18.783 Elliptic Curves Lecture 8

Andrew Sutherland

September 30, 2025

Schoof's algorithm

In 1985 René Schoof introduced a polynomial-time algorithm for computing $\#E(\mathbb{F}_q)$. Schoof's strategy is to compute the trace of Frobenius modulo many small primes ℓ .

Algorithm

Given an elliptic curve E over a finite field \mathbb{F}_q compute $\#E(\mathbb{F}_q)$ as follows:

- **1.** Initialize $M \leftarrow 1$ and $t \leftarrow 0$.
- 2. While $M \leq 4\sqrt{q}$, for increasing primes $\ell = 2, 3, 5, \ldots$ that do not divide q:
 - **2.1** Compute $t_{\ell} = \operatorname{tr} \pi \mod \ell$.
 - **2.2** Set $t \leftarrow \left(M(M^{-1} \bmod \ell)t_{\ell} + \ell(\ell^{-1} \bmod M)t\right) \bmod \ell M$ and then $M \leftarrow \ell M$.
- **3.** If t > M/2 then set $t \leftarrow t M$.
- **4.** Output q + 1 t.

Step 2.2 uses an iterative CRT approach to ensure that $t \equiv \operatorname{tr} \pi_E \mod M$ always holds. Hasse's theorem implies $t = \operatorname{tr} \pi_E$ after Step 3, so that $\#E(\mathbb{F}_q) = q+1-t$ in Step 4.

Preliminary complexity analysis

Let $\ell_{\rm max}$ be the largest prime ℓ for which the algorithm computes t_ℓ . The Prime Number Theorem (or even just Chebyshev's theorem) implies that

$$\sum_{\text{primes } \ell \leq x} \log \ell \sim x$$

as $x \to \infty$, and therefore

$$\ell_{\text{max}} \sim \log 4\sqrt{q} \sim \frac{1}{2}n = O(n),$$

where $n = \log q$, so we need $O(\frac{n}{\log n})$ primes ℓ .

The cost of Step 2.2 is bounded by $O(M(n) \log n)$, thus if we can compute t_{ℓ} in Step 2.1 in time bounded by a polynomial in n and ℓ , we have a polynomial-time algorithm.

If f(n) is the cost of Step 2.1, the total complexity is $O(n\mathsf{M}(n) + nf(n)/\log n)$.

Computing t_2

Assuming q is odd (which we do), $t=q+1-\#E(\mathbb{F}_q)$ is divisible by 2 if and only if $\#E(\mathbb{F}_q)$ is divisible by 2, equivalently, if and only if $E(\mathbb{F}_q)$ contains a point of order 2.

If E has Weierstrass equation $y^2=f(x)$, then the points of order 2 in $E(\mathbb{F}_q)$ are precisely those of the form $(x_0,0)$, where $x_0\in\mathbb{F}_q$ is a root of f(x).

We can thus compute $t_2 := \operatorname{tr} \pi_E \mod 2$ as

$$t_2 = \begin{cases} 0 & \text{if } \deg(\gcd(f(x), x^q - x)) > 0, \\ 1 & \text{otherwise.} \end{cases}$$

This is a deterministic computation (we need randomness to efficiently *find* the roots of f, but we can efficiently *count* them deterministically). It takes O(nM(n)) time.

The characteristic polynomial of the Frobenius endomorphism

The Frobenius endomorphism $\pi_E \in \operatorname{End}(E)$ satisfies its characteristic equation

$$\pi_E^2 - t\pi_E + q = 0,$$

with $t = \operatorname{tr} \pi$ and $q = \operatorname{deg} \pi$. Restricting to the ℓ -torsion subgroup $E[\ell]$ yields

$$\pi_{\ell}^2 - t_{\ell} \pi_{\ell} + q_{\ell} = 0, \tag{1}$$

which we view as an identity in $\operatorname{End}(E[\ell])$. Here $t_\ell \equiv t \bmod \ell$ and $q_\ell \equiv q \bmod \ell$ correspond to restrictions of the scalar multiplication endomorphisms $[t], [q] \in \operatorname{End}(E)$.

