
18.783 Elliptic Curves Fall 2025

Problem Set #2 Due: 09/19/2025

These problems are primarily related to Lecture 3. Note that the lecture notes include
material we did not cover in class that you are expected to have read (this is particularly
relevant to Problem 3). Your solutions should be written in LaTeX and submitted as a
PDF file to Gradescope by midnight on the date due.

Instructions: Solve any combination of problems that sums to 100 points. Collab-
oration is permitted/encouraged, but you must identify your collaborators (including
any LLMs you discussed the problem set with), as well as any references you consulted
outside the syllabus or lecture notes. Include this information after the Collabora-
tors/Sources prompt at the end of the problem set (if there are none, you should enter
“none”, do not leave it blank). Each student is expected to write their own solutions; it
is fine to problems with others, but your writing must be your own.

Note: Several problems require a portion of your MIT ID as input. If you would prefer
not to use your MIT ID, let me know and I will choose a random 9-digit number that
you can use in place of your MIT ID for the purpose of solving 18.783 problem sets.

Problem 1. Cornacchia’s algorithm (33 points)

Cornacchia’s algorithm computes primitive solutions (x, y) to the Diophantine equation

x2 + dy2 = m, (1)

where d and m are positive integers. A primitive solution has x and y relatively prime.
Typically m = p or m = 4p, where p is a prime, but the algorithm works for any m,
provided we are given an appropriate square root r of −d mod m (if there are only two
square roots, as when m is prime p or 4p with p odd, it does not matter which we use,
but in general one needs to check one of ±r for each square root r of −d modulo m).1

The algorithm uses a partial Euclidean algorithm that terminates as soon as the
sequence of remainders ri drops below the square root of r0 = m.

1. Let r0 = m and r1 = r, where r2 ≡ −d mod m and 0 ≤ r ≤ m/2.

2. Compute ri+2 = ri mod ri+1 until r2k < m is reached.

3. If (m− r2k)/d is the square of an integer s, return the solution (rk, s).
Otherwise, return null.

It is clear that if the algorithm returns (rk, s), then it is a solution to (1). It is not so
clear that the algorithm always finds a primitive solution if one exists, but this is true;
see [1] for a short elementary proof.2 If m is square-free (as when m is prime), every
solution to (1) is primitive, but this is not true in general (this is relevant to part (e)).

In this problem let N := n · 10100, where n is the last 4 digits of your student ID.

1Using the probabilistic root-finding algorithm described in Lecture 3 one can efficiently compute
square roots modulo p, and one can use this to compute square roots modulo 4p, or modulo any integer
whose prime factorization is known. But in general, the problem of computing square roots modulo m is
believed to be as hard as factoring m (for which no polynomial-time probabilistic algorithm is known).

2There is an obvious typo in step 3 of the algorithm given in [1], which is corrected above.

1

https://math.mit.edu/classes/18.783/2025/LectureNotes3.pdf
https://www.gradescope.com/courses/1109839
http://math.mit.edu/classes/18.783/2025/syllabus.html
http://math.mit.edu/classes/18.783/2025/lectures.html
https://math.mit.edu/classes/18.783/2025/LectureNotes3.pdf

(a) Implement this algorithm in Sage. Use mod(-d,m).is square() to test if −d
has a square root mod m, and use int(mod(-d,m).sqrt()) to get a square root.

(b) You may recall Fermat’s “Christmas theorem”, which states that an odd prime p is
the sum of two squares if and only if p ≡ 1 mod 4. You may also recall that −1 is a
square modulo an odd prime p if and only if p ≡ 1 mod 4.

Let n be the integer corresponding to the last 4 digits of your student ID. For the
least prime p > N congruent to 1 mod 4, write p as the sum of two squares.

(c) Fermat also proved that a prime p can be written in the form p = x2 + 3y2 if and
only if p ≡ 1 mod 3, which is equivalent to the condition that −3 is a square mod p.
For the least prime p > N congruent to 1 mod 3, write p in the form p = x2 + 3y2.

(d) Show that this does not work for d = 5 by finding a prime p for which −5 is a square
modulo p but p cannot be written in the form x2 + 5y2. Empirically determine a
stronger congruence condition on p that guarantees not only that −5 a square mod p,
but also that p can be written in the form x2+5y2. Then find the least prime p > N
that satisfies your condition and write p in the form p = x2 + 5y2.

