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Lecture 5 recap
• Isogeny decomposition (in characteristic p > 0): α = αsep ◦ πn for some n ≥ 0.

• The separable degree is degs α := degαsep, the inseparable degree is degi α := pn.

• # kerα = #E[α] := {P ∈ E(k̄) : α(P ) = 0} = degs α.

• α = β ◦ γ ⇒ degα = deg β deg γ and deg∗ α = deg∗ β deg∗ γ for ∗ = s, i.

• Every finite G ≤ E(k̄) is the kernel of a separable isogeny that is unique up to
isomorphism and can be explicitly constructed using Vélu’s formulas.

• For E : y2 = x3 +Ax+B the multiplication-by-n map can be written in the form

[n](x, y) =
(
ϕn(x)
ψ2

n(x) ,
ωn(x, y)
ψ3

n(x, y)

)
,

where ϕn, ωn, ψn ∈ Z[x, y,A,B] are given by explicit recurrence relations.

• deg[n] = n2 and [n] is separable if and only if n ⊥ p.



The n-torsion subgroup of an elliptic curve
Theorem (Lecture 5)

The multiplication-by-n map [n] has degree n2 and is separable if and only if n ⊥ p.

Theorem
Let E/k be an elliptic curve over a field of characteristic p. For each prime ℓ we have

E[ℓe] ≃
{
Z/ℓeZ ⊕ Z/ℓeZ if ℓ ̸= p,

Z/ℓeZ or {0} if ℓ = p.

When E[p] ≃ {0} we say that E is supersingular, otherwise E is ordinary.

Corollary
Every finite subgroup of E(k̄) can be written as the sum of two (possibly trivial) cyclic
groups with at most one of order divisible by p.



The group of homomorphisms between elliptic curves
Let E1/k and E2/k be elliptic curves.

Definition
Hom(E1, E2) is the abelian group of morphisms α : E1 → E2 under pointwise addition.
Note that α ∈ Hom(E1, E2) is defined over k (it is an arrow in the category of E/k).

Lemma
Let α, β ∈ Hom(E1, E2). If α(P ) = β(P ) for all P ∈ E1(k̄) then α = β.

Proof: ker(α− β) = E1(k̄) is infinite so α− β = 0.

Lemma
For all n ∈ Z and α ∈ Hom(E1, E2) we have [n] ◦ α = nα = α ◦ [n].

Proof: We have ([−1] ◦ α)(P ) = −α(P ) = α(−P ) = (α ◦ [−1])(P ) and
([n] ◦ α)(P ) = nα(P ) = α(P ) + · · · + α(P ) = α(P + · · ·P ) = α(nP ) = (α ◦ [n])(P ).



The cancellation law for isogenies
For δ ∈ Hom(E0, E1), α, β ∈ Hom(E1, E2) and γ ∈ Hom(E2, E3) we have

(α+ β) ◦ δ = α ◦ δ + β ◦ δ and γ ◦ (α+ β) = γ ◦ α+ γ ◦ β

since these identities hold pointwise.

Lemma
Let δ : E0 → E1, α, β : E1 → E2, and γ : E2 → E3 be isogenies. Then

γ ◦ α = γ ◦ β =⇒ α = β,

α ◦ δ = β ◦ δ =⇒ α = β.

Proof: Isogenies are surjective, so α, β, γ, δ and their compositions are not zero maps.
Then γ ◦ α = γ ◦ β ⇒ γ ◦ α− γ ◦ β = 0 ⇒ γ ◦ (α− β) = 0 ⇒ α− β = 0 ⇒ α = β
and α ◦ δ = β ◦ δ ⇒ α ◦ δ − β ◦ δ = 0 ⇒ (α− β) ◦ δ = 0 ⇒ α− β = 0 ⇒ α = β.



The dual isogeny

Definition
Let α : E1 → E2 be an isogeny of elliptic curves of degree n. The dual isogeny is the
unique isogeny α̂ for which α̂ ◦ α = [n]. We also define ˆ[0] := 0.

Uniqueness follows from the cancellation law. Existence is nontrivial (see notes).

Lemma
(1) If α̂ ◦ α = [n] then α ◦ α̂ = [n], that is, ˆ̂α = α, and for n ∈ Z we have ˆ[n] = [n].
(2) For any α, β ∈ Hom(E1, E2) we have α̂+ β = α̂+ β̂.
(3) For any α ∈ Hom(E2, E3) and β ∈ Hom(E1, E2) we have α̂ ◦ β = β̂ ◦ α̂.

Proof: (1) (α ◦ α̂) ◦ α = α ◦ (α̂ ◦ α) = α ◦ [n] = [n] ◦ α, and [n] ◦ [n] = [n2] = [deg[n]].
(2) Deferred to Lecture 23.
(3) (β̂ ◦ α̂) ◦ (α ◦ β) = β̂ ◦[degα]◦ β = [degα]◦ β̂ ◦ β = [degα]◦[deg β] = [deg(α ◦ β)].
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The endomorphism ring of an elliptic curve

Definition
End(E) is the ring with additive group Hom(E,E) and multiplication αβ := α ◦ β.
The additive identity is 0 := [0] and the multiplicative identity is 1 := [1].
The distributive laws are verified pointwise.

Note that αβ ̸= 0 whenever α, β ̸= 0 (by surjectivity), so End(E) has no zero divisors.

Lemma
The map n 7→ [n] defines an injective ring homomorphism Z → End(E) that agrees
with scalar multiplication.

Proof: [m+ n] = [m] + [n], [mn] = [m] ◦ [n], and m ̸= 0 ⇒ [m] ̸= 0 (finite kernel),
and we note that ([n]α)(P ) = [n](α(P )) = nα(P ) = (nα)(P ) for all P ∈ E(k̄).

In End(E) we are thus free to replace [n] with n (so α+n means α+ [n], for example).



The trace of an endomorphism

Lemma
For any α ∈ End(E) we have α+ α̂ = 1 + degα− deg(1 − α).

Proof: deg(1 − α) = (1̂ − α)(1 − α) = (1 − α̂)(1 − α) = 1 − (α+ α̂) + deg(α).

Definition
The trace of α ∈ End(E) is trα = α+ α̂ ∈ Z ⊆ End(E).

Theorem
For all α ∈ End(E) both α and α̂ are solutions to x2 − (trα)x+ degα = 0 in End(E).

Proof: α2 − (trα)α+ degα = α2 − (α+ α̂)α+ α̂α = 0 and similarly for α̂.



Restricting endomorphisms to E[n]
Definition
For any α ∈ End(E) its restriction to E[n] is denoted αn ∈ End(E[n]).

Let n ≥ 1 be coprime to the characteristic and let E[n] ≃ Z/nZ ⊕ Z/nZ = ⟨P1, P2⟩.
Then we can view αn as the matrix

[
a b
c d

]
, where

α(P1) = aP1 + bP2

α(P2) = cP1 + dP2

The determinant and trace of this matrix do not depend on our choice of P1 and P2.

Theorem
Let α ∈ End(E) and let n ≥ 1 be coprime to the characteristic. Then

trα ≡ trαn mod n and degα ≡ detαn mod n.

Proof: To the board!


