
18.783 Elliptic Curves Fall 2025

Problem Set #6 Due: 10/24/2025

Description: These problems are related to the material covered in Lectures 11-12.
Your solutions should be written in LaTeX and submitted as a PDF file to Gradescope
by midnight on the date due.

Instructions: Solve any combination of problems that sums to 100 points. Collab-
oration is permitted/encouraged, but you must identify your collaborators (including
any LLMs you discussed the problem set with), as well as any references you consulted
outside the syllabus or lecture notes. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Each student is expected to write their own solutions; it
is fine to discuss problems with others, but your writing must be your own.

Problem 1. A noncommutative endomorphism ring (24 points)

Let p = 7, and consider the finite field Fp2 , which we may represent explicitly as

Fp2 ≃ Fp[i]/(i
2 + 1) = {a+ bi : a, b ∈ Fp}.

To create the field Fp2 in Sage using this particular representation, use

F7.<x>=PolynomialRing(GF(7))
F49.<i>=GF(49,modulus=xˆ2+1)

Now consider the elliptic curve E/Fp2 defined by

y2 = x3 + (1 + i)x.

The group of Fp2-rational points on E is isomorphic to Z/6Z ⊕ Z/6Z and is generated
by the affine points

P1 = (i, i), P2 = (i+ 2, 2i),

which you can construct in Sage using P1=E(i,i) and P2=E(i+2,2*i). Let πE
denote the Frobenius endomorphism of E.

(a) Prove that πE = 7 in End(E).

Since πE corresponds to an integer in End(E), you might be tempted to conclude that
End(E) ≃ Z. But this is far from true.

(b) Show that the p-power Frobenius map π of degree p = 7 does not lie in End(E).

(c) Prove that nevertheless End(E) does contain an endomorphism α of degree 7 by
exhibiting an explicit rational map α : E → E that satisfies α2 = −7.

(d) Now find an endomorphism β that satisfies β2 = −1 (give β explicitly).

(e) Prove that α and β do not commute, but αβ = −βα holds.
Conclude that End0(E) is a quaternion algebra.
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Problem 2. The image of Galois (74 points)

Let E/Q be an elliptic curve, let ℓ be a prime, and let K = Q(E[ℓ]) be the associated
ℓ-torsion field obtained by adjoining the coordinates of all the points in the ℓ-torsion
subgroup E[ℓ] to Q. As you proved in Problem Set 3, the ℓ-torsion field K is a Galois
extension of Q, and the Galois group Gal(K/Q) acts linearly on the vector space

E[ℓ] ≃ Z/ℓZ⊕ Z/ℓZ ≃ F2
ℓ .

This induces a group homomorphism

ρE,ℓ : Gal(K/Q) → Aut(E[ℓ]) ≃ GL2(Fℓ)

that maps each field automorphism σ ∈ Gal(K/Q) to an element of GL2(Fℓ) that we
may view as an invertible 2×2 matrix with coefficients in Fℓ, once we have fixed a choice
of basis for E[ℓ] ≃ F2

ℓ .
As you may recall, a homomorphism from a group G to a group of linear transfor-

mations is called a (linear) representation of G. The map ρE,ℓ is a representation of the
group Gal(K/Q), known as the mod-ℓ Galois representation attached to E.1

For each prime p ̸= ℓ where E has good reduction there is a corresponding Frobenius
element Frobp ∈ Gal(K/Q). To construct Frobp one picks a prime ideal p of the ring
of integers OK (the integral closure of Z in K) that divides the ideal pOK , and then
considers the decomposition subgroup Dp := {σ ∈ Gal(K/Q) : σ(p) = p}. Our conditions
on p ensure that Dp is naturally isomorphic to Gal(Fp/Fp), where Fp := OK/p is the
residue field of p, which necessarily contains Fp as a subfield (because p contains pOK);
the isomorphism is given by restricting σ ∈ Dp to OK and reducing modulo p to obtain
an automorphism of OK/p = Fp. The Galois group Gal(Fp/Fp) is cyclic, generated by
the Frobenius automorphism π : x 7→ xp, and we take Frobp to be the inverse image of π
under the natural isomorphism Dp

∼−→ Gal(Fp/Fp). Now Frobp depends on our choice
of the prime ideal p dividing pOK , but different choices lead to conjugate elements, and
since the representation ρE,ℓ : Gal(K/Q) ≃ GL2(Fℓ) is only determined up to conjugacy
in any case (it depends on a choice of basis for E[ℓ]), this ambiguity will not concern us.

