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Lecture 6 recap

Definition
If v is an isogeny, the dual isogeny & is the unique isogeny for which & o a = deg a.
The trace of « € End(E) istra:=a+ & =1+ dega — deg(l — a) € Z.

Lemma

Let « and 3 be endomorphisms of an elliptic curve E/k and let m be the maximum of
dega and deg 3. Let n > 2/m + 1 be an integer prime to the characteristic of k, and
also relatively prime to the integers deg o and deg 5. If cv, = B, then a = [3.

Theorem
Let o € End(F) and let n > 1 be coprime to the characteristic. Then

tra = tr a,, mod n and deg o = det a;, mod n.



Hasse’s theorem

Lemma

a, B: E1 — Fs isogenies with « inseparable, o+ (3 is inseparable if and only if 3 is.

Theorem (Hasse, 1933)

Let E/F, be an elliptic curve over a finite field. Then #E(F;) =q+ 1 —trng,
where the trace of the Frobenius endomorphism 7g satisfies |tr mg| < 2,/q.
Proof: To the board!

Definition
The Hasse interval #(q) is [¢+ 1 —2\/q, ¢+ 1+ 24 = [(v/a— 1)?, (V7 + 1)?]



The Legendre symbol

Definition

For odd primes p the Legendre symbol is defined by

1 if ¥ = a has two solutions mod p
a
() =< 0 if y> = a has one solution mod p ¢ = #{a € F,:a* =a} — 1.
p
-1 if 4> = a has no solutions mod p

We also define (1}«%) for a € IF, with g odd; just replace F), with F,.

For E: y? = 23 + Az + B over F, we have

#pE) =1+ 3 (1 (T ) sy 3 (B REE),

z€F, z€lF, Fq



Naive point counting

Let E: y? = 23 + Az + B be an elliptic curve over F,. Computing #E(F,) via
#E[F,) = 1—|—#{($,y) EFg sy :x3—|—A:E—|—B}

takes O(¢*M(logq)) time, which in terms of n = logq is O(exp(2n)M(n)). But

##IE(F =q+ 1+ ji: (aﬁ%—,41r+—[3)

z€elF, q

can be computed in O(exp(n)M(n)) time by precomputing a table of squares in F,.

But #E(FF,) lies in the Hasse interval H(q) of width 4,/g. Surely we can do better!



Computing the order of a point

The order |P| of any P € E(F,) divides #E(F,) € H(q) = [(va —1)%, (va+1)%.
If we put My = [(,/q — 1)?], we can find a multiple M of |P| in H(q) by computing

MoP, (Mo +1)P, (Mo +2)P, ..., MP =0.
We have M < My + 4,/g, so this takes O(,/gM(log q)) = O(exp(n/2)M(n)) time.

Algorithm (Fast order computation)

Given P € E(F,;) and M € H(q) such that M P = 0, compute | P| as follows:
1. Compute M = p{*---pS and set m := M.
2. For each prime p;, while p;|m and (m/p;)P = 0, replace m by m/p;.
3. Output |P| =m.

This algorithm takes much less than O(exp(n/2)M(n)) time.
(in fact O(exp(n/5)n'%/%) deterministically and exp(n'/2t°(1)) probabilistically).



The exponent of a group

Definition

The exponent of a finite group G is A(G) :=lem{|g| : g € G}.

Lemma

Let G be a finite abelian group. Then 3g € G such that |g| = A\(G).
Proof: Put G ~Z/miZ & - - - ® Z/n,7Z with n;|n;+1 and take any generator of Z/n,Z.

Theorem

Let G be a finite abelian group. If g and h are uniformly distributed elements of G then
Pr[lem(|gl, |2]) = A(G)] > —-

Proof: Prlem(lgl, |h]) = M(G)] > Ty (1 —p72) > IL,(1 —p7%) = ¢(2)~" = 6/7°.



