18.783 Elliptic Curves
Lecture 9

Andrew Sutherland

October 2, 2025

The discrete logarithm problem
Definition
Let G be a finite group. For a € G and 3 € (&) we define
log, f:=min{z € Z>; : o = §}.

The discrete logarithm problem (DLP) is to compute log,, 8 given «, 8 € («).
More generally, we can ask, given «, f € G, compute log,, § or determine 3 €& ().

DLP-based cryptography relies on the assumption that this is a hard problem.

Example

In G = F;55; we have logg 37 = 24 since 3?4 = 37 mod 101.
In G = F{; we have logs 37 = 46 since 46 - 3 = 37 mod 101.

One of these problems can be solved in quasilinear time!
The other one can be solved in subexponential (in some cases quasipolynomial) time!

Some generalizations

Definition
For o, 8 € GG we define

ordy B :=min{y € Z>1 : ¥ € (o) }.

The extended discrete logarithm problem is to compute the pair (z,y) where
x = log, BY and y = ord,, 3, given o, B € G.

Definition
Given a1,...,a, € G and ny,...,n, € Z such that every 8 € G has a unique

representation as
B=al oy (1<e <ng),

the vector discrete logarithm problem is to compute (e, ...,e,) for a given 5 € G.

The discrete logarithm problem in a cyclic group

We will focus on the original DLP, with 5 € (a). WLOG we may assume G = (o).

Let N = #G be the order of the cyclic group G. We have an isomorphism

G = Z/NZ
B — log, B
a® «—zx

The Euclidean algorithm solves the DLP in Z/NZ in quasilinear time.

DLP-based cryptography is based on the assumption that there is no way to compute
the isomorphism G ~ Z/NZ without solving the DLP in G (note that the Euclidean
algorithm does not work in the additive group Z/NZ, it uses ring operations in Z).

To analyze the difficulty of the DLP in general (and the efficiency of solutions),
we will use a computational model that forces algorithms to work entirely in G.

Generic group algorithms

Definition
A generic group algorithm (or just a generic algorithm) is one that interacts with an
abstract group G solely through a black box (sometimes called an oracle).

Group elements are opaquely encoded as bit-strings via a map id: G — {0,1}" chosen
by the black box. The black box supports the following operations.

identity: output id(1¢g).

inverse: given input id(a), output id(a™1).

compose: given inputs id(«) and id(53), output id(a/3).

random: output id(«) for a uniformly distributed random element o € G.

In the description above we used multiplicative notation; in additive notation the
outputs would be id(0¢g), id(—«), id(a + 3), respectively.

Generic algorithms for DLP

Example (Linear search)

Compute a, 2a, 3a, ..., xa = 3. This uses O(IN) group operations.

Example (Baby-steps giant-steps)
Pick r,s € Z>1 with 7s > N and compute
baby-steps : 0, o, 2¢, . .. ,ic, ... (r — 1),
giant-steps : 5,5 —ra, 8 — 2ra, ..., — jra,...0 — (s — D)ra.
A collision between the ith baby-step and the jth giant-step yields the relation
o= 0 — jra
with0<i<rand 0<j<s. Ifi=35=0thenlog, =N, else log, 5 =i+ jr.
For r ~ s this uses O(v/N) group operations.

The Pohlig-Hellman algorithm
Suppose N = NNy with Ny L. No. Then Z/NZ ~ 7 /N1Z & Z/N2Z and we have

x + (z mod Ny, z mod Nj)
(Myz1 + Msxs) mod N < (x1,x2)

where
1 mod Ny,
0 mod N,

0 mod Ny,
1 mod Ns.

M; = No(Ny ' mod Ny) = {

My = Ni(N; ! mod Ny) = {

Note that computing M7 and M5 involves no group operations.
It thus costs nothing in our computational model which only counts group operations,
but its bit complexity is quasilinear in any case (so it is indeed negligible).

The Pohlig-Hellman algorithm

Let N = N1 Ny with N7 L Ny, define My, My as above, and let
1 := ¢ mod N; and 9 := x mod Na,
so that x = Myzy + Maxs, and B = (Mix; + Maxa)a. We then have
Nof = Myix1Noax + MoxoNocr.
The order of Noav is Ny (since N1 L Nj), and M; =1 mod Ny, My = 0 mod N; yield
Nofs = 1 Nsau.

We similarly find that N1 = x2 Ny, and therefore

x1 = logn,o N2f3, x2 = logn, o N1B.

If we know x1 and x5 then we can compute z = (Mjz1 + Maxe) mod N.

The Pohlig-Hellman algorithm

Applying N = N1 Ny with N1 L N recursively reduces to the case where N = p°
is a prime power using O(nlogn) group operations, where n = log N.

Let g = [e/2], e1 = |e/2], and write z = log,, 8 as © = o + p“°z1, where we have
0<zog<pand <z <p. Then

B = (zo+ p“z1)
PB = xop“a+ x1pa

zo = log,er o, ™' B
We also have 8 — xpa = p®x1«, and therefore
21 = 1000 (8 — 200).

If N is not prime, this again reduces the computation of log,, 5 to the computation of
two smaller discrete logarithms (of roughly equal size) using O(n) group operations.

The Pohlig-Hellman algorithm

If we use the baby-steps giant-steps algorithm to solve the prime order cases we obtain
a total complexity of

O(nlogn + Z ei\/ﬁi)

group operations, where N = p{'---pS" and n = log N.

If p is the largest prime factor of N this simplifies to
O(n logn + n\/f))

group operations. If p = O(n*) for some k, this is a polynomial-time generic algorithm.

The Pollard-rho algorithm

Let us view G = () as the vertex set V' of a connected graph I' with edges
eij = (7i,7;) labeled by d;; = v; — i so that ; + d;; = 7; (this is the Cayley graph).

If we can write each J;; as a linear combination of v and 3 then any cycle in this graph
gives a linear relation between « and 3 that we can use to compute log, 3 (provided
the coefficients of this relation are invertible modulo N).

Consider a random walk in I' starting at vg € V defined by a function f: V — V:

v1 = f(vo)
vy = f(v1)
v3 = f(v2)

Eventually we will repeat a vertex v, = v\ with p > X and then enter an infinite cycle.

The Pollard-rho algorithm

Theorem

Let V' be a finite set. For any vy € V, the expected value of p for a walk from vg
defined by a random function f: V — V is

Elp] ~/7N/2,

as #V = N — co. We also have E[\] = E[o] = 1 E[p] = /7N/8, where 0 = p — \.

The Pollard-rho algorithm
Fix r = 20. Let h: G — {1,...,r} be a random function (a hash function), pick r
random pairs (¢;,d;) € Z/NZ x Z/NZ, define ¢; := c;a + d; 3, and define

fiZ/NZ xZ/NZ x G — Z/NZ x ZL/NZ x G
(a,b,v) = (a+ci,b+di, v+ 0;) (where i = h(y)).

In practice we don't pick h at random, we could use id(y) mod 7, for example.

We can now use f to define an r-adding walk, starting from some vy = aga + bo3
with ag, by € Z/NZ chosen at random.

Note that if (aj+1,bj+1,7j+1) = f(aj,b;,7;), the value of ;41 depends only on 7;,
not on a; or bj, so this defines a random walk on V.

The Pollard-rho algorithm

Algorithm (Pollard-p)

Given a, N = |a], B € (a) , compute log, § as follows:

1.

Compute §; = ¢;ae + d; 8 for r =~ 20 randomly chosen pairs ¢;,d; € Z/NZ.

2. Compute 79 = aga + bo3 for randomly chosen ag, by € Z/NZ.
3.
4. i, =y, implies ajo + b8 = aro + by 5. Provided that by, — b; is invertible in

Compute (aj,bj,v;) = f(aj—1,bj—1,7j-1) for j > 1 until v, = v; with k > j.

Z/NZ, we return log,, 3 = Zi:zlf € Z/NZ; otherwise start over at step 1.
ol

This algorithm terminates with probability 1 and its output is always correct. It is a
Las Vegas algorithm with expected running time O(v/ N).

As written it uses O(v V) space, because we have to store all the ; to detect v = ;.

Floyd’s cycle detection method (aka the tortoise and the hare)
We now modify Step 3 of the algorithm to compute

(aj,b5,7) = flaj—1,bj-1,7j-1)
(ak, br, vi) = f(f(ar—1,br—1,7%-1))-

The triple (a;, bj,;) is the tortoise, and the triple (ay, bk, vx) is the hare.

Once the tortoise enters the cycle, the hare (already in the cycle) will collide with the
tortoise within o = p — A iterations.

The expected number of iterations is E[A + 0 /2] = 3/4 E|[p|, but each iteration uses 3
group operations, making the algorithm slower by a factor of 9/4. Still, this achieves a
time complexity of O(v/N) group operations while storing just O(1) group elements.

The 9/4 can be reduced to 1 + o(1) using distinguished points (see notes for details).

A generic lower bound

Theorem (Shoup 1997)

Let G = («) be a group of order N. Let B be a black box for G using a random
identification map id: G — {0,1}™. Let A: {0,1}" x {0,1}™ — Z/NZ be a
randomized generic group algorithm that makes at most s — 4[lg N'| calls to B, for
some integer s, and let x denote a random element of Z/NZ. Then

82

z?J:T[A(id(a), idlza)) = 2] < %’

where T denotes random coin-flips made by A and p is the largest prime factor of N.

Corollary

Let G be a cyclic group of prime order N. Every generic Las Vegas algorithm for the
discrete logarithm problem in G uses an expected (/N group operations.