The property of Frobp that is relevant to us here is that we can make the identification

ρE,ℓ(Frobp) = πℓ ∈ End(Ep[ℓ]) ≃ GL2(Fℓ).

Here Ep/Fp is the reduction of the elliptic curve E/Q modulo p obtained by reduc-
ing the coefficients of an integral equation y2 = x3 + Ax + B for E/Q modulo p, and
πℓ ∈ End(Ep[ℓ]) is the restriction of the Frobenius endomorphism πEp to the ℓ-torsion
subgroup Ep[ℓ]. Both sides of the equality above are determined only up to conju-
gacy (each depends on a choice of basis), so there is no harm in making this identifica-
tion, provided that we keep this in mind. The key point is that the conjugacy class of
ρE,ℓ(Frobp) = πℓ ∈ GL2(Fℓ) is uniquely determined. In particular, we have

tr ρE,ℓ(Frobp) ≡ trπEp mod ℓ and det ρE,ℓ(Frobp) ≡ p mod ℓ.

(recall that we have assumed p ̸= ℓ).

1One can replace the ℓ-torsion field K = Q(E[ℓ]) with any algebraic extension of K, including an
algebraic closure of Q, but the representation is still determined by its restriction to K.
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The Chebotarev density theorem implies that for any conjugacy class C of Gal(K/Q),
the proportion of primes p (over p ≤ B as B → ∞) for which Frobp lies in C is exactly
#C/#Gal(K/Q). Asymptotically, we can think of each prime p as being assigned a
uniformly random Frobenius element Frobp ∈ Gal(K/Q) which is mapped by ρE,ℓ to a
uniformly random element of the image of ρE,ℓ in GL2(Fℓ). For a typical elliptic curve
E/Q, the representation ρE,ℓ is surjective and its image is all of GL2(Fℓ), but this is
not always the case. Number theorists (and others) are very interested in understanding
these exceptional cases. The image of ρE,ℓ has a direct impact on the statistical behavior
of Ep[ℓ] as p varies. For instance, the proportion of primes p for which Ep[ℓ] = Ep(Fp)[ℓ]
is precisely 1/# im ρE,ℓ, since this occurs if and only if ρE,ℓ(Frobp) = πℓ is the identity.

In this problem you will attempt to determine the image of ρE,ℓ for various elliptic
curves E/Q by analyzing the statistics of πℓ as p ̸= ℓ varies over primes of good reduc-
tion, by comparing these statistics to the corresponding statistics for various candidate
subgroups of GL2(Fℓ).

(a) Prove that for ℓ = 2 the image of ρE,2 in GL2(F2) is isomorphic to the Galois
group of the splitting field of the cubic f(x) := x3 +Ax+B. Conclude that (up to
conjugacy) every possible subgroup of GL2(F2) arises as the image of ρE,2 for some
elliptic curve E/Q and give an explicit example of each case.

For ℓ > 2, not every subgroup of GL2(Fℓ) can arise as the image of ρE,ℓ.

(b) Prove that there exists a set of primes p of good reduction for E whose reductions
modulo ℓ generate (Z/ℓZ)× (this fact is implied by Dirichlet’s theorem on primes
in arithmetic progressions, and by the Chebotarev density theorem, but you should
give an elementary argument that does not rely on these results). Conclude that
the image of ρE,ℓ must contain elements of every possible determinant (all of F×

ℓ ).

For ℓ = 3 there are, up to conjugacy, 9 candidate subgroups G of GL2(F3) for the image
of ρE,3. These are listed in Table 1, and can also be found in this Sage notebook.

group order description generators

C2 2 cyclic
(
2 0
0 1

)
D2 = C2

2 4 dihedral
(
2 0
0 1

)
,

(
2 0
0 2

)
D3 ≃ S3 6 dihedral

(
1 1
0 2

)
,

(
1 0
0 2

)
D′

3 ≃ S3 6 dihedral
(
2 1
0 1

)
,

(
2 0
0 1

)
C8 8 cyclic

(
1 1
1 0

)
D4 8 dihedral

(
2 0
0 1

)
,

(
0 2
1 0

)
D6 12 dihedral

(
1 2
1 0

)
,

(
0 1
1 0

)
SD16 16 semi-dihedral

(
1 1
2 1

)
,

(
0 1
1 0

)
GL2(F3) 48 general linear

(
2 0
0 1

)
,

(
2 1
2 0

)
Table 1. Candidates for the image of ρE,3 in GL2(F3).
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(c) The determinant detA, trace trA, and multiplicative order |A| of a matrix A in
GL2(Fℓ) are invariant under conjugation. Prove that the pair (detA, trA) does not
determine the conjugacy class of A in GL2(F3), but the triple (detA, trA, |A|) does.

