
18.783 Elliptic Curves
Lecture 9

Andrew Sutherland

October 2, 2025

The discrete logarithm problem
Definition
Let G be a finite group. For α ∈ G and β ∈ ⟨α⟩ we define

logα β := min{x ∈ Z≥1 : αx = β}.

The discrete logarithm problem (DLP) is to compute logα β given α, β ∈ ⟨α⟩.
More generally, we can ask, given α, β ∈ G, compute logα β or determine β ̸∈ ⟨α⟩.

DLP-based cryptography relies on the assumption that this is a hard problem.

Example
In G = F×

101 we have log3 37 = 24 since 324 ≡ 37 mod 101.
In G = F+

101 we have log3 37 = 46 since 46 · 3 ≡ 37 mod 101.

One of these problems can be solved in quasilinear time!
The other one can be solved in subexponential (in some cases quasipolynomial) time!

Some generalizations

Definition
For α, β ∈ G we define

ordα β := min{y ∈ Z≥1 : βy ∈ ⟨α⟩}.

The extended discrete logarithm problem is to compute the pair (x, y) where
x = logα βy and y = ordα β, given α, β ∈ G.

Definition
Given α1, . . . , αr ∈ G and n1, . . . , nr ∈ Z such that every β ∈ G has a unique
representation as

β = αe1
1 · · ·α

er
r (1 ≤ ei ≤ ni),

the vector discrete logarithm problem is to compute (e1, . . . , er) for a given β ∈ G.

The discrete logarithm problem in a cyclic group
We will focus on the original DLP, with β ∈ ⟨α⟩. WLOG we may assume G = ⟨α⟩.

Let N = #G be the order of the cyclic group G. We have an isomorphism

G
∼−→ Z/NZ

β → logα β

αx ← x

The Euclidean algorithm solves the DLP in Z/NZ in quasilinear time.

DLP-based cryptography is based on the assumption that there is no way to compute
the isomorphism G ≃ Z/NZ without solving the DLP in G (note that the Euclidean
algorithm does not work in the additive group Z/NZ, it uses ring operations in Z).

To analyze the difficulty of the DLP in general (and the efficiency of solutions),
we will use a computational model that forces algorithms to work entirely in G.

Generic group algorithms

Definition
A generic group algorithm (or just a generic algorithm) is one that interacts with an
abstract group G solely through a black box (sometimes called an oracle).

Group elements are opaquely encoded as bit-strings via a map id : G→ {0, 1}m chosen
by the black box. The black box supports the following operations.

• identity: output id(1G).
• inverse: given input id(α), output id(α−1).
• compose: given inputs id(α) and id(β), output id(αβ).
• random: output id(α) for a uniformly distributed random element α ∈ G.

In the description above we used multiplicative notation; in additive notation the
outputs would be id(0G), id(−α), id(α + β), respectively.

Generic algorithms for DLP
Example (Linear search)

Compute α, 2α, 3α, . . . , xα = β. This uses O(N) group operations.

Example (Baby-steps giant-steps)

Pick r, s ∈ Z≥1 with rs > N and compute

baby-steps : 0, α, 2α, . . . , iα, . . . (r − 1)α,

giant-steps : β, β − rα, β − 2rα, . . . , β − jrα, . . . β − (s− 1)rα.

A collision between the ith baby-step and the jth giant-step yields the relation

iα = β − jrα

with 0 ≤ i < r and 0 ≤ j < s. If i = j = 0 then logα β = N , else logα β = i + jr.

For r ≈ s this uses O(
√

N) group operations.

The Pohlig-Hellman algorithm

Suppose N = N1N2 with N1 ⊥ N2. Then Z/NZ ≃ Z/N1Z⊕ Z/N2Z and we have

x 7→ (x mod N1, x mod N2)
(M1x1 + M2x2) mod N ← (x1, x2)

where

M1 = N2(N−1
2 mod N1) ≡

{
1 mod N1,

0 mod N2,

M2 = N1(N−1
1 mod N2) ≡

{
0 mod N1,

1 mod N2.

Note that computing M1 and M2 involves no group operations.
It thus costs nothing in our computational model which only counts group operations,
but its bit complexity is quasilinear in any case (so it is indeed negligible).

The Pohlig-Hellman algorithm
Let N = N1N2 with N1 ⊥ N2, define M1, M2 as above, and let

x1 := x mod N1 and x2 := x mod N2,

so that x = M1x1 + M2x2, and β = (M1x1 + M2x2)α. We then have

N2β = M1x1N2α + M2x2N2α.

The order of N2α is N1 (since N1 ⊥ N2), and M1 ≡ 1 mod N1, M2 ≡ 0 mod N1 yield

N2β = x1N2α.

We similarly find that N1β = x2N1α, and therefore

x1 = logN2α N2β, x2 = logN1α N1β.

If we know x1 and x2 then we can compute x = (M1x1 + M2x2) mod N .

The Pohlig-Hellman algorithm
Applying N = N1N2 with N1 ⊥ N2 recursively reduces to the case where N = pe

is a prime power using O(n log n) group operations, where n = log N .

Let e0 = ⌈e/2⌉, e1 = ⌊e/2⌋, and write x = logα β as x = x0 + pe0x1, where we have
0 ≤ x0 < pe0 and 0 ≤ x1 < pe1 . Then

β = (x0 + pe0x1)α
pe1β = x0pe1α + x1peα

x0 = logpe1 α pe1β.

We also have β − x0α = pe0x1α, and therefore

x1 = logpe0 α(β − x0α).

If N is not prime, this again reduces the computation of logα β to the computation of
two smaller discrete logarithms (of roughly equal size) using O(n) group operations.

The Pohlig-Hellman algorithm

If we use the baby-steps giant-steps algorithm to solve the prime order cases we obtain
a total complexity of

O
(
n log n +

∑
ei
√

pi

)
group operations, where N = pe1

1 · · · per
r and n = log N .

If p is the largest prime factor of N this simplifies to

O
(
n log n + n

√
p
)

group operations. If p = O(nk) for some k, this is a polynomial-time generic algorithm.

The Pollard-rho algorithm
Let us view G = ⟨α⟩ as the vertex set V of a connected graph Γ with edges
eij = (γi, γj) labeled by δij = γj − γi so that γi + δij = γj (this is the Cayley graph).

If we can write each δij as a linear combination of α and β then any cycle in this graph
gives a linear relation between α and β that we can use to compute logα β (provided
the coefficients of this relation are invertible modulo N).

Consider a random walk in Γ starting at v0 ∈ V defined by a function f : V → V :

v1 = f(v0)
v2 = f(v1)
v3 = f(v2)

...

Eventually we will repeat a vertex vρ = vλ with ρ > λ and then enter an infinite cycle.

The Pollard-rho algorithm

Theorem
Let V be a finite set. For any v0 ∈ V , the expected value of ρ for a walk from v0
defined by a random function f : V → V is

E[ρ] ∼
√

πN/2,

as #V = N →∞. We also have E[λ] = E[σ] = 1
2 E[ρ] =

√
πN/8, where σ = ρ− λ.

The Pollard-rho algorithm

Fix r ≈ 20. Let h : G→ {1, . . . , r} be a random function (a hash function), pick r
random pairs (ci, di) ∈ Z/NZ× Z/NZ, define δi := ciα + diβ, and define

f : Z/NZ× Z/NZ×G −→ Z/NZ× Z/NZ×G

(a, b, γ) 7→ (a + ci, b + di, γ + δi) (where i = h(γ)).

In practice we don’t pick h at random, we could use id(γ) mod r, for example.

We can now use f to define an r-adding walk, starting from some γ0 = a0α + b0β
with a0, b0 ∈ Z/NZ chosen at random.

Note that if (aj+1, bj+1, γj+1) = f(aj , bj , γj), the value of γj+1 depends only on γj ,
not on aj or bj , so this defines a random walk on V .

The Pollard-rho algorithm

Algorithm (Pollard-ρ)

Given α, N = |α|, β ∈ ⟨α⟩ , compute logα β as follows:
1. Compute δi = ciα + diβ for r ≈ 20 randomly chosen pairs ci, di ∈ Z/NZ.
2. Compute γ0 = a0α + b0β for randomly chosen a0, b0 ∈ Z/NZ.
3. Compute (aj , bj , γj) = f(aj−1, bj−1, γj−1) for j ≥ 1 until γk = γj with k > j.
4. γk = γj implies ajα + bjβ = akα + bkβ. Provided that bk − bj is invertible in

Z/NZ, we return logα β = aj−ak

bk−bj
∈ Z/NZ; otherwise start over at step 1.

This algorithm terminates with probability 1 and its output is always correct. It is a
Las Vegas algorithm with expected running time O(

√
N).

As written it uses O(
√

N) space, because we have to store all the γj to detect γk = γj .

Floyd’s cycle detection method (aka the tortoise and the hare)

We now modify Step 3 of the algorithm to compute

(aj , bj , γj) = f(aj−1, bj−1, γj−1)
(ak, bk, γk) = f(f(ak−1, bk−1, γk−1)).

The triple (aj , bj , γj) is the tortoise, and the triple (ak, bk, γk) is the hare.

Once the tortoise enters the cycle, the hare (already in the cycle) will collide with the
tortoise within σ = ρ− λ iterations.

The expected number of iterations is E[λ + σ/2] = 3/4 E[ρ], but each iteration uses 3
group operations, making the algorithm slower by a factor of 9/4. Still, this achieves a
time complexity of O(

√
N) group operations while storing just O(1) group elements.

The 9/4 can be reduced to 1 + o(1) using distinguished points (see notes for details).

A generic lower bound
Theorem (Shoup 1997)

Let G = ⟨α⟩ be a group of order N . Let B be a black box for G using a random
identification map id : G ↪→ {0, 1}m. Let A : {0, 1}m × {0, 1}m → Z/NZ be a
randomized generic group algorithm that makes at most s− 4⌈lg N⌉ calls to B, for
some integer s, and let x denote a random element of Z/NZ. Then

Pr
x,id,τ

[A(id(α), id(xα)) = x] <
s2

2p
,

where τ denotes random coin-flips made by A and p is the largest prime factor of N .

Corollary
Let G be a cyclic group of prime order N . Every generic Las Vegas algorithm for the
discrete logarithm problem in G uses an expected Ω(

√
N) group operations.

