18.783 Elliptic Curves Lecture 4

Andrew Sutherland

September 16, 2025

The function field of a curve

Definition

Let C/k be a plane projective curve f(x,y,z)=0 with $f\in k[x,y,z]$ nonconstant, homogeneous, and irreducible in $\bar{k}[x,y,z]$. The function field k(C) is the set of equivalence classes of rational functions g/h such that:

- (i) g and h are homogeneous polynomials in k[x, y, z] of the same degree;
- (ii) h is not divisible by f, equivalently, h is not an element of the ideal (f);
- (iii) g_1/h_1 and g_2/h_2 are considered equivalent whenever $g_1h_2-g_2h_1\in (f)$.

Addition:
$$\frac{g_1}{h_1} + \frac{g_2}{h_2} = \frac{g_1h_2 + g_2h_1}{h_1h_2}$$
, Multiplication $\frac{g_1}{h_1} \cdot \frac{g_2}{h_2} = \frac{g_1g_2}{h_1h_2}$, Inverse: $\left(\frac{g}{h}\right)^{-1} = \frac{h}{g}$. If $g \in (f)$ then $g/h = 0$ in $k(C)$, so we don't define $(g/h)^{-1}$ in this case.

The field k(C) is a transcendental extension of k (of transcendence degree 1).

 ${\color{red} {\bf \Theta}}$ Pro tips: ${\color{red} {ullet}}$ Don't confuse k(C) and C(k). ${\color{red} {\bf \bullet}}$ Don't assume k[x,y,z]/(f) is a UFD.

Evaluating functions in k(C) at a point in $C(\bar{k})$

For $g/h \in k(C)$ with $\deg g = \deg h = d$ and any $\lambda \in k^{\times}$ we have

$$\frac{g(\lambda x, \lambda y, \lambda z)}{h(\lambda x, \lambda y, \lambda z)} = \frac{\lambda^d g(x, y, z)}{\lambda^d h(x, y, z)} = \frac{g(x, y, z)}{h(x, y, z)} \checkmark$$

For any $P \in C(\bar{k})$ we have f(P) = 0, so if $g_1/h_1 = g_2/h_2$ with $h_1(P), h_2(P) \neq 0$, then $g_1(P)h_2(P) - g_2(P)h_1(P) = f(P) = 0$, so $(g_1/h_1)(P) = (g_2/h_2)(P)$.

To evaluate $\alpha \in k(C)$ at $P \in C(\bar{k})$ we need to choose $\alpha = q/h$ with $h(P) \neq 0$.

Example

$$f(x,y,z) = zy^2 - x^3 - z^2x$$
, $P = (0:0:1)$, $\alpha = 3xz/y^2$. We have

$$\alpha(P) = \frac{3xz}{y^2}(0:0:1) = \frac{3xz^2}{x^3 + z^2x}(0:0:1) = \frac{3z^2}{x^2 + z^2}(0:0:1) = 3$$

Rational maps

Definition

We say that $\alpha \in k(C)$ is defined at $P \in C(\bar{k})$ if $\alpha = g/h$ with $h(P) \neq 0$.

Definition

Let C_1/k and C_2/k be projective plane curves. A rational map $\phi\colon C_1\to C_2$ is a triple $(\phi_x:\phi_y:\phi_z)\in\mathbb{P}^2(k(C_1))$ such that for any $P\in C_1(\bar k)$ where ϕ_x,ϕ_y,ϕ_z are defined and not all zero we have $(\phi_x(P):\phi_y(P):\phi_z(P))\in C_2(\bar k)$.

The rational map ϕ is defined at P if there exists $\lambda \in k(C_1)^{\times}$ such that $\lambda \phi_x, \lambda \phi_y, \lambda \phi_z$ are defined and not all zero at P.

Rational maps (alternative approach)

Let $C_1: f_1(x,y,z)=0$ and $C_2: f_2(x,y,z)=0$ be projective curves over k. If $\psi_x,\psi_y,\psi_z\in k[x,y,z]$ are homogeneous of the same degree, not all in (f_1) , and $f_2(\psi_x,\psi_y,\psi_z)\in (f_1)$, then at least one and possibly all of

$$(\psi_x/\psi_z : \psi_y/\psi_z : 1), \qquad (\psi_x/\psi_y : 1 : \psi_z/\psi_y), \qquad (1 : \psi_y/\psi_x : \psi_z/\psi_x)$$

is a rational map $\psi \colon C_1 \to C_2$. Call two such triples $(\psi_x \colon \psi_y \colon \psi_z)$ and $(\psi_x' \colon \psi_y' \colon \psi_z')$ equivalent if $\psi_x' \psi_y - \psi_x \psi_y'$ and $\psi_x' \psi_z - \psi_x \psi_z'$ and $\psi_y' \psi_z - \psi_y \psi_z'$ all lie in (f_1) .

This holds in particular when $\psi_*' = \lambda \psi_*$ for some nonzero homogeneous $\lambda \in k[x,y,z]$, so we can always remove any common factor of ψ_x, ψ_y, ψ_z .

Equivalent triples define the same rational map, and every rational map can be defined this way: if $\phi = (\frac{g_x}{h_x}: \frac{g_y}{h_y}: \frac{g_z}{h_z})$ then take $\psi_x := g_x h_y h_z$, $\psi_y := g_y h_x h_z$, $\psi_z := g_z h_x h_y$.

The rational map given by $[\psi_x,\psi_y,\psi_z]$ is defined at $P\in C_1(\bar k)$ whenever any of $\psi_x(P),\psi_y(P),\psi_z(P)$ is nonzero, in which case $(\psi_x(P):\psi_y(P):\psi_z(P))\in C_2(\bar k)$.

Morphisms

Definition

A morphism is a rational map $\phi \colon C_1 \to C_2$ that is defined at every $P \in C_1(\bar{k})$.

Theorem

If C_1 is a smooth projective curve then every rational map $\phi\colon C_1\to C_2$ is a morphism. (Because when C_1 is smooth its coordinate ring $k[C_1]$ is a Dedekind domain.)

Theorem

A morphism of projective curves is either surjective or constant.

(Because projective varieties are complete/proper.)

Projective curves are isomorphic if there is an invertible morphism $\phi: C_1 \to C_2$. We then have a bijection $C_1(\bar{k}) \to C_2(\bar{k})$, but this necessary condition is not sufficient!

An equivalence of categories

Every surjective morphism of projective curves $\phi\colon C_1\to C_2$ induces an injective morphism $\phi^*\colon k(C_2)\to k(C_1)$ of function fields defined by $\alpha\mapsto\alpha\circ\phi$.

Theorem

The categories of smooth projective curves over k with surjective morphisms and function fields of transcendence degree one over k are contravariantly equivalent via the functor $C\mapsto k(C)$ and $\phi\mapsto\phi^*$.

Every curve C, even singular affine curves, has a function field (for plane curves f(x,y)=0, k(C) is the fraction field of k[C]:=k[x,y]/(f)). The function field k(C) is categorically equivalent to a smooth projective curve \tilde{C} , the desingularization of C.

One can construct \tilde{C} from C geometrically (using blow ups), but its existence is categorical, and in many applications the function field is all that matters.

Isogenies

Let E_1, E_2 be elliptic curves over k, with distinguished points O_1, O_2 .

Definition

An isogeny $\phi \colon E_1 \to E_2$ is a surjective morphism that is also a group homomorphism.

Definition (apparently weaker but actