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Isogenies (Lecture 4 recap)

Definition
An isogeny α : E → E′ is a surjective morphism that is also a group homomorphism,
equivalently, a non-constant rational map that sends zero to zero.

Lemma
If E and E′ are elliptic curves over k in short Weierstrass form then every isogeny
α : E → E′ can be put in standard form

α(x, y) =
(
u(x)
v(x) ,

s(x)
t(x) y

)
,

where u, v, s, t ∈ k[x] are polynomials with u ⊥ v, s ⊥ t.
The roots of both v and t are the x-coordinates of the affine points in kerα.
The degree of α is max(deg u,deg v), and α is separable if and only if (u/v)′ ̸= 0.



Separable and inseparable isogenies

Lemma
Let k be a field of characteristic p. For relatively prime u, v ∈ k[x] we have

(u/v)′ = 0 ⇐⇒ u′ = v′ = 0 ⇐⇒ u = f(xp) and v = g(xp) with f, g ∈ k[x]

Proof
(first ⇔): (u/v)′ = (u′v − v′u)/v2 = 0 iff u′v = v′u, and u ⊥ v implies u|u′, which is
impossible unless u′ = 0, and similarly for v.
(second ⇔): If u =

∑
n anx

n then u′ =
∑
nanx

n−1 = 0 iff nan = 0 for n with an ̸= 0,
in which case u =

∑
m ampx

mp = f(xp) where f =
∑

m amx
m, and similarly for v.

In characteristic zero the lemma says that u′ = v′ = 0 if and only if deg u = deg v = 0,
but isogenies are non-constant morphisms, so this never happens.



Decomposing inseparable isogenies

Lemma
Let α : E → E′ be an inseparable isogeny over k with E and E′ in short Weierstrass
form. Then α(x, y) = (a(xp), b(xp)yp) for some a, b ∈ k(x).

Proof
This follows from the previous lemma, see Lemma 5.3 in the notes for details.

Corollary
Isogenies of elliptic curves over a field of characteristic p > 0 can be decomposed as

α = αsep ◦ πn,

for some separable αsep, with π : (x : y : z) 7→ (xp : yp : zp) and n ≥ 0.
The separable degree is degs α := degαsep, the inseparable degree is degi α := pn.



First isogeny-kernel theorem
Theorem
The order of the kernel of an isogeny is equal to its separable degree.

Proof
To the blackboard!

Corollary
A purely inseparable isogeny has trivial kernel.

Corollary
In any composition of isogenies α = β ◦ γ all degrees are multiplicative:

degα = (deg β)(deg γ), degs α = (degs β)(degs γ), degi α = (degi β)(degi γ).



Second isogeny-kernel theorem
Definition
Let E/k be an elliptic curve. A subgroup G of E(k̄) is defined over L/k if it is Galois
stable, meaning σ(G) = G for all σ ∈ Gal(k̄/L).

Theorem
Let E/k be an elliptic curve and G a finite subgroup of E(k̄) defined over k.
There is a separable isogeny α : E → E′ with kernel G.
The isogeny α and the elliptic curve E′/k are unique up to isomorphism.

Proof sketch
To the blackboard!

Corollary
Isogenies of composite degree can be decomposed into isogenies of prime degree.



Isogeny graphs

Isogeny class 30a in the L-functions and modular forms database.

https://www.lmfdb.org/EllipticCurve/Q/30/a/


Isogeny graphs

Side and top views of a 3-volcano over a finite field taken from Isogeny volcanoes.

https://msp.org/obs/2013/1-1/p25.xhtml


Isogeny graphs

Image taken from Adventures in Supersingularland by Sarah Arpin, Catalina Camacho-Navarro,
Kristin Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, and Jana Sotáková.

https://arxiv.org/abs/1909.07779


Isogeny graphs

Image taken from Orienting supersingular isogeny graphs by Leonardo Colò and David Kohel.

https://arxiv.org/abs/2012.10803


Constructing a separable isogeny from its kernel

Let E/k be an elliptic curve in Weierstrass form, and G a finite subgroup of E(k̄).
Let G ̸=0 denote the set of nonzero points in G, which are affine points Q = (xQ, yQ).

For affine points P = (xP , yP ) in E(k̄) not in G define

α(xP , yP ) :=

xP +
∑

Q∈G̸=0

(xP +Q − xQ) , yP +
∑

Q∈G̸=0

(yP +Q − yQ)

 .
Here xP and yP are variables, xQ and yQ are elements of k̄, and xP +Q and yP +Q are
rational functions of xP and yP giving coordinates of P +Q in terms of xP and yP .

For P ̸∈ G we have α(P ) = α(P +Q) if and only if Q ∈ G, so kerα = G.