Part (c) implies that we can get more information about πℓ if, in addition to computing
its trace, we also compute its multiplicative order in the ring End(Ep[ℓ]).

(d) Devise and prove a criterion for computing the order of π2 in GL2(F2) based on
the number of roots the cubic f(x) has in Fp, where y

2 = f(x) is the Weierstrass
equation for E.

(e) Modify the function trace mod that was used in our implementation of Schoof’s
algorithm in Lecture 8 (which can be found in this Sage notebook) so that it also
computes the order of πℓ and returns both the trace tℓ and the order |πℓ| of πℓ.
Important: The order of πℓ must be computed modulo the full division polyno-
mial ψℓ, not modulo one of its factors. So compute |πℓ| before computing qℓ, which
is the first place where a division-by-zero error could occur, causing h to be replaced
by a proper factor. Also, be sure to compute |πℓ| only the first time through the loop
when you know that h = ψℓ, don’t accidentally recompute it if the loop repeats.

Now address the first part of (c) in a different way: pick an elliptic curve E/Q and
find two primes p and p′ for which π3 ∈ End(Ep[3]) and π

′
3 ∈ End(Ep′ [3]) have the

same characteristic polynomial but different orders in GL2(F3).

(f) Write a program that, given an elliptic curve E, a prime ℓ, and an upper bound N ,
enumerates the primes p ≤ N distinct from ℓ for which E has good reduction, and for
each Ep, computes the triple (detπℓ, trπℓ, |πℓ|). You can use prime range(N+1)
to efficiently enumerate primes p ≤ N . Keep a count of how often each distinct triple
occurs (use a dictionary, as in the group stats function in this Sage notebook).
Normalize the counts by dividing by the number of primes p you used, yielding a
ratio for each triple.

For ℓ = 3, use your program to provisionally determine the isomorphism class of the
image of ρE,3 for each of the ten elliptic curves below, by comparing the statistics
computed by your program with the corresponding statistics for each of the 9 can-
didate subgroups of GL2(F3). With N around 5000 or 10000 you should be able to
easily distinguish among the possibilities. The curves below are also listed in the
notebook linked to above.

y2 = x3 + x y2 = x3 + 1
y2 = x3 + 432 y2 = x3 + x+ 1
y2 = x3 + 21x+ 26 y2 = x3 − 112x+ 784
y2 = x3 − 3915x+ 113670 y2 = x3 − 3348x− 74547
y2 = x3 + 5805x− 285714 y2 = x3 + 652509x− 621544482

(g) Your computations in part (f) should find two curves with im ρE,3 ≃ S3, which could
be either of the groups labelled D3 and D′

3 in the table above.. These nonconjugate
subgroups of GL2(F3) cannot be distinguished by sampling Frobenius elements be-
cause they have exactly the same distribution of GL2(F3)-conjugacy classes. Show
that you when im ρE,3 ≃ S3 you can determine whether im ρE,3 is conjugate to D3
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or D′
3 by computing the torsion subgroup of E(Q), which you can do in Sage using

E.torsion subgroup(). Use this to determine which of the two curves in (f)
with im ρE,3 ≃ S3 corresponds to D3 and which corresponds to D′

3, assuming that
we view matrices in GL2(F3) as acting on the left.

(h) Note that if a given triple (detπ3, trπ3, |π3|) occurs for some Ep but does not occur in
a candidate subgroup G ⊂ GL2(F3), you can immediately rule out G as a possibility
for the image of ρE,3. Analyze the 8 candidate subgroups in Table 1 to find a pair
of triples that arise in GL2(F3) but do not both arise in any of its proper subgroups.
If for a given curve E/Q you can find both of these triples for some Ep1 and Ep2 ,
then you have unconditionally proved that ρE,3 is surjective.

Use this to devise an algorithm that attempts to prove ρE,3 is surjective. Your
algorithm should return true as soon as it can determine im ρE,3 = GL2(F3) (this
should happen quite quickly, if it is true). If this fails to happen after computing
triples for Ep for every prime up to, say, 10000, then your algorithm should give up
and return false. You can think of this as a Monte Carlo algorithm with one-sided
error: the “randomness” comes from the assumption that the Frobenius elements
Frobp are uniformly and independently distributed over Gal(K/Q) as p varies. If
your program returns true, then ρE,3 is definitely surjective; if it returns false
it is almost certainly not surjective, but there is a small probability of error. Give
an upper bound on the probability of error under the assumption that Frobenius
elements are independent and uniformly distributed.

