
18.783 Elliptic Curves Fall 2025

Problem Set #5 Due: 10/13/2025

These problems are related to Lectures 9–10. Your solutions should be written in LaTeX
and submitted as a PDF file to Gradescope by midnight on the date due.

Instructions: Solve any combination of problems that sums to 100 points. Collab-
oration is permitted/encouraged, but you must identify your collaborators (including
any LLMs you discussed the problem set with), as well as any references you consulted
outside the syllabus or lecture notes. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Each student is expected to write their own solutions; it
is fine to discuss problems with others, but your writing must be your own.

Problem 1. Rubik’s pie (49 points)

The baby-steps giant-steps method and Pollard rho algorithm are often referred to as
birthday paradox algorithms (or

√
N -algorithms). They both work by searching for

collisions among N alternatives in a way that ensures (or at least makes it very likely)
that a collision will be found after O(

√
N) steps, rather than the O(N) steps required by

a brute force linear search. Another class of algorithm that falls into this category are
bidirectional search (or meet-in-the-middle) algorithms. In this problem you will use a
bidirectional search algorithm to construct an optimal solver for the Rubik’s pie puzzle.
You will receive a Rubik’s pie puzzle in class to help you visualize this problem, or you
can watch this video.

The Rubik’s pie consists of 18 pieces: 8 corner pieces, 8 edge pieces, and 2 center
pieces. Every piece of the puzzle can be uniquely identified by specifying its shape
(corner, edge, center), and the colors on it; for example, there is exactly one white-blue
corner piece. The puzzle has 6 faces. The two circular faces, which we will call the front
and back faces, each contain 9 pieces: 4 corners, 4 edges, and a center piece. The four
side faces, which we will call the up ,down, right, and left faces, each contain 6 pieces: 4
corners and 2 edges. Note that each side face intersects each circular face in 3 pieces (2
corners and an edge), and adjacent side faces intersect in 2 corner pieces.

There are seven permissible moves, all of which are performed while looking directly
at the front face (this determines the meaning of “clockwise” – you are assumed to be
looking at the front face while turning the back face).

1. A clockwise quarter-turn of the back face (b), which moves the back pieces on the
right face to the down face.

2. A counterclockwise quarter-turn of the back face (f), which moves the back pieces
on the right face to the up face.

3. A half-turn of the back face (B).

4. Half-turns of any of the four side faces (u, d, r, l).

All moves keep the center front piece in a fixed orientation and each has a unique inverse.
We do not include rotations of the front face; up to orientation, these are equivalent to a

1

https://www.gradescope.com/courses/1109839
http://math.mit.edu/classes/18.783/2025/syllabus.html
http://math.mit.edu/classes/18.783/2025/lectures.html
https://youtu.be/HlOm9z64cIE


rotation of the back face (the counterclockwise quarter-turn of the back face is labeled f
because it is equivalent to a clockwise quarter-turn of the front face).

We define a solved puzzle to be one in which the front face is white and the colors
of the stickers running clockwise along the side of the front layer starting from the blue
corner are blue, blue, orange, orange, red, red, green, green, and the colors of the stickers
along the side of the back layer match those in the front. Figure 1 shows a solved puzzle.1

Figure 1. Two views of a solved puzzle.

A configuration of the puzzle specifies the location of each edge and corner piece
in a fixed orientation with the white center piece in front; for example, a particular
configuration might have the yellow-red edge in the down-back position. There are four
possible configurations of a solved puzzle. We say that a solved puzzle is in the standard
configuration if the white-blue corner is in the up-left-front position (which also means
that the yellow-red edge is in the down-back position).

Below are four views of a puzzle that had the move sequence frBul applied to a
solved puzzle in the standard configuration. The view on the far left has the same
orientation as the standard configuration. You may wish to verify this with your puzzle.

Figure 2. Views of a solved puzzle in the standard configuration after applying frBul.

Your task is to implement an optimal solver (“God’s algorithm”) for the Rubik’s pie.
This is an algorithm that, given any starting configuration, outputs a shortest sequence
of moves that leads to a solved configuration (not necessarily the standard one).2

Consider the graph G = (V,E) whose vertex set V consists of all possible configura-
tions of the puzzle and whose edges (v1, v2) are labeled with one of the seven permissible
moves m ∈ {u, d, r, l, b, B, f}, where applying the move m to configuration v1 yields the
configuration v2. This is a bidirected graph in which each vertex has degree 7; the move
labeling the edge (v1, v2) is the inverse of the move labeling the edge (v2, v1).