Vélu’s formula for constructing 2-isogenies

Theorem (Vélu)

Let E : y2 = x3 +Ax+B be an elliptic curve over k and let x0 ∈ k̄ be a root of
x3 +Ax+B. Define t := 3x2

0 +A and w := x0t. The rational map

α(x, y) :=
(
x2 − x0x+ t

x− x0
,

(x− x0)2 − t

(x− x0)2 y

)

is a separable isogeny from E to E′ : y2 = x3 +A′x+B′, where A′ := A− 5t and
B′ := B − 7w. The kernel of α is the group of order 2 generated by (x0, 0).

If x0 ∈ k then E′ and α will be defined over k, but in general E′ and α will be defined
over k(A′, B′) which might be a quadratic or cubic extension of k.



Vélu’s formula for constructing cyclic isogenies of odd degree

Theorem (Vélu)

Let E : y2 = x3 +Ax+B be an elliptic curve over k and let G be a finite subgroup of
E(k̄) of odd order. For each nonzero Q = (xQ, yQ) in G define

tQ := 3x2
Q +A, uQ := 2y2

Q, wQ := uQ + tQxQ,

t :=
∑

Q∈G ̸=0

tQ, w :=
∑

Q∈G ̸=0

wQ, r(x) := x+
∑

Q∈G̸=0

(
tQ

x− xQ
+ uQ

(x− xQ)2

)
.

The rational map
α(x, y) :=

(
r(x), r′(x)y

)
is a separable isogeny from E to E′ : y2 = x3 +A′x+B′, where A′ := A− 5t and
B′ := B − 7w, with kerα = G. If G is defined over k then so are α and E′.



Jacobian coordinates
Let us now work in the weighted projective plane, where x, y, z have weights 2, 3, 1.
This means, for example, that x3 and y2 are monomials of the same degree.

The homogeneous equation for an elliptic curve E in short Weierstrass form is then

y2 = x3 +Axz4 +Bz6.

In general Weierstrass form we have

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6,

Pro tip : ai is the coefficient of the term containing zi; this is why there is no a5.

In Jacobian coordinates the formulas for the group law look more complicated, but the
formula for z3 becomes very simple: z3 = x1z

2
2 − x2z

2
1 when adding distinct points

(x1 : y1 : z1) and (x2 : y2 : z2) and z3 = 2y1z1 when doubling (x1 : y1 : z1).



Division polynomials

If we apply the group law in Jacobian coordinates to an affine point P = (x : y : 1) on
E : y2 = x3 +Ax+B we can compute the rational map (in affine coordinates):

nP =
(
ϕn

ψ2
n

,
ωn

ψ3
n

)
.

where ϕn, ωn, ψn are polynomials in Z[x, y,A,B] with degree at most 1 in y
(we can reduce modulo (y2 − x3 −Ax−B) to ensure this).

The polynomials ϕn and ψ2
n have degree 0 in y, so we write them as ϕn(x) and ψ2

n(x).
Exactly one of ωn and ψ3

n has degree 1 in y, so nP is effectively in standard form.



Division polynomial recurrences
Definition
Let E : y2 = x3 +Ax+B be an elliptic curve. Let ψ0 = 0, and define ψ1, ψ2, ψ3, ψ4 as:

ψ1 = 1,
ψ2 = 2y,
ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2).

We then define ψn for n > 4 via the recurrences

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1,

ψ2n = 1
2yψn(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1).

We also define ψ−n := −ψn (and the recurrences work for negative integers as well).



Division polynomial recurrences

Definition
Having defined ψn for E : y2 = x3 +Ax+B and all n ∈ Z, we now define

ϕn := xψ2
n − ψn+1ψn−1,

ωn := 1
4y (ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1),

and one finds that ϕn = ϕ−n and ωn = ω−n.

It is a somewhat tedious algebraic exercise to verify that these recursive definitions
agree with the definitions given by applying the group law. See this Sage notebook.

We rarely use ϕn and ωn, but need to know the degree and leading coefficient of ϕn

to compute the degree and separability of the multiplication-by-n map.

https://cocalc.com/AndrewVSutherland/18.783Fall2025/DivisionPolynomials


Multiplication-by-n maps

Theorem
Let E/k be an elliptic curve defined by the equation y2 = x3 +Ax+B and let n be a
nonzero integer. The multiplication-by-n map is defined by the affine rational map

[n](x, y) =
(
ϕn(x)
ψ2

n(x) ,
ωn(x, y)
ψ3

n(x, y)

)

Lemma
The polynomial ϕn(x) is monic of degree n2 and the polynomial ψ2

n(x) has leading
coefficient n2, degree n2 − 1, and is coprime to ϕn(x).

Corollary
The multiplication-by-n map on E/k has degree n2 and is separable if and only p ̸ | n.