(i) Using ZZ.random element(-100,100), generate random elliptic curves E/Q of
the form y2 = x3 + Ax + B, with A and B uniformly distributed over the interval
[−100, 100]. Excluding cases where AB(4A3 + 27B2) = 0, use your program to test
whether the mod-3 Galois representation ρE,3 is surjective or not. List five curves
for which your program returns false, and provisionally identify the image of ρE,3

in each such case as in part 3 above (you may need to test a few thousand curves).

Problem 3. ECPP (74 points)

Let us define an elliptic curve primality proof (ECPP) for p as a sequence of certificates
C1, C2, . . . , Ck, where each certificate Ci is of the form (pi, Ai, Bi, xi, yi, pi+1) with p1 = p
and pk+1 < (log p)4. In each certificate Ci, the primes pi and pi+1 satisfy

( 4
√
pi + 1)2 < pi+1 < (

√
pi + 1)2/2, (1)

and Pi = (xi, yi) is a point of order pi+1 on Ei : y
2 = x3 +Aix+Bi over Fpi .

(a) Let p be the least prime greater than 2128 ·N+364, where N is the first four digits of
your student ID (use the next prime function in Sage to compute p). Construct a
short elliptic curve primality proof for p; this means each prime pi+1 should be close
to the lower bound in (1) (you should not need more than 6 or 7 certificates). Note:
the Goldwasser-Kilian algorithm typically will not produce a proof this short, it
will have pi+1 closer to the upper bound in (1), so you will need to do something
slightly different.

(b) Give an algorithm for verifying an elliptic curve primality proof and analyze its
complexity. Express your answer solely in terms of n = log p and assume the worst-
case (so the proof might not be as short as the one you generated in (a)).
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(c) Analyze the asymptotic complexity of constructing an elliptic curve primality proof
using the Goldwasser-Kilian algorithm given in class, under the heuristic assumption
that the orders of random elliptic curves over Fp have factorizations comparable to
random integers in the interval [p, 2p]. Assume that trial division and the Miller-
Rabin test are used for attempted factorizations. Use an O(n5 log log n) complexity
bound for point-counting via Schoof’s algorithm.

(d) Now suppose that you want to construct an elliptic curve primality proof that can
always be verified in O(nM(n)) time, where n = log p. Under the heuristic as-
sumption above, give a probabilistic algorithm for constructing such a proof whose
expected running time is bounded by Lp[α, c], using the smallest value of α that
you can (hint: you can make α < 1/2). Your answer should include a high-level
description of the algorithm and a (heuristically proven) bound on its complexity.

Problem 4. Pomerance proofs (74 points)

A Pomerance proof is a special form of an elliptic curve primality proof that involves
just a single certificate (p,A, x0, k) and uses a Montgomery curve2 By2 = x3 + Ax2 + x
over Fp on which there is a point (x0, y0) of order 2k > ( 4

√
p + 1)2 ≥ 2k−1. Neither the

y-coordinate nor B is needed to verify the certificate (no matter what x30 +Ax20 + x0 is,
there exists a nonzero B and a y0 that will work and the verifier does not need to know
what they are in order to double a point in Montgomery coordinates, see Section 10.9 of
the Lecture notes). But the verifier should check that gcd(A2− 4, p) = 1 (to ensure that
the curve is not singular), and that gcd(zk−1, p) = 1 and zk = 0 mod p, where zn is the
z-coordinate of 2n(x0 : y0 : z0).

Every prime p has a Pomerance proof, but for a general prime p no efficient algorithm
is known for finding one. In this problem you will develop a very efficient algorithm to
construct a Pomerance proof for primes of a special form.

Let us first convince ourselves Pomerance proofs actually do prove primality, and
that every sufficiently large prime has a Pomerance proof; for the latter we need the
following theorem, which we will prove later in the course.

Theorem 1. Let p be a prime. For every integer N in the Hasse interval

H(p) = [p+ 1− 2
√
p, p+ 1 + 2

√
p]

there exists an elliptic curve E/Fp for which E(Fp) is a cyclic group of order N .

(a) Show that Pomerance certificates (p,A, x0, k) ∈ Z4
>0 exist only for prime integers p.

(b) Using the theorem above, prove that every prime p > 31 has a Pomerance proof.

Now let E be the elliptic curve y2 = x3 + 8 over Fp.