(e) Let E be the elliptic curve y2 = x3 − 35x− 98 and let p ̸= 2, 7 be a prime. Like the
elliptic curves considered in Problem 5 of Problem Set 1, the elliptic curve E has
complex multiplication, and the integer ap = p + 1 −#E(Fp) is zero if and only if
−7 is not a square modulo p (you can take this as given, we will prove it later in
the course). When −7 is a square modulo p, the integer ap satisfies the equation
4p = a2p + 7y2, for some y ∈ Z (also take this as given, we will prove it later in the
course). Prove that this equation has a solution (ap, y) if and only if the equation
p = u2 + 7v2 has a solution (u, v), and that any such solution is unique up to signs.

Use Cornacchia’s algorithm to find a solution to p = u2 + 7v2 for the least prime
p > N for which −7 is a square modulo p, and use this to deduce the absolute value
of ap. Determine the sign of ap, by finding a random point P ∈ E(Fp) for which
exactly one of (p+ 1− ap)P and (p+ 1 + ap)P is zero.

(f) Let E be the elliptic curve y2 = x3 − 2818048320x + 57579881513616 and let p ̸=
2, 3, 163 be prime. The elliptic curve E has complex multiplication, the integer
ap = p+1−#E(Fp) is zero if and only if −163 is not a square modulo p, and when
−163 is a square modulo p, the integer ap satisfies the equation 4p = a2p+163y2, for
some y ∈ Z (take these facts as given).

Show that the equation p = a2p + 163y2 need not have a solution when 4 ∗ p =
u2 + 163v2 has a solution. Where does your proof in (e) break down when you
replace 7 with 163?

Use Cornacchia’s algorithm to find a solution to 4p = u2+163v2 for the least prime
p > N for which −163 is a square modulo p, and use this to deduce the absolute
value of ap. Determine the sign of ap, by finding a random point P ∈ E(Fp) for
which exactly one of (p+ 1− ap)P and (p+ 1 + ap)P is zero.

Problem 2. Computing rth roots in cyclic groups (33 points)

In Lecture 3 we saw how to compute rth roots in a finite field Fq using a probabilistic
root-finding algorithm. In this problem you will implement an entirely different approach

2

for computing rth roots that works in any finite cyclic group G, including G = F×
q . In

addition to being more general, this method is typically faster than using probabilistic
root-finding to compute rth roots in F×

q (but this depends on the values of r and q).
We assume without loss of generality that r is prime (to compute nth roots, suc-

cessively compute rth roots for the primes r dividing n, with multiplicity). To simplify
notation we write G additively, so an rth root of γ ∈ G is an element ρ ∈ G for which
rρ = γ. Let |γ| denote the order of γ, the least positive integer m for which mγ = 0.

Prove the following statements:

(a) For all γ ∈ G and n ∈ Z we have |nγ| = |γ|/ gcd(n, |γ|).

(b) If r does not divide |G|, then there is an integer s such that for all γ ∈ G the element
ρ = sγ is the unique rth root of γ.

(c) If r does divide |G|, then the number of rth roots of each γ ∈ G is either 0 or r. In
the latter case, the rth roots of γ do not necessarily lie in ⟨γ⟩ (give an example).

(d) Suppose r divides |G|. Let |G| = ark, where r ∤ a. Let δ ∈ G be an element of
order rk, let γ be any element of G, and let α = aγ and β = rkγ.

(i) α = xδ for some integer x ∈ [1, rk].

(ii) If r does not divide x then there is no ρ ∈ G for which rρ = γ.

(iii) If r divides x, and s and t are integers satisfying sa + trk+1 = 1, then the
element ρ = s(x/r)δ + tβ satisfies rρ = γ.

The element δ is a generator for the r-Sylow subgroup of G. If G = ⟨σ⟩, we can use
δ = aσ. The integer x is the discrete logarithm of α with respect to δ.

Implement the following algorithm for computing an rth root of γ in a cyclic
group G of order ark, where r is a prime that does not divide a, given δ ∈ G of order rk:

1. If k = 0 then compute s = 1/r mod a and return ρ = sγ.

2. Compute α = aγ and β = rkγ.

3. Compute the discrete logarithm x of α with respect to δ by brute force: check
whether α = xδ for each x from 1 to rk (this holds for some x, by part (i) of (d)).3

4. If r does not divide x then return null.

5. Compute s and t such that sa+ trk+1 = 1 using the extended Euclidean algorithm.

6. Return ρ = s(x/r)δ + tβ.

The return value null is used to indicate that γ does not have any rth roots in G. To
compute s = 1/r mod a in Sage, use: s=1/mod(r,a). To compute s and t such that
sa+ trk+1 = 1, use: d,s,t=xgcd(a,r**(k+1)) (here d = gcd(a, rk+1) is 1).

The Python language used by Sage is untyped, so your algorithm can be used to
compute rth roots in any cyclic group that Sage knows how to represent; it will auto-
matically perform operations in whatever group the inputs δ and γ happen to lie in. To
test your algorithm, you may find it useful to work in the additive group of the ring

3We will learn much better ways to compute this discrete logarithm later in the course. For the
moment, assume rk is small (for finite fields Fq, this is usually the case, even when q is very large).

3

Z/nZ, where n = ark, which you can create in Sage using Zn=Integers(n). You can
then use delta=Zn(a) to create an element of Z/nZ with additive order rk.

Let E be the elliptic curve y2 = x3+31415926x+27182818 over Fp with p = 2255−19.
The group E(Fp) is cyclic, of order n = 2 · 3 · 31 ·m, where

m = 311269057089559665117126303786795451217418463436862985689835777395934466489,

and the point P = (x0 : y0 : 1), where x0 = 99 and

y0 = 3646051633135286488902046129458077014725501801396015176760137375427748642285,

is a generator for E(Fp). Thus for r = 2, 3, 31 you can use δ = (n/r)P as a generator of
the r-Sylow subgroup (which in each case has order r).

Let c be the least prime greater than the integer formed by the last four digits of
your student ID. Let Q = (x1 : y1 : 1), where

x1 = 43125933575059134974422288266359854378815207690220011740187158431378585841262,

y1 = 30438392960540783858586956956150489842875282144799753811252714114065692010946

(e) Use your algorithm to find an rth root R of γ = cQ, for r = 2, 3, 31. Note that you
can easily check your result by testing whether r*R==c*Q holds using Sage (please
be sure to do this). In your answer you only need to list the point R for each value
of r, you don’t need to include your code. Be sure to format your answer so that
the coordinates of R all fit on the page.

Problem 3. Exponentiating with addition chains (33 points)

An addition chain for a positive integer n is an increasing sequence of integers (c0, . . . , cm)
with c0 = 1 and cm = n such that each entry other than c0 is the sum of two (not
necessarily distinct) preceding entries. The length of an addition chain is the index m
of the last entry. When computing an with a generic algorithm, the exponents k of the
powers ak computed by the algorithm define an addition chain whose length is the number
of multiplications performed. For example, using left-to-right binary exponentiation
to compute a47 yields the addition chain (1, 2, 4, 5, 10, 11, 22, 23, 46, 47), and right-to-
left binary exponentiation yields the addition chain (1, 2, 3, 4, 7, 8, 15, 16, 32, 47), both of
which have length 9.

(a) For n = 715, determine the addition chains given by: (i) left-to-right binary, (ii)
right-to-left binary, (iii) fixed-window, and (iv) sliding-window exponentiation, using
a window of size 2 for (iii) and (iv).

(b) Find an addition chain for n = 715 that is shorter than any you found in part (a).

(c) Repeat part (a) for the integer N obtained by adding 990,000 to the last 4 digits of
your student ID, using a window of size 3 for the fixed and sliding window cases.

(d) Find the shortest addition chain for N that you can. There is a good chance you
can do better than any of the chains you found in part (c).

In groups where inversions are cheap (such as the group of points on an elliptic curve),
it is advantageous to use signed binary representations of exponents, where we write the

4

exponent n in the form n =
∑

ni2
i with ni ∈ {−1, 0, 1}. Such a representation is

generally not unique, but there is a unique signed representation with the property that
no two adjacent digits are both nonzero. This is known as non-adjacent form (NAF).
The NAF representation of 47, for example, is 101̄0001̄, where 1̄ denotes −1.

To construct the NAF representation one begins by writing n in binary with a lead-
ing 0, and then successively replaces the least significant block of the form 01 · · · 1 with
10 · · · 01̄ until there are no adjacent nonzero digits. For example, the computation for 47
proceeds as 0101111, 110001̄, 101̄0001̄, which reduces the number of nonzero digits from
5 to 3. Even though the length is increased by 1, the total cost of exponentiation may
be reduced.

An addition-subtraction chain extends the definition of an addition chain by allow-
ing ck = ci ± cj . Exponentiation using the NAF representation defines an addition-
subtraction chain. For example, using left-to-right binary exponentiation, the NAF
representation of 47 yields the chain (1, 2, 4, 3, 6, 12, 24, 48, 47), which is shorter than
the addition chain (1, 2, 4, 5, 10, 11, 22, 23, 46, 47) given by standard left-to-right binary
exponentiation.

(e) Compute addition-subtraction chains for n = 715 and the integer N defined in part
(c) using left-to-right binary exponentiation with the NAF representation.

(f) Find the shortest addition-subtraction chains for n and N that you can.