But we can also compute q_ℓ as

$$q_{\ell} = q_{\ell} \cdot [1]_{\ell} = [1]_{\ell} + \dots + [1]_{\ell}$$

using double-and-add, provided that we know how to explicitly compute in $\operatorname{End}(E[\ell]).$

Computing the trace of Frobenius modulo ℓ

Our strategy to compute t_ℓ is simple: for $c=0,1,\ldots,\ell-1$ compute

$$\pi_\ell^2 - c\pi_\ell + q_\ell$$

and check whether it is equal to 0 (as an element of $\operatorname{End}(E[\ell])$).

The following lemma shows that whenever this occurs we must have $c=t_{\ell}$.

Lemma

Let E/\mathbb{F}_q be an elliptic curve with Frobenius endomorphism π , let ℓ be a prime not dividing q, and let $P \in E[\ell]$ be nonzero. Suppose that for some integer c the equation

$$\pi_{\ell}^{2}(P) - c\pi_{\ell}(P) + q_{\ell}(P) = 0$$

holds. Then $c \equiv t_{\ell} = \operatorname{tr} \pi \mod \ell$.

Arithmetic in $\operatorname{End}(E[\ell])$ for odd primes ℓ

Let $h=\psi_\ell(x)$ be the ℓ th division polynomial of $E\colon y^2=f(x)=x^3+Ax+B$, whose roots are the x-coordinates of the nonzero elements of $E[\ell]$. To represent elements of $\operatorname{End}(E[\ell])$ as rational maps, we work in the ring

$$\mathbb{F}_q[x,y]/(h(x),y^2-f(x)).$$

We have

$$\pi_{\ell} = \left(x^q \bmod h(x), \ y^q \bmod (h(x), y^2 - f(x))\right)$$
$$= \left(x^q \bmod h(x), \ \left(f(x)^{(q-1)/2} \bmod h(x)\right)y\right),$$
$$[1]_{\ell} = \left(x \bmod h(x), \ (1 \bmod h(x))y\right).$$

We shall represent elements of $\operatorname{End}(E[\ell])$ in the form (a(x),b(x)y), where $a,b\in \mathbb{F}_q[x]/(h(x))$ are uniquely represented as polynomials in $\mathbb{F}_q[x]$ reduced modulo h.

Multiplication in $\operatorname{End}(E[\ell])$

Given endomorphisms $\alpha_1, \alpha_2 \in \operatorname{End}(E[\ell])$ represented as

$$\alpha_1 = (a_1(x), b_1(x)y),$$

$$\alpha_2 = (a_2(x), b_2(x)y),$$

their product $\alpha_3 = \alpha_1 \alpha_2$ in $\operatorname{End}(E[\ell])$ is the composition $\alpha_3 = \alpha_1 \circ \alpha_2$, which we may explicitly compute as

$$\alpha_3 = (a_3(x), b_3(x)y)$$

= $(a_1(a_2(x)), b_1(a_2(x))b_2(x)y),$

with $a_3(x)$ and $b_3(x)$ uniquely represented by their reductions modulo h(x).

Addition in $\operatorname{End}(E[\ell])$

Given $\alpha_1 = (a_1(x), b_1(x)y)$, $\alpha_2 = (a_2(x), b_2(x)y)$, we want to compute $\alpha_3 = \alpha_1 + \alpha_2$. For non-opposite affine points $(x_3, y_3) = (x_1, y_1) + (x_2, y_2)$ the group law on E tells us

$$x_3 = m^2 - x_1 - x_2,$$
 $y_3 = m(x_1 - x_3) - y_1,$
$$m = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{if } x_1 \neq x_2, \\ \frac{3x_1^2 + A}{x_1^2} & \text{if } x_2 = x_2 \end{cases}$$

