
18.783 Elliptic Curves
Lecture 7

Andrew Sutherland

September 25, 2025

Lecture 6 recap

Definition
If α is an isogeny, the dual isogeny α̂ is the unique isogeny for which α̂ ◦ α = deg α.
The trace of α ∈ End(E) is tr α := α + α̂ = 1 + deg α − deg(1 − α) ∈ Z.

Lemma
Let α and β be endomorphisms of an elliptic curve E/k and let m be the maximum of
deg α and deg β. Let n ≥ 2

√
m + 1 be an integer prime to the characteristic of k, and

also relatively prime to the integers deg α and deg β. If αn = βn then α = β.

Theorem
Let α ∈ End(E) and let n ≥ 1 be coprime to the characteristic. Then

tr α ≡ tr αn mod n and deg α ≡ det αn mod n.

Hasse’s theorem

Lemma
α, β : E1 → E2 isogenies with α inseparable, α + β is inseparable if and only if β is.

Theorem (Hasse, 1933)

Let E/Fq be an elliptic curve over a finite field. Then #E(Fq) = q + 1 − tr πE ,
where the trace of the Frobenius endomorphism πE satisfies | tr πE | ≤ 2√

q.
Proof: To the board!

Definition
The Hasse interval H(q) is [q + 1 − 2√

q, q + 1 + 2√
q] = [(√q − 1)2, (√q + 1)2]

The Legendre symbol

Definition
For odd primes p the Legendre symbol is defined by

(
a

p

)
=


1 if y2 = a has two solutions mod p

0 if y2 = a has one solution mod p

−1 if y2 = a has no solutions mod p

 = #{α ∈ Fp : α2 = a} − 1.

We also define
(

a
Fq

)
for a ∈ Fq with q odd; just replace Fp with Fq.

For E : y2 = x3 + Ax + B over Fq we have

#E(Fq) = 1 +
∑

x∈Fq

(
1 +

(
x3 + Ax + B

Fq

))
= q + 1 +

∑
x∈Fq

(
x3 + Ax + B

Fq

)
.

Naive point counting

Let E : y2 = x3 + Ax + B be an elliptic curve over Fq. Computing #E(Fq) via

#E(Fq) = 1 + #
{

(x, y) ∈ F2
q : y2 = x3 + Ax + B

}
takes O(q2M(log q)) time, which in terms of n = log q is O(exp(2n)M(n)). But

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3 + Ax + B

Fq

)

can be computed in O(exp(n)M(n)) time by precomputing a table of squares in Fq.

But #E(Fq) lies in the Hasse interval H(q) of width 4√
q. Surely we can do better!

Computing the order of a point
The order |P | of any P ∈ E(Fq) divides #E(Fq) ∈ H(q) = [(√q − 1)2, (√q + 1)2].
If we put M0 = ⌈(√q − 1)2⌉, we can find a multiple M of |P | in H(q) by computing

M0P, (M0 + 1)P, (M0 + 2)P, . . . , MP = 0.

We have M ≤ M0 + 4√
q, so this takes O(√qM(log q)) = O(exp(n/2)M(n)) time.

Algorithm (Fast order computation)

Given P ∈ E(Fq) and M ∈ H(q) such that MP = 0, compute |P | as follows:
1. Compute M = pe1

1 · · · per
r and set m := M .

2. For each prime pi, while pi|m and (m/pi)P = 0, replace m by m/pi.
3. Output |P | = m.

This algorithm takes much less than O(exp(n/2)M(n)) time.
(in fact O(exp(n/5)n16/5) deterministically and exp(n1/2+o(1)) probabilistically).

The exponent of a group
Definition
The exponent of a finite group G is λ(G) := lcm{|g| : g ∈ G}.

Lemma
Let G be a finite abelian group. Then ∃g ∈ G such that |g| = λ(G).

Proof: Put G ≃ Z/n1Z ⊕ · · · ⊕ Z/nrZ with ni|ni+1 and take any generator of Z/nrZ.

Theorem
Let G be a finite abelian group. If g and h are uniformly distributed elements of G then

Pr
[
lcm(|g|, |h|) = λ(G)

]
>

6
π2 .

Proof: Pr
[
lcm(|g|, |h|) = λ(G)

]
≥
∏

p|λ(G)(1 − p−2) >
∏

p(1 − p−2) = ζ(2)−1 = 6/π2.

