quaternions H are the quaternion algebra over R with o? = 52 = —1.

(a) Show that any k-algebra generated by distinct «, 3 satisfying o?, 82 € k* and
aff = —pa is a quaternion algebra (in particular, we don’t need to require that
1, B, are a basis, this follows from the relations they satisfy).

Fora,b € k™, let (“l;b> be the quaternion algebra k(a, ) with a? = a, % = b, a8 = —fBa.

(b) Show that (42) = (4¢) = (252) = (2522) and (%2) = (“222) for c,d € k™.

Then show that 1,;1 o~ Ms (k) (the 2 x 2 matrix ring over k). Conclude that when
k is algebraically closed all quaternion algebras over k are isomorphic.

(c) Show over k = R every quaternion algebra H is isomorphic to Ma(R) or H, the
latter occurring if and only if H = (“@b> with a,b < 0.

A central k-algebra is a k-algebra with center k.
(d) Show that quaternion k-algebras are central k-algebras.

Recall that an involution of a k-algebra H is a ring involution (anti-isomorphism that is
its own inverse) that fixes k. An involution a — & of a k-algebra H is standard if ad € k
for all &« € H. As proved in lecture, for quaternion k-algebras H, the involution given



by conjugation is standard. The degree deg(H) of a k-algebra H is the least positive
integer m such that every o € H is the root of a monic polynomial in k[z] of degree m,
or oo if no such m exists.

(e) Show that a k-algebra H with a standard involution satisfies deg(H) < 2. Conclude
that the k-algebra M, (k) has a standard involution if and only if n < 2.

(f) Show that every commutative k-algebra of k-dimension 2 has a unique standard
involution, and that in general, if a k-algebra has a standard involution, it is unique.

(g) Let H be a division k-algebra. Show that deg(H) < 2 if and only if (i) H = k,
(ii) H is a quadratic field extension of k, or (iii) H is a division quaternion algebra.
Conclude that deg(H) < 2 if and only if H has a standard involution.

(h) Show that for a division k-algebra H, the following are equivalent: (i) H is a quater-
nion algebra, (ii) H is noncommutative and deg(H) = 2, (iii) H is central and
deg(H) = 2.

Problem 6. Survey (2 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10
= “mind-blowing”), and how hard you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest | Difficulty | Time Spent

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.

Collaborators/Sources:



