18.783 Elliptic Curves
Lecture 8

Andrew Sutherland

September 30, 2025



Schoof’s algorithm

In 1985 René Schoof introduced a polynomial-time algorithm for computing #E(F,).
Schoof’s strategy is to compute the trace of Frobenius modulo many small primes ¢.

Algorithm
Given an elliptic curve E over a finite field IF, compute #E(IF,;) as follows:

1. Initialize M < 1 and t + 0.
2. While M < 4,/q, for increasing primes £ = 2, 3,5, ... that do not divide ¢:

2.1 Compute t;, = tr 7w mod 4.
2.2 Sett (M(M*1 mod £)t; + £(£~! mod M)t) mod ¢M and then M + (M.

3. Ift > M/2 then set t <t — M.
4. Output ¢+ 1 —¢.

Step 2.2 uses an iterative CRT approach to ensure that ¢ = tr 7y mod M always holds.
Hasse's theorem implies t = tr g after Step 3, so that #E(F,;) = ¢+ 1 —t in Step 4.



Preliminary complexity analysis

Let {ax be the largest prime £ for which the algorithm computes t,.
The Prime Number Theorem (or even just Chebyshev's theorem) implies that

Z logl ~ x

primes (<x

as x — 00, and therefore
1
Lax ~ 10g4\/§ ~ 5” =0 (n) )

where n = log ¢, so we need O( primes /.

logn>

The cost of Step 2.2 is bounded by O(M(n)logn), thus if we can compute ¢, in Step
2.1 in time bounded by a polynomial in n and ¢, we have a polynomial-time algorithm.

If f(n) is the cost of Step 2.1, the total complexity is O(nM(n) + nf(n)/logn).



Computing ¢,
Assuming ¢ is odd (which we do), t = ¢ + 1 — #E(FF,) is divisible by 2 if and only if
#E(F,) is divisible by 2, equivalently, if and only if E(F,) contains a point of order 2.

If E has Weierstrass equation y?> = f(z), then the points of order 2 in E(F,) are
precisely those of the form (x¢, 0), where zy € F is a root of f(x).

We can thus compute t3 := tr 7 mod 2 as

1 otherwise.

ty— {O if deg(gcd(f(x),xq _ :c)) >0,

This is a deterministic computation (we need randomness to efficiently find the roots
of f, but we can efficiently count them deterministically). It takes O(nM(n)) time.



The characteristic polynomial of the Frobenius endomorphism
The Frobenius endomorphism 7g € End(FE) satisfies its characteristic equation
7@3 —trg+q=0,
with t = trm and ¢ = deg 7. Restricting to the (-torsion subgroup F [¢] yields
7r§ —tymp + qp = 0, (1)

which we view as an identity in End(E[¢]). Here t; = ¢t mod ¢ and ¢ = g mod ¢
correspond to restrictions of the scalar multiplication endomorphisms [t], [¢] € End(E).

But we can also compute gy as
q=qe [Ue=[]e+ -+ [l

using double-and-add, provided that we know how to explicitly compute in End(E[/]).



Computing the trace of Frobenius modulo /

Our strategy to compute ty is simple: for c=0,1,...,£ — 1 compute
2
Ty — CTy + qp
and check whether it is equal to 0 (as an element of End(E[/])).

The following lemma shows that whenever this occurs we must have ¢ = ;.

Lemma

Let E/F, be an elliptic curve with Frobenius endomorphism , let { be a prime not
dividing q, and let P € E[{] be nonzero. Suppose that for some integer ¢ the equation

77 (P) — cm(P) + qo(P) = 0

holds. Then ¢ =ty = tr ™ mod /.



Arithmetic in End(E[(]) for odd primes /¢

Let h = 1y(x) be the fth division polynomial of E: 3% = f(z) = 2> + Az + B,
whose roots are the z-coordinates of the nonzero elements of E[¢]. To represent
elements of End(FE[¢]) as rational maps, we work in the ring

Fylz,y) /(h(z),y* — f(x)).
We have
7 = (29 mod h(z), y* mod (h(z),y* — f(x)))
= (27 mod h(x), (f(2)/2 mod h(x))y),
[1]¢ = (2 mod h(z), (1 mod h(z))y).