(c) Using the formula #E(Fp) = p+1+
∑

x∈Fp

(
x3+8
p

)
, prove that for every odd prime

p ≡ 2 mod 3 we have #E(Fp) = p+ 1.

2See the last few sections of the notes from Lecture 10 for information about Montgomery curves.
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(d) Prove that for any prime p ≡ 11 mod 12 the curve E/Fp can be put in Montgomery
form By2 = x3 + Ax2 + x. Give a deterministic algorithm that computes A and B
in time O(nM(n)), where n = log p.

(e) Design a Las Vegas algorithm that takes as input an integer p = 3·2mc−1 with c odd
and 2m > ( 4

√
p+1)2 and outputs a Pomerance proof for prime p and a Miller-Rabin

witness for composite p. Analyze the expected running time of your algorithm as a
function of n = log p.

(f) Implement your algorithm and use it to construct a Pomerance proof for a prime of
the form p = 2k · 3m − 1 that is greater than 21000. Be sure to format your answer
so that all of the digits in the certificate you construct fit on the page.

(g) As noted above, no efficient algorithm is known for constructing Pomerance proofs
in general. On the other hand, there certainly is an algorithm; for example, one
could simply enumerate all the possible certificates (clearly a finite set) and attempt
to verify them. But you can certainly do better than this. Give the most efficient
algorithm you can come up with for constructing a Pomerance proof for a given
prime p > 31 and bound its complexity. Your algorithm need not be deterministic,
and you should feel free to assume any heuristics that you believe are reasonable.

Problem 5. Quaternion algebras (74 points)

Throughout this problem k is a field whose characteristic is not 2, and a division k-
algebra is a k-algebra that is a division ring (every nonzero element is invertible). Recall
that a quaternion algebra over k is a k-algebra H with elements α, β ∈ H satisfying
α2, β2 ∈ k× and αβ = −βα such that 1, α, β, αβ is a basis for H as a k-vector space.
The Hamilton quaternions H are the quaternion algebra over R with α2 = β2 = −1.

(a) Show that any k-algebra generated by distinct α, β satisfying α2, β2 ∈ k× and
αβ = −βα is a quaternion algebra (in particular, we don’t need to require that
1, α, β, αβ are a basis, this follows from the relations they satisfy).

For a, b ∈ k×, let
(
a,b
k

)
be the quaternion algebra k(α, β) with α2 = a, β2 = b, αβ = −βα.

(b) Show that
(
a,b
k

)
=

(
b,a
k

)
=

(
a,−ab

k

)
=

(
b,−ab

k

)
and

(
a,b
k

)
=

(
ac2,bd2

k

)
for c, d ∈ k×.

Then show that
(
1,1
k

)
≃ M2(k) (the 2× 2 matrix ring over k). Conclude that when

k is algebraically closed all quaternion algebras over k are isomorphic.

(c) Show over k = R every quaternion algebra H is isomorphic to M2(R) or H, the

latter occurring if and only if H =
(
a,b
R

)
with a, b < 0.

A central k-algebra is a k-algebra with center k.

(d) Show that quaternion k-algebras are central k-algebras.

Recall that an involution of a k-algebra H is a ring involution (anti-isomorphism that is
its own inverse) that fixes k. An involution α 7→ α̂ of a k-algebra H is standard if αα̂ ∈ k
for all α ∈ H. As proved in lecture, for quaternion k-algebras H, the involution given
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by conjugation is standard. The degree deg(H) of a k-algebra H is the least positive
integer m such that every α ∈ H is the root of a monic polynomial in k[x] of degree m,
or ∞ if no such m exists.

(e) Show that a k-algebra H with a standard involution satisfies deg(H) ≤ 2. Conclude
that the k-algebra Mn(k) has a standard involution if and only if n ≤ 2.

(f) Show that every commutative k-algebra of k-dimension 2 has a unique standard
involution, and that in general, if a k-algebra has a standard involution, it is unique.

(g) Let H be a division k-algebra. Show that deg(H) ≤ 2 if and only if (i) H = k,
(ii) H is a quadratic field extension of k, or (iii) H is a division quaternion algebra.
Conclude that deg(H) ≤ 2 if and only if H has a standard involution.

(h) Show that for a division k-algebra H, the following are equivalent: (i) H is a quater-
nion algebra, (ii) H is noncommutative and deg(H) = 2, (iii) H is central and
deg(H) = 2.

Problem 6. Survey (2 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10
= “mind-blowing”), and how hard you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.

Collaborators/Sources:
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