
18.783 Elliptic Curves
Lecture 8

Andrew Sutherland

September 30, 2025



Schoof’s algorithm
In 1985 René Schoof introduced a polynomial-time algorithm for computing #E(Fq).
Schoof’s strategy is to compute the trace of Frobenius modulo many small primes ℓ.

Algorithm
Given an elliptic curve E over a finite field Fq compute #E(Fq) as follows:

1. Initialize M ← 1 and t← 0.
2. While M ≤ 4√q, for increasing primes ℓ = 2, 3, 5, . . . that do not divide q:

2.1 Compute tℓ = trπ mod ℓ.
2.2 Set t←

(
M(M−1 mod ℓ)tℓ + ℓ(ℓ−1 mod M)t

)
mod ℓM and then M ← ℓM .

3. If t > M/2 then set t← t−M .
4. Output q + 1− t.

Step 2.2 uses an iterative CRT approach to ensure that t ≡ trπE mod M always holds.
Hasse’s theorem implies t = trπE after Step 3, so that #E(Fq) = q + 1− t in Step 4.



Preliminary complexity analysis
Let ℓmax be the largest prime ℓ for which the algorithm computes tℓ.
The Prime Number Theorem (or even just Chebyshev’s theorem) implies that∑

primes ℓ≤x

log ℓ ∼ x

as x→∞, and therefore

ℓmax ∼ log 4√q ∼ 1
2n = O (n) ,

where n = log q, so we need O
(

n
log n

)
primes ℓ.

The cost of Step 2.2 is bounded by O(M(n) logn), thus if we can compute tℓ in Step
2.1 in time bounded by a polynomial in n and ℓ, we have a polynomial-time algorithm.

If f(n) is the cost of Step 2.1, the total complexity is O(nM(n) + nf(n)/ logn).



Computing t2

Assuming q is odd (which we do), t = q + 1−#E(Fq) is divisible by 2 if and only if
#E(Fq) is divisible by 2, equivalently, if and only if E(Fq) contains a point of order 2.

If E has Weierstrass equation y2 = f(x), then the points of order 2 in E(Fq) are
precisely those of the form (x0, 0), where x0 ∈ Fq is a root of f(x).

We can thus compute t2 := trπE mod 2 as

t2 =

0 if deg
(
gcd(f(x), xq − x)

)
> 0,

1 otherwise.

This is a deterministic computation (we need randomness to efficiently find the roots
of f , but we can efficiently count them deterministically). It takes O(nM(n)) time.



The characteristic polynomial of the Frobenius endomorphism
The Frobenius endomorphism πE ∈ End(E) satisfies its characteristic equation

π2
E − tπE + q = 0,

with t = trπ and q = deg π. Restricting to the ℓ-torsion subgroup E [ℓ] yields

π2
ℓ − tℓπℓ + qℓ = 0, (1)

which we view as an identity in End(E[ℓ]). Here tℓ ≡ t mod ℓ and qℓ ≡ q mod ℓ
correspond to restrictions of the scalar multiplication endomorphisms [t], [q] ∈ End(E).

But we can also compute qℓ as

qℓ = qℓ · [1]ℓ = [1]ℓ + · · ·+ [1]ℓ

using double-and-add, provided that we know how to explicitly compute in End(E[ℓ]).



Computing the trace of Frobenius modulo ℓ

Our strategy to compute tℓ is simple: for c = 0, 1, . . . , ℓ− 1 compute

π2
ℓ − cπℓ + qℓ

and check whether it is equal to 0 (as an element of End(E[ℓ])).

The following lemma shows that whenever this occurs we must have c = tℓ.

Lemma
Let E/Fq be an elliptic curve with Frobenius endomorphism π, let ℓ be a prime not
dividing q, and let P ∈ E[ℓ] be nonzero. Suppose that for some integer c the equation

π2
ℓ (P )− cπℓ(P ) + qℓ(P ) = 0

holds. Then c ≡ tℓ = trπ mod ℓ.



Arithmetic in End(E[ℓ]) for odd primes ℓ

Let h = ψℓ(x) be the ℓth division polynomial of E : y2 = f(x) = x3 +Ax+B,
whose roots are the x-coordinates of the nonzero elements of E[ℓ]. To represent
elements of End(E[ℓ]) as rational maps, we work in the ring

Fq [x, y] /(h(x), y2 − f(x)).

We have

πℓ =
(
xq mod h(x), yq mod (h(x), y2 − f(x))

)
=

(
xq mod h(x),

(
f(x)(q−1)/2 mod h(x)

)
y

)
,

[1]ℓ =
(
x mod h(x),

(
1 mod h(x)

)
y

)
.