Counting points on quadratic twists

Let E : y2 = x3 + Ax + B be an elliptic curve over Fq and pick s ∈ Fq so
(

s
Fq

)
= −1.

Then Ẽ : sy2 = x3 + Ax + B is a (non-isomorphic) quadratic twist of E, and we have

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3 + Ax + B

Fq

)

#Ẽ(Fq) = q + 1 −
∑

x∈Fq

(
x3 + Ax + B

Fq

)

#E(Fq) + #Ẽ(Fq) = 2q + 2.

To compute #E(Fq) it suffices to compute either #E(Fq) or #Ẽ(Fq).

We can put Ẽ in Weierstrass form as Ẽ : y2 = x3 + s2Ax + s3B.

Mestre’s theorem/algorithm

Theorem (Mestre)

Let p > 229 be prime, E/Fp an elliptic curve with quadratic twist Ẽ/Fp.
At least one of λ(E(Fp)) and λ(Ẽ(Fp)) has a unique multiple in H(p).

Algorithm (Mestre)

Given E/Fp with p > 229, compute #E(Fp) as follows:
1. Compute Ẽ, and set E0 := E, E1 := Ẽ, N0 := 1, N1 := 1, i := 0.
2. While neither N0, N1 has a unique multiple U0, U1 in H(p):

a. Pick a random P ∈ Ei(Fp) and compute M ∈ H(p) such that MP = 0.
b. Use M to compute |P |, then replace Ni with lcm(Ni, |P |) and replace i by 1 − i.

3. Output #E(Fp) = U0 or #E(Fp) = 2p + 2 − U1 (whichever is defined).

We expect O(1) iterations in Step 2, expected running time is O(exp(n/2)M(n)).

Baby-steps giant-steps

Algorithm (Shanks)

Given P ∈ E(Fq) compute M ∈ H(q) such that MP = 0 as follows:
1. Pick r, s ∈ Z>0 such that rs ≥ 4√

q and put a := ⌈(√q − 1)2⌉ = min(H(q) ∩ Z).
2. Compute baby steps Sbaby := {0, P, 2P, . . . , (r − 1)P}.
3. Compute giant steps Sgiant := {aP, (a + r)P, (a + 2r)P, . . . , (a + (s − 1)r)P}.
4. For each Pgiant = (a + ir)P check if Pgiant + Pbaby = 0 for some Pbaby = jP .

If so, output M = a + ir + j.

Every M ∈ H(q) can be written as M = a + ir + j with 0 ≤ i < s and 0 ≤ j < r, and

MP = (a + ri)P + jP = Pgiant + Pbaby = 0,

for some Pgiant ∈ Sgiant and Pbaby ∈ Sbaby. Complexity is O(exp(n/4)M(n)).

Batching inversions

In order to efficiently match giant steps with baby steps we use affine coordinates.
Addition in E(Fq) uses 3M + I or 4M + I operations in Fq, or O(M(n) log n) time.

Algorithm
Given α1, . . . , αm ∈ Fq compute α−1

1 , · · · α−1
m as follows:

1. Set β0 := 1 and compute βi := βi−1αi for i from 1 to m.
2. Compute γm := β−1

m .
3. For i from m down to 1 compute α−1

i := βi−1γi and γi−1 := γiαi.

This takes less than 3mM + I operations in Fq, or O(mM(n) + M(n) log n) time.
For m ≥ log n this is O(M(n)) per inversion, on average, rather than O(M(n) log n).

For large m the cost of each baby/giant step is effectively 6M operations in Fq.

Point counting summary

The table below summarizes the complexity of various algorithms to compute #E(Fq).
Complexity bounds are bit-complexities in terms of n = log q.

algorithm time complexity space complexity
Totally naive O(exp(2n)M(n)) O(n)
Legendre symbols on the fly O(exp(n)M(n) log n) O(n)
Legendre symbols precomputed O(exp(n)M(n)) O(exp(n)n)
Mestre with linear search O(exp(n/2)M(n)) O(n)
Mestre with baby-steps giant-steps O(exp(n/4)M(n)) O(exp(n/4)n)
Schoof’s algorithm O(poly(n)) O(poly(n))

For Mestre’s algorithm these are expected running times, the rest are deterministic.
Probabilistic optimizations to Schoof’s algorithm (SEA) are used in practice for large q.