Given two vertices s and t in this graph, we wish to find a (not necessarily unique)
shortest path from s to t. The edge labels on this path give us a sequence of moves
w = m1m2 · · ·mk that will take the puzzle from configuration s to configuration t in k

1Manufacturers do not always deliver puzzles in a solved state, according to our definition (the order
of the colors may vary). You can deal with this either by taking your puzzle apart and reassembling it,
or use your solver to put the puzzle in a solved state before answering the questions that follow.

2Unlike a Rubik’s cube, with the Rubik’s Pie, every starting configuration can be solved; this means
that if your puzzle falls apart it does not matter how you put it back together.
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moves, where k is the distance from s to t. Reversing the path and inverting each move
yields a sequence w−1 = m−1

k m−1
k−1 · · ·m

−1
1 that takes the puzzle from t to s.

To find such a path you will use a bidirectional search. Let N(s, r) denote the r-
neighborhood of s, the set of vertices v whose distance from s is at most r. For each
vertex v ∈ N(s, r) we include a path w from s to v of length at most r (it does not
matter which path is chosen) that we store together with v, so we view N(s, r) as a set
of pairs (v, w) where the v’s are all distinct, and we index this set by v (in Python this
can be conveniently implemented using a dictionary).

The bidirectional search algorithm works by alternately expanding neighborhoods of
s and t until they intersect. An outline of the algorithm is given below. We use ϵ to
denote the empty path.

1. Set N(s, 0) = {(s, ϵ)} and N(t, 0) = {(t, ϵ)}, and set rs = rt = 0.

2. Repeat until N(s, rs) and N(t, rt) contain a common vertex v:

a. If rs = rt, compute N(s, rs + 1) by extending N(s, rs) and then increment rs;
Otherwise, compute N(t, rt + 1) by extending N(t, rt) and then increment rt.

3. Output the path w1w
−1
2 , where (v, w1) ∈ N(s, rs) and (v, w2) ∈ N(t, rt).

Note that when extending a neighborhood you may encounter the same vertex mul-
tiple times, but you should only keep one pair (v, w) for each v (alternatively you could
keep them all and compute every shortest path from s to t). Once you have implemented
and tested your algorithm, use it to answer the following questions:

(a) Find an optimal solution to the configuration obtained by applying the sequence

blurdbrBrdflblfrBrBrBdrbub

to the standard puzzle. Below are four views of a standard puzzle after applying this
move sequence. The leftmost has the same orientation as the standard configuration.

Figure 3. Standard puzzle after applying blurdbrBrdflblfrBrBrBdrbub.

Your solution should be a shortest move sequence that, when applied to the puzzle
pictured on the left, yields a solved puzzle. Equivalently, it should be a shortest
inverse of the move sequence above. Also record how long it took your algorithm to
find a solution.

(b) Next, generate a “random” sequence of moves m using the SageMath code snippet

m = ’’.join([’fbBudlr’[d] for d in (Nˆ10).digits(7)])

where N is the first four digits of your student ID. Find a shortest inverse to m.
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(c) By linearly extrapolating from the time it took your program to solve part 1, give
a rough estimate (to within an order of magnitude) of the time it would take your
program to find an optimal solution to the puzzle in Figure 3 if you had instead
used a breadth-first search rather than a bidirectional search (i.e. just expand a
neighborhood of s until it contains t). Assume that memory is not a limiting factor.

Problem 2. A Las Vegas algorithm to compute E(Fp) (49 points)

Let E/Fp be an elliptic curve over a finite field Fp of prime order p. In this problem you
will use the extended discrete logarithm to design (but need not implement) a Las Vegas
algorithm to determine the structure of E(Fp) as a sum of two cyclic groups

E(Fp) ≃ Z/N1Z⊕ Z/N2Z,

with N1|N2. We will assume that the group order N has already been computed, either
by Schoof’s algorithm or by the Las Vegas algorithm from Problem Set 3.