Problem 4. Root-finding over Z (66 points)

In this problem you will develop an algorithm to find integer roots of polynomials in
Z[x] using a p-adic version of Newton’s method (also known as Hensel lifting). As an
application, this gives us an efficient way to factor perfect powers (a special case that we
will need to handle when we come to the elliptic curve factorization method), and it will
be used as a black box in a later problem set to find integer roots of division polynomials.

In the questions below, p can be any integer greater than 1, but you may assume it
is a prime power if you wish.

(a) Let x0 ∈ Z and f ∈ Z[x]. Prove that the following equivalence holds in Z[x]:

f(x) ≡ f(x0) + f ′(x0)(x− x0) mod (x− x0)
2.

(b) Let x0, z0 ∈ Z and f ∈ Z[x] satisfy f(x0) ≡ 0 mod p and f ′(x0)z0 ≡ 1 mod p. Let

x1 ≡ x0 − f(x0)z0 mod p2,

z1 ≡ 2z0 − f ′(x1)z
2
0 mod p2.

Prove that the following three equivalences hold:

x1 ≡ x0 mod p, (i)

f(x1) ≡ 0 mod p2, (ii)

f ′(x1)z1 ≡ 1 mod p2. (iii)

Show that (i) and (ii) characterize x1 mod p2 uniquely by proving that if x2 ∈ Z
also satisfies x2 ≡ x0 mod p and f(x2) ≡ 0 mod p2, then x1 ≡ x2 mod p2.

5

Iteratively applying (b) yields an algorithm that, given an integer k and x0, z0, and f

satisfying the hypothesis (b), outputs an integer xk that satisfies f(xk) ≡ 0 mod p2
k
.

(c) Prove that if f has an integer root r for which f ′(r) is invertible modulo p, then

given x0 ≡ r mod p, z0 ≡ 1/f ′(x0) mod p, and k such that |r| < p2
k
/2, this algorithm

outputs xk such that r is the unique integer r ≡ xk mod p2
k
satisfying |r| < p2

k
/2.

To apply the result in (c), we need to know a suitable starting value (or values) for x0.
For the two applications we have in mind, this will be straightforward, so let us proceed
on the assumption that we are given a suitable x0 and z0 such that f ′(x0)z0 ≡ 1 mod p.

Let B be the maximum of the absolute values of the coefficients of f , and let B0 be
an upper bound on the absolute value of its largest integer root. It suffices to choose
the least k such that p2

k
> 2B0, and since any integer root of f must divide its constant

coefficient, we can assume that B0 ≤ B. We can also assume p < 2B0, since otherwise
the problem is trivial (k = 0 and xk = x0).

(d) Prove that with this choice of k the algorithm can be implemented to run in time
O(d M(logB)), where d is the degree of f (be careful here, the most obvious imple-
mentation will not achieve this time bound). Prove that if f has O(1) terms, then
the algorithm can be implemented to run in time O(M(logB) +M(logB0) log d).

(e) Using the primes p = 2 and p = 3, describe an efficient algorithm that, given an
integer N relatively prime to 6, either outputs an integer a and a prime q such that
aq = N , or proves that N is not a perfect power. Prove that your algorithm runs in
quasi-quadratic time (meaning O(n2(log n)c) for some constant c, where n = logN).

(f) Implement your algorithm and report the result and running time on the following
inputs: 21000 + 297, 5503, (2500 + 55)2, (2333 + 285)3, (232 + 15)31, 500!/(24943247).
To time your code in SageMath, use the timeit function (e.g. timeit("1+1")),
or in a CoCalc Jupyter notebook, use the %timeit line magic.

(g) Prove that the algorithm you gave in (e) can be implemented to run in sub-quadratic
time (meaning o(n2) where n = logN). You may need to modify your algorithm
slightly in order to achieve this.4

Problem 5. Survey (1 point)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10
= “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also
estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

4In fact, this problem can be solved in quasi-linear time, see [2].

6

https://share.cocalc.com/share/8b892baf91f98d0cf6172b872c8ad6694d0f7204/PythonDataScienceHandbook/notebooks/01.07-Timing-and-Profiling.ipynb

Feel free to record any additional comments you have on the problem sets or lectures,
and in particular, ways in which you think they could be improved.

Collaborators/sources:

References

[1] Julius Magalona Basilla, On the solution of x2 + dy2 = m, Proc. Japan Acad. Ser. A
Math Sci. 80 (2004), 40–41.

[2] D. J. Bernstein, Detecting perfect powers in essentially linear time, Math. Comp. 67
(1998), 1252–1283.

7

https://projecteuclid.org/euclid.pja/1116442240
https://www.ams.org/journals/mcom/1998-67-223/S0025-5718-98-00952-1/