Counting points on quadratic twists

Let E: y?> = 23 4+ Az + B be an elliptic curve over IF, and pick s € F, so (Fiq) =—1.

Then E: sy> =234+ Az + Bis a (non-isomorphic) quadratic twist of E, and we have

3
#E(Fq) =qg+1+ Z (“T—i_Ax_’—B>

z€lF, Fq
- 2>+ Az + B
#E([Fy) =q+1— Z (IF
z€lF, q

#E(F,) + #E(]Fq) =2q+2
To compute #E(F,) it suffices to compute either #E(F,) or #E(F,).

We can put E in Weierstrass form as E: y2 = 23 + s2Az + s3B.



Mestre’s theorem/algorithm

Theorem (Mestre)

Let p > 229 be prime, E/F;, an elliptic curve with quadratic twist E/Fp.
At least one of \(E(F,)) and A(E(F,)) has a unique multiple in H(p).

Algorithm (Mestre)

Given E/F, with p > 229, compute #E(F),) as follows:
1. Compute E and set By := E, Fq := E Ng:=1, Ny =1, 71:=0.
2. While neither Ny, N7 has a unique multiple Uy, Uy in H(p):

a. Pick a random P € E;(FF,) and compute M € H(p) such that M P = 0.
b. Use M to compute |P|, then replace N; with lem(V;, |P|) and replace i by 1 — 3.

3. Output #E(F,) = Uy or #E(F),) = 2p + 2 — U; (whichever is defined).

We expect O(1) iterations in Step 2, expected running time is O(exp(n/2)M(n)).



Baby-steps giant-steps

Algorithm (Shanks)
Given P € E(F,) compute M € #(q) such that M P = 0 as follows:

1.

Pick r, s € Zq such that rs > 4,/g and put a := [(,/g — 1)*] = min(#(q) N Z).

2. Compute baby steps Spany := {0, P, 2P, ..., (r—1)P}.
3.
4. For each Pyjant = (a + ir) P check if Pyjant + Poaby = 0 for some Ppapy = jP.

Compute giant steps Sgiant := {aP, (a+7)P, (a+2r)P, ..., (a+ (s —1)r)P}.

If so, output M =a + ir + j.

Every M € H(q) can be written as M = a+ir+ j with0 <i<sand 0 <j <r, and

MP = (a+7”i)P+jP:Pgiant+Pbaby:()7

for some Pyiant € Sgiant and Phaby € Sbaby. Complexity is O(exp(n/4)M(n)).



Batching inversions

In order to efficiently match giant steps with baby steps we use affine coordinates.
Addition in E(F,) uses 3M + | or 4M + | operations in Fy, or O(M(n)logn) time.

Algorithm

Given o, ..., € F, compute a; ', - a;! as follows:
1. Set By := 1 and compute 3; := [3;_1y for i from 1 to m.
2. Compute 7y, := 1.

3. For ¢ from m down to 1 compute a;l = Bi—17y; and y;—1 1= Y.

This takes less than 3mM + | operations in F,, or O(mM(n) + M(n)logn) time.
For m > logn this is O(M(n)) per inversion, on average, rather than O(M(n)logn).

For large m the cost of each baby/giant step is effectively 6M operations in F,.



Point counting summary

The table below summarizes the complexity of various algorithms to compute #E(F,).
Complexity bounds are bit-complexities in terms of n = logg.

algorithm time complexity space complexity
Totally naive O(exp(2n)M(n)) O(n)

Legendre symbols on the fly O(exp(n)M(n)logn) O(n)

Legendre symbols precomputed O(exp(n)M(n)) O(exp(n)n)
Mestre with linear search O(exp(n/2)M(n)) O(n)

Mestre with baby-steps giant-steps  O(exp(n/4)M(n)) O(exp(n/4)n)
Schoof’s algorithm O(poly(n)) O(poly(n))

For Mestre's algorithm these are expected running times, the rest are deterministic.
Probabilistic optimizations to Schoof's algorithm (SEA) are used in practice for large g.