Our strategy is to determine the structure of the ℓ-Sylow subgroups of E(Fp) for each
prime ℓ dividing N . Recall that an ℓ-Sylow subgroup is a maximal ℓ-group (a group in
which the order of every element is a power of ℓ), and in an abelian group, there is just
one ℓ-Sylow subgroup and it contains every element whose order is a power of ℓ. If ℓ
divides N but ℓ2 does not, then the ℓ-Sylow subgroup is obviously isomorphic to Z/ℓZ,
so we only need to consider primes whose square divides N . Furthermore, even if ℓ2 does
divide N , unless ℓ divides p− 1, the ℓ-Sylow subgroup will still be cyclic:

(a) Prove that if the ℓ-Sylow subgroup of E(Fp) is not cyclic then p ≡ 1 mod ℓ.

This yields the following high-level algorithm to compute N1 and N2, given N .

1. Compute the prime factorization of N .

2. Set N1 = 1 and N2 = 1, and for each maximal prime power ℓe dividing N :

(a) If e = 1 or ℓ does not divide p− 1, then set N2 = ℓeN2 and continue.

(b) Otherwise, compute the structure Z/ℓe1Z⊕Z/ℓe2Z of the ℓ-Sylow subgroup of
E(Fp) as described below, with e1 ≤ e2, and set N1 = ℓe1N1 and N2 = ℓe2N2.

3. Output N1 and N2

All we need now is an algorithm to compute the ℓ-Sylow subgroup Gℓ of E(Fp),
given the orders ℓe and N of Gℓ and E(Fp), respectively. Our strategy is to first pick
two random points P1, P2 ∈ Gℓ, by generating random points in E(Fp) and multiplying
them by N/ℓe. We hope that these points generate Gℓ. Next, we reduce them to what
we hope is a basis for Gℓ, that is, points Q1 and Q2 such that Gℓ ≃ ⟨Q1⟩ ⊕ ⟨Q2⟩. We
then have Gℓ ≃ Z/ℓe1Z⊕Z/ℓe2Z where ℓe1 = |Q1|, ℓe2 = |Q2|. Note that we can quickly
compute the order of any element of Gℓ, since it must be a power of ℓ. Provided that
we know the points Q1 and Q2 are independent (meaning that ⟨Q1, Q2⟩ ≃ ⟨Q1⟩ ⊕ ⟨Q2⟩),
in order to verify that we actually have computed a basis for Gℓ and not some proper
subgroup, we just need to check that e1 + e2 = e. If this does not hold, we try again
with two new random points P1 and P2; eventually we must succeed.

Your job is to flesh out this strategy and analyze the resulting algorithm. We first
recall the definition of the extended discrete logarithm given in Lecture 9.
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Definition. For elements α and β of a finite group G, the extended discrete logarithm
of β with respect to α, denoted DL∗(α, β), is the pair of positive integers (x, y) with
αx = βy, where y is minimal subject to βy ∈ ⟨α⟩, and x = logα β

y; in additive notation,
xα = yβ, with y minimal subject to yβ ∈ ⟨α⟩ and x > 0 minimal.

(b) Prove each of the following statements for a finite abelian ℓ-group G containing
elements α and β.

(i) If G has ℓ-rank at most 2 and α and β are random elements uniformly dis-
tributed over the elements of G, then the probability that G = ⟨α, β⟩ is at
least 3/8.

(ii) If (x, y) = DL∗(α, β) then y is a power of ℓ.

(iii) For (x, y) = DL∗(α, β) the following are equivalent:

• x = |α| and y = |β|;
• ⟨α, β⟩ has order |α| · |β|.
• α and β are independent;

(iv) If |α| ≥ |β| and (x, y) = DL∗(α, β) then y|x and γ = β − (x/y)α and α are
independent.

The key fact is (iv), which tells us that we should order the Pi so that |P1| ≤ |P2|
and then let Q1 = P1 − (x/y)P2 and Q2 = P2, where (x, y) = DL∗(P2, P1). If we then
compute ℓe1 = |Q1| and ℓe2 = |Q2|, it follows from (iii) that Gℓ = ⟨Q1, Q2⟩ if and only if
e1 + e2 = e. Fact (i) tells us that we expect this to occur within less than 3 iterations,
on average. By (ii), we can compute (x, y) = DL∗(P2, P1) by attempting to compute
x = logP2

ℓiP1 for i = 0, 1, 2, . . . until we succeed, at which point we have y = ℓi.3

To compute logP2
ℓiP1, we use the prime-power case of the Pohlig-Hellman algorithm

described in Lecture 10 to reduce the problem to a discrete logarithm computation in a
group of prime order ℓ for which we use the baby-steps giant-steps method.