We shall represent elements of End(E[¢]) in the form (a(x),b(z)y), where
a,b € Fylz]/(h(z)) are uniquely represented as polynomials in Fy[z] reduced modulo h.



Multiplication in End(E[(])

Given endomorphisms aq, e € End(E[¢]) represented as

ar = (a1(x), bi(x)y),

az = (a2(z), b2(2)y),

their product a3 = ajag in End(E[/]) is the composition aig = a1 0 aig, which we may
explicitly compute as

az = (az(), bz(z)y)
= (a1(az(z)), bi(az())b2(x)y),

with as(x) and bs(z) uniquely represented by their reductions modulo h(z).



Addition in End(E/[(])
Given ay = (a1(x),b1(2)y), a2 = (az(x), b2(x)y), we want to compute a3 = ag + as.
For non-opposite affine points (z3,y3) = (z1,y1) + (2, y2) the group law on E tells us

2
T3 =m° — 1 — X9, y3 = m(z1 — x3) — Y1,

Y1zy2 if I 7é o,
m =

xT1—T2
3z2+A
2y1

if Tr1 = T2.

Plugging in z1 = a1(x), w2 = az(x), y1 = bi(z)y, y2 = ba(z)y, we obtain

(z,y) {my =r(z)y if 21 # @2,
mr,y) = 3a$2+A 3G$2+A ]
21b(1()x)y - 2bigz§f(x) y=r(z)y ifz =

Now m(z,)? = (r(z)y)? = r(x)?f(z), so a1 + as = az = (a3(x), b3(x)y) with

az =r*f —a; — as, b3 = (a1 —az) — by.



Dealing with zero divisors in F,[x]/(h)

If the denominator of r = /v is invertible in Fy[z]/(h(x)) we can write
r=wuv~ !t mod h and put az = (az(x),bs(x)y) in our desired form, with
as, bz € Fy[z]/(h(x)) uniquely represented as polynomials in F,[z]| reduced modulo h.

But this may not be possible! The ring Fy[z]/(h(x)) is not necessarily a field.

At first glance this might appear to be a problem, but in fact it can only help us.
If v is not invertible in Fy[z]/(h(z)) then ged(v, h) is a nontrivial factor of h
(because we must have degv < degh).

Our strategy in this situation is to replace h by g = ged(v, h) and compute ¢, by
working in the smaller ring F,[z]/(g(x)). This will speed things up!

The lemma implies that we can restrict our attention to the action of 7y on the subset
of points P € E[l] whose z-coordinates are roots of g(z).



Schoof’s algorithm for computing the trace of Frobenius modulo /

Algorithm

Given E : y% = f(z) over F, and an odd prime ¢, compute t; as follows:
1. Compute the ¢th division polynomial h = vy € Fy[z] for E.
2. Compute 7y = (29 mod h, (f9~1/2 mod h)y) and 77 = m; o 7.

3. Use scalar multiplication to compute g, = q/[1]s, and then compute 77 + g;.
(If a non-invertible denominator arises, update h and return to step 2).

4. Compute 0, my, 27y, 31y, . . ., cmp, until cmy = 7['% + qp.
(If a non-invertible denominator arises, update h and return to step 2).

5. Output t; = c.

An implementation of this algorithm can be found in this Sage worksheet.


https://cocalc.com/AndrewVSutherland/18.783Fall2025/SchoofsAlgorithm

A few final remarks

e Factors of h(x) necessarily arise when E admits a rational /-isogeny. Elkies’
optimization of Schoof's algorithm exploits this fact, allowing us to work with
polynomials of degree (£ — 1)/2 rather than (¢£2 —1)/2.

e Additional optimizations due to Atkin in the case where E does not admit a
rational {-isogeny lead to the Schoof-Elkies—Atkin (SEA) algorithm.

e For cryptographic-size primes the SEA algorithm takes a few seconds (or less).
The current SEA record is a 16,000-bit prime, far beyond the cryptographic range.

e Even Schoof’s original algorithm can handle cryptographic size primes, but this
was not widely recognized in the 1980s.

e Schoof’s algorithm can be used to deterministically compute square roots of a
fixed integer modulo a prime. This application was the motivation for Schoof’s
original paper.


https://www.jstor.org/stable/2007968