We shall represent elements of End(E[ℓ]) in the form (a(x), b(x) y), where
a, b ∈ Fq[x]/(h(x)) are uniquely represented as polynomials in Fq[x] reduced modulo h.



Multiplication in End(E[ℓ])

Given endomorphisms α1, α2 ∈ End(E[ℓ]) represented as

α1 =
(
a1(x), b1(x)y

)
,

α2 =
(
a2(x), b2(x)y

)
,

their product α3 = α1α2 in End(E[ℓ]) is the composition α3 = α1 ◦ α2, which we may
explicitly compute as

α3 =
(
a3(x), b3(x)y

)
= (a1(a2(x)), b1(a2(x))b2(x) y) ,

with a3(x) and b3(x) uniquely represented by their reductions modulo h(x).



Addition in End(E[ℓ])
Given α1 =

(
a1(x), b1(x)y

)
, α2 =

(
a2(x), b2(x)y

)
, we want to compute α3 = α1 + α2.

For non-opposite affine points (x3, y3) = (x1, y1) + (x2, y2) the group law on E tells us

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

m =


y1−y2
x1−x2

if x1 ̸= x2,

3x2
1+A

2y1
if x1 = x2.

Plugging in x1 = a1(x), x2 = a2(x), y1 = b1(x)y, y2 = b2(x)y, we obtain

m(x, y) =


b1(x)−b2(x)
a1(x)−a2(x)y = r(x)y if x1 ̸= x2,

3a1(x)2+A
2b1(x)y = 3a1(x)2+A

2b1(x)f(x) y = r(x)y if x1 = x2.

Now m(x, y)2 = (r(x)y)2 = r(x)2f(x), so α1 + α2 = α3 = (a3(x), b3(x)y) with

a3 = r2f − a1 − a2, b3 = r(a1 − a3)− b1.



Dealing with zero divisors in Fq[x]/(h)

If the denominator of r = u/v is invertible in Fq[x]/(h(x)) we can write
r = uv−1 mod h and put α3 =

(
a3(x), b3(x)y

)
in our desired form, with

a3, b3 ∈ Fq[x]/(h(x)) uniquely represented as polynomials in Fq[x] reduced modulo h.

But this may not be possible! The ring Fq[x]/(h(x)) is not necessarily a field.

At first glance this might appear to be a problem, but in fact it can only help us.
If v is not invertible in Fq[x]/(h(x)) then gcd(v, h) is a nontrivial factor of h
(because we must have deg v < deg h).

Our strategy in this situation is to replace h by g = gcd(v, h) and compute tℓ by
working in the smaller ring Fq[x]/(g(x)). This will speed things up!

The lemma implies that we can restrict our attention to the action of πℓ on the subset
of points P ∈ E[ℓ] whose x-coordinates are roots of g(x).



Schoof’s algorithm for computing the trace of Frobenius modulo ℓ

Algorithm
Given E : y2 = f(x) over Fq and an odd prime ℓ, compute tℓ as follows:

1. Compute the ℓth division polynomial h = ψℓ ∈ Fq[x] for E.
2. Compute πℓ = (xq mod h, (f (q−1)/2 mod h)y) and π2

ℓ = πℓ ◦ πℓ.
3. Use scalar multiplication to compute qℓ = qℓ[1]ℓ, and then compute π2

ℓ + qℓ.
(If a non-invertible denominator arises, update h and return to step 2).

4. Compute 0, πℓ, 2πℓ, 3πℓ, . . . , cπℓ, until cπℓ = π2
ℓ + qℓ.

(If a non-invertible denominator arises, update h and return to step 2).
5. Output tℓ = c.

An implementation of this algorithm can be found in this Sage worksheet.

https://cocalc.com/AndrewVSutherland/18.783Fall2025/SchoofsAlgorithm


A few final remarks

• Factors of h(x) necessarily arise when E admits a rational ℓ-isogeny. Elkies’
optimization of Schoof’s algorithm exploits this fact, allowing us to work with
polynomials of degree (ℓ− 1)/2 rather than (ℓ2 − 1)/2.

• Additional optimizations due to Atkin in the case where E does not admit a
rational ℓ-isogeny lead to the Schoof–Elkies–Atkin (SEA) algorithm.

• For cryptographic-size primes the SEA algorithm takes a few seconds (or less).
The current SEA record is a 16,000-bit prime, far beyond the cryptographic range.

• Even Schoof’s original algorithm can handle cryptographic size primes, but this
was not widely recognized in the 1980s.

• Schoof’s algorithm can be used to deterministically compute square roots of a
fixed integer modulo a prime. This application was the motivation for Schoof’s
original paper.

https://www.jstor.org/stable/2007968