(c) Prove that in a cyclic group of prime-power order N = ℓe the complexity of the
Pohlig-Hellman algorithm is

O(e log ℓ log e+ e
√
ℓ)

group operations. Use this to bound the bit-complexity of computing logP2
ℓiP1 in

the ℓ-Sylow subgroup of E(Fp) with order ℓe.

(d) Write down a high-level description (not a program) of an algorithm to compute the
structure of the ℓ-Sylow subgroup Gℓ of E(Fp) in the form Z/ℓe1Z⊕ Z/ℓe2Z, given
N = #E(Fp) and ℓ

e = #Gℓ, and analyze its expected time complexity as a function
of ℓ, n = log p, and e.

(e) Analyze the total expected time complexity of the algorithm to compute the struc-
ture of E(Fp) in the form Z/N1Z ⊕ Z/N2Z, given N = #E(Fp) (hint: first figure
out what the worst case is, then analyze that). You can assume that we have a Las
Vegas algorithm that factors N in subexponential time, meaning it is faster than
N ϵ for any ϵ > 0.

3There are much better ways to do this (a binary search, for example), but using them won’t improve
the worst-case complexity of the overall algorithm.
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Problem 3. Elliptic curves with prescribed torsion (49 points)

Recall that the elliptic curve factorization method (ECM) succeeds in finding a prime
factor p of a composite integer N when it encounters an elliptic curve E/Fp for which
#E(Fp) is sufficiently smooth. In the algorithm described in class we chose E at random
(by choosing random coefficients modulo N), but one can increase the likelihood that
#E(Fp) is smooth by using a family of elliptic curves that are guaranteed to have a
rational point of small order. This is partially achieved by using random Montgomery
curves, which are guaranteed to have either a rational point of order 4 or two independent
rational points of order 2, but we can do better than this.

Given that we don’t know the prime p that we are looking for, we need a strategy
that is guaranteed to work for any (sufficiently large) prime p. The goal of this problem
is to construct a parameterized family of elliptic curves over Q with a rational point of
order 12 (the largest permitted by Mazur’s theorem). Any elliptic curve with a rational
point of order 12 also has a rational point of order 4 and can thus be put in Montgomery
form (by Theorem 11.4), so this strategy still allows us to use Montgomery curves (or
Edwards curves) and gain their associated performance advantages. As a by-product,
you will obtain infinite families of elliptic curves over Q that realize all of the larger
cyclic torsion subgroups permitted by Mazur’s torsion theorem.

For this problem rather that working with elliptic curves E/k in short Weierstrass
form y2 = x3+Ax+B, it is more convenient to work with elliptic curves in Tate normal
form:

E(b, c) : y2 + (1− c)xy − by = x3 − bx2,

where b, c ∈ k. Note that this is a special case of a general Weierstrass equation, so our
distinguished k-rational point is the projective point 0 := (0 : 1 : 0) at infinity, all other
points in E(k̄) are affine points (x0, y0) := (x0 : y0 : 1), and the group law is defined in
the usual way (three points on a line sum to zero).

(a) Show that E(b, c) is singular if b = 0; thus we henceforth assume b ̸= 0.

(b) Show that P := (0, 0) is always a k-rational point on E(b, c) and that 2P = (b, bc).

(c) For n ≥ 1 define xn, yn ∈ k by nP := (xn, yn). Prove that for all n > 1 we have

xn+1 = byn/x
2
n, yn+1 = b2(x2n − yn)/x

3
n

whenever xn ̸= 0.

(d) Prove that for all n ≥ 1 we have −nP = (xn, b + (c − 1)xn − yn); conclude that
xn = 0 if and only if nP = ±P .

(e) Prove 3P = (c, b− c) and conclude that P has order greater than three.4 Let N > 3
be any integer and set m := ⌈N+1

2 ⌉ and n := ⌊N−1
2 ⌋ so that m+n = N with m ̸= n.

Prove that NP = 0 if and only if xm = xn, and use this to conclude that

|P | = 4 ⇐⇒ c = 0 and |P | = 5 ⇐⇒ b = c,

where |P | denotes the order of the point P .

4Conversely, every elliptic curve with a rational point of order greater than three is defined by an
equation E(b, c) in Tate normal form, but you are not required to prove this.
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We now assume that c ̸= 0 and b ̸= c and define

r := b/c, s := c2/(b− c).

Note that r, s ̸= 0 and r ̸= 1, and we can recover b and c from r and s via

b = rs(r − 1), c = s(r − 1).

Thus if we restrict our attention to b, c ̸= 0, b ̸= c, equivalently, r, s ̸= 0, r ̸= 1, we can
express any elliptic curve in Tate normal form and any multiple of P = (0, 0) ∈ E(k)
either in terms of b and c or in terms of r and s.

(f) Prove that

|P | = 6 ⇐⇒ s = 1 and |P | = 7 ⇐⇒ r = s,

|P | = 8 ⇐⇒ s = (2r − 1)/r and |P | = 9 ⇐⇒ r = s2 − s+ 1.

(g) Give a rational parameterization of r in terms of s that holds if and only if |P | = 10.
Then give a polynomial f(r, s) that vanishes if and only if |P | = 12, and show that
it can be rationally parameterized (introduce a new parameter t and express r and s
as rational functions of t such that f(r(t), s(t)) = 0 holds for all valid t).

The parameterizations you obtained in (e), (f), (g) imply that there are infinitely many
elliptic curves over Q with a rational point of order N , for N = 4, 5, 6, 7, 8, 9, 10, 12; this
is also true (and easier to prove) for N = 1, 2, 3, which covers all the cases permitted by
Mazur’s torsion theorem.5

(h) Give a polynomial f(r, s) that vanishes if and only if |P | = 11. Mazur’s torsion
theorem implies that f(r, s) = 0 has no solutions in Q that correspond to an elliptic
curve (our restrictions on r and s preclude some trivial solutions). Find a prime p
for which f(r, s) = 0 has a valid solution, and use this to construct an elliptic curve
E/Fp on which (0, 0) is a point of order 11.

Problem 4. Student’s choice (49 points)

Solve one of the four (out of six) problems from Problem Set 4 that you did not turn in.

Problem 5. Subexponential bounds (19 points)

This short problem is meant to familiarize you with subexponential complexity bounds.
You do not need to show your work, but be sure to think through your answers carefully.
Recall that our subexponential complexity bounds have the form

LN [α, c] := exp
((
c+ o(1)

)
(logN)α(log logN)1−α

)
,

where 0 ≤ α ≤ 1 and c > 0. The notation o(1) denotes any function ϵ(N) whose absolute
value converges to 0 as N → ∞. Thus LN [α, c] should really viewed as a set of functions.
A function f(N) belongs to the set LN [α, c] if and only if

lim
N→∞

log f(N)

(logN)α(log logN)1−α
= c.

5Moreover, your parameterizations yield infinitely many Q-isomorphism classes of elliptic curves, in
fact, infinitely many Q-isomorphism classes; this will be easy to prove once we introduce the j-invariant.
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To get a sense of how these bounds grow with N , and how to compare them, consider
the following table, in which the o(1) term is assumed to be 0 and n = log2N .

n n5 LN [1/4, 1] LN [1/2, 1] LN [1/2,
√
2] n2LN [1/2,

√
2] N1/4

64 1.1× 109 1.1× 103 4.3× 105 9.3× 107 3.8× 1011 6.6× 104

128 3.4× 1010 1.3× 104 4.6× 108 1.8× 1012 2.9× 1016 4.3× 109

256 1.1× 1012 2.8× 105 1.5× 1013 4.2× 1018 2.7× 1023 1.8× 1019

512 3.5× 1013 1.3× 107 6.7× 1019 1.1× 1028 2.9× 1033 3.4× 1038

1024 1.1× 1015 1.6× 109 4.4× 1029 8.4× 1041 8.8× 1047 1.2× 1077

2048 3.6× 1016 6.1× 1011 1.2× 1044 2.2× 1062 9.2× 1068 1.3× 10154

(a) Simplify the following expressions, in which 0 < α, β < 1 and c, d > 0, and p(x)
denotes a polynomial of degree k > 0. Interpret sums and products of complexity
bounds (sets of functions) in the obvious way, e.g. S + T is the set of all functions
s+ t with s ∈ S and t ∈ T . Write your answer in the form LN [γ, e], where γ and e
may depend on α, β, c, d, k.

(i) LN [α, c] + LN [β, d]

(ii) LN [α, c]LN [β, d]

(iii) LN [α, c]p(logN)

(iv) p(LN [α, c])

(v) Lp(N)[α, c]

(vi) LLN [α,c][β, d]

(b) For each of the following pairs of complexity bounds A(N) and B(N) representing
sets of functions A and B, indicate which of the following holds: (a) A ⊊ B, (b)
B ⊊ A, (c) A = B, (d) A ∩B = ∅, or (e) none of the above. Assume 0 < α, β < 1.