Plugging in $x_1 = a_1(x), x_2 = a_2(x), y_1 = b_1(x)y, y_2 = b_2(x)y$, we obtain

$$m(x,y) = \begin{cases} \frac{b_1(x) - b_2(x)}{a_1(x) - a_2(x)} y = r(x) y & \text{if } x_1 \neq x_2, \\ \frac{3a_1(x)^2 + A}{2b_1(x)y} = \frac{3a_1(x)^2 + A}{2b_1(x)f(x)} y = r(x) y & \text{if } x_1 = x_2. \end{cases}$$

Now $m(x,y)^2 = (r(x)y)^2 = r(x)^2 f(x)$, so $\alpha_1 + \alpha_2 = \alpha_3 = (a_3(x), b_3(x)y)$ with

$$a_3 = r^2 f - a_1 - a_2,$$
 $b_3 = r(a_1 - a_3) - b_1.$

Dealing with zero divisors in $\mathbb{F}_q[x]/(h)$

If the denominator of r=u/v is invertible in $\mathbb{F}_q[x]/(h(x))$ we can write $r=uv^{-1} \bmod h$ and put $\alpha_3=(a_3(x),b_3(x)y)$ in our desired form, with $a_3,b_3\in \mathbb{F}_q[x]/(h(x))$ uniquely represented as polynomials in $\mathbb{F}_q[x]$ reduced modulo h.

But this may not be possible! The ring $\mathbb{F}_q[x]/(h(x))$ is not necessarily a field.

At first glance this might appear to be a problem, but in fact it can only help us. If v is not invertible in $\mathbb{F}_q[x]/(h(x))$ then $\gcd(v,h)$ is a nontrivial factor of h (because we must have $\deg v < \deg h$).

Our strategy in this situation is to replace h by $g = \gcd(v, h)$ and compute t_{ℓ} by working in the smaller ring $\mathbb{F}_q[x]/(g(x))$. This will speed things up!

The lemma implies that we can restrict our attention to the action of π_{ℓ} on the subset of points $P \in E[\ell]$ whose x-coordinates are roots of g(x).

Schoof's algorithm for computing the trace of Frobenius modulo ℓ

Algorithm

Given $E: y^2 = f(x)$ over \mathbb{F}_q and an odd prime ℓ , compute t_ℓ as follows:

- 1. Compute the ℓ th division polynomial $h = \psi_{\ell} \in \mathbb{F}_q[x]$ for E.
- **2.** Compute $\pi_{\ell} = (x^q \mod h, \ (f^{(q-1)/2} \mod h)y)$ and $\pi_{\ell}^2 = \pi_{\ell} \circ \pi_{\ell}$.
- 3. Use scalar multiplication to compute $q_\ell=q_\ell[1]_\ell$, and then compute $\pi_\ell^2+q_\ell$. (If a non-invertible denominator arises, update h and return to step 2).
- **4.** Compute $0, \pi_{\ell}, 2\pi_{\ell}, 3\pi_{\ell}, \dots, c\pi_{\ell}$, until $c\pi_{\ell} = \pi_{\ell}^2 + q_{\ell}$. (If a non-invertible denominator arises, update h and return to step 2).
- **5.** Output $t_{\ell} = c$.

An implementation of this algorithm can be found in this Sage worksheet.

A few final remarks

- Factors of h(x) necessarily arise when E admits a rational ℓ -isogeny. Elkies' optimization of Schoof's algorithm exploits this fact, allowing us to work with polynomials of degree $(\ell-1)/2$ rather than $(\ell^2-1)/2$.
- Additional optimizations due to Atkin in the case where E does not admit a rational ℓ -isogeny lead to the Schoof–Elkies–Atkin (SEA) algorithm.
- For cryptographic-size primes the SEA algorithm takes a few seconds (or less). The current SEA record is a 16,000-bit prime, far beyond the cryptographic range.
- Even Schoof's original algorithm can handle cryptographic size primes, but this was not widely recognized in the 1980s.
- Schoof's algorithm can be used to deterministically compute square roots of a fixed integer modulo a prime. This application was the motivation for Schoof's original paper.