(i) LN [α, c] and O(LN [α, c]).

(ii) LN [α, c] and LN [β, d] with α > β.

(iii) LN [α, c] and LN [α, d] with c > d.

(iv) LN [α, c] and O
(
exp

(
c(logN)α

))
.

Problem 6. ECM second stage (79 points)

The elliptic curve factorization method (ECM) can be extended to incorporate a second
stage that substantially improves its practical performance. In this problem you will
analyze the benefit of this second stage, and, as a side benefit, derive a generic algorithm
to compute the order of a group element using o(

√
N) group operations.

Given an integer N to be factored, a bound M on the largest prime divisor of N
one hopes to find, and a smoothness bound B1 = LM [1/2, 1/

√
2], ECM generates random

elliptic curves E/Q with a known point P of infinite order and computes the scalar
multiple mP = (xm : ym : zm), working with projective coordinates reduced modulo N .
The integer m =

∏
ℓeii is a product of prime powers with ℓeii ≤ (

√
M + 1)2 ≤ ℓei+1

i ,
ranging over all primes ℓi ≤ B1. The goal is to find a curve for which gcd(zm, N) is
non-trivial (we actually check gcd(zmi , N) for the partial products mi =

∏
ℓeii as we go).

But suppose that, as often happens, gcd(zm, N) = 1. Let us assume that N has a
prime factor p ≤ M at which E has good reduction, and let Ep denote the reduction
of E modulo p. We know that #Ep(Fp) is not B1-smooth, meaning that it has a prime

8



factor q > B1, but suppose that there is just one such q. Then the reduction of the point
Q = mP must have order q as an element of Ep(Fp). Provided q is not too large, say,
q ≤ B2 for some bound B2 ≈ B2

1 , then we can try to “compute” the order of mP in
Ep(Fp) using a baby-steps giant-steps search up to the bound B2. This is not as simple
as it sounds: we don’t know p so we must work modulo N while checking for collisions
modulo p, but there is an efficient algorithm for detecting collisions [3, §3]. The details of
this algorithm do not concern us here, we simply want to consider the potential speedup
we might gain from such a second stage.

If the prime factors of an integer n are all smaller than y, and all but one of them is
smaller than z, then n is said to be semismooth with respect to y and z. The function
ψ(x, y, z) counts the number of such integers n ≤ x. We are interested in the quantity
1
Mψ(M,B2, B1). Under the heuristic assumption that the orders of random elliptic
curves over a finite field are about as likely to be semismooth as integers of similar size,
this is the probability that our algorithm will be able to find an integer n for which
nP ≡ 0 mod q, either in the first or second stage (we aren’t guaranteed to succeed if this
happens, we also need nP ̸≡ 0 mod N , but this is very likely to be true).

Let B1 =M1/u. We saw in class that, under our heuristic assumption, the expected
running time of ECM with just a single stage is proportional to

M1/u(ψ(M,M1/u)/M)−1M(logN). (1)

Using the Canfield-Erdő s-Pomerance bound ψ(x, x1/u)/x = u−u+o(u), we found that we
should pick u =

√
2 logM/ log logM and obtained the bound L[1/2/,

√
2]M(logN). But

this is a very rough approximation and we ignored several factors logarithmic inM along
the way (these are hidden in the o(1) term in the subexponential notation).

We can get a much more precise estimate by using the Dickman function ρ(u) to
approximate ψ(x, x1/u)/x. The Dickman function ρ(u) is defined via the differential
delay equation

ρ′(u) = −ρ(u− 1)/u,

with ρ(u) = 1 for 0 ≤ u ≤ 1. Asymptotically ρ(u) = ψ(x, x1/u)/x+ o(1), and in practice
ρ(u) is very close to 1

xψ(x, x
1/u) for x and u in the range we are interested in. Sage has

a built-in function dickman rho(u) that computes a good numerical approximation
to ρ(u). See [2, §1] if you want to know more about ρ(u) and its relation to ψ(x, y).

To minimize (1) it suffices to minimize

M1/u/ρ(u). (2)

(a) Using Newton’s method, write a simple function in Sage that approximates (to at
least 3 decimal places) the value of u that minimizes (2).

For the sake of simplicity, let us suppose that B2 = B2
1 =M2/u and that the second

stage has a running time approximately equal to that of the first. Then the expected
running time of ECM with a BSGS second stage is heuristically proportional to

2M1/u(M/ψ(M,M2/u,M1/u)) ·M(logN), (3)

with the same constant of proportionality as in our single stage analysis. In fact, we
should optimally spend asymptotically slightly less time on the second stage than the
first; this would allow us to save the factor of 2 in (3). You will prove below that this
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can actually be achieved using B2 = B2
1 if we modify the baby-steps giant-steps search

appropriately.
Analogous to ρ(u), Bach and Peralta [1] define the semismooth probability function

G(a, b) = lim
x→∞

1

x
ψ(x, xb, xa)

(note the order of xa and xb). The function G(a, b) can be numerically approximated
using the Dickman function in terms of the function F (α) = ρ(1/α) as

G(α, β) = F (α) +

∫ β

α
F

(
α

1− t

)
dt

t
.

By numerically approximatingG(a, b) we can determine a suitable choice of u to minimize
the quantity

M1/u/G(1/u, 2/u). (4)

This calculation is a bit time consuming, so a table of optimal u values for M = 2k

with k = 10, 20, . . . , 200 has been prepared for you and can be found in this Sage note-
book, which also implements a function G(a,b) that approximates G(α, β) using ρ(u).

(b) Use the algorithm you implemented in (a) to generate a similar table of optimal u
values that minimize (2). Then, for k = 20, 40, 60, . . . , 200 compute M1/u1/ρ(u1)
andM1/u2/G(1/u2, 2/u2), withM = 2k and u1 chosen to minimize the first quantity
and u2 chosen to minimize the second. List these values and their ratio in a table.

The ratios express the speedup we might hope to gain by using a second stage. You
should find that the speedup is clearly increasing with k, implying that it is asymptoti-
cally better than a constant factor. Nevertheless, the second stage does not improve the
subexponential complexity bound, which ignores even polynomial factors of logM .

(c) Prove that the heuristic expected running time of ECM with a second stage is still
LM [1/2,

√
2]M(logN), the same as with just one stage. Based on the data in your

table from part (b), estimate what the asymptotic speedup is as a function of logM .

Let Q = mP be the point obtained after an unsuccessful first stage. When using
baby-steps giant-steps to implement the second stage we can take advantage of the fact
that, for any prime divisor p ≤M of N , in the group E(Fp) the reduction of the point Q
cannot have order divisible by any prime pi ≤ B1. Indeed, the second stage will succeed
only in the case where Q has prime order q ∈ (B1, B2] in E(Fp).

This means that our baby-steps giant-steps search only needs to check O(B2/ logB2)
distinct multiples of Q, those corresponding to prime values. In principle, this could
potentially be achieved with just

√
B2/ logB2 group operations, but it is not obvious

how to do this. At a minimum, we can certainly avoid checking multiples of small primes
2, 3, 5, . . . , ℓ whose product t is substantially less than

√
B2, for the sake of concreteness,

let’s say t ≈ B
1/4
2 . We should then compute baby steps of the form iQ with gcd(i, t) = 1

for all 1 ≤ i ≤ r for some multiple r of t, followed by giant steps of the form jrQ for
1 ≤ j ≤ s, where rs ≥ B2.
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(d) Explain how to choose r and s so that the number of baby steps and giant steps
are approximately equal, and give a tight asymptotic bound on the total number of
steps in terms of B2. You may use the Prime Number Theorem and standard facts
it implies, such as

∑
p≤x log p ∼ x and

∑
p≤x

1
p = log log x+O(1).

(e) Now forget about ECM. Using your answer to part (d), describe a generic algorithm
to compute the order of an element α ∈ G given an integer N > |α| that uses o(

√
N)

group operations (the order of α may be prime or composite).

(f) Modify the algorithm in part (e) to not require N as an input, so that it computes
|α| using o(

√
|α|) group operations and give an asymptotic bound on the number

group operations it uses.

(g) Computing |α| is equivalent to computing the discrete logarithm of the identity
with respect to α. Explain why your algorithm does not contradict Shoup’s Ω(

√
p)

generic lower bound for the discrete logarithm problem even when |α| = p is prime.

It is worth noting that you have just disproved what was once a standard assumption,
namely, that the worst-case complexity of computing |α| is Ω(

√
|α|) group operations.

Problem 7. Survey (2 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,”
10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 =
“brutal”). Also estimate the time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.
Collaborators/Sources:
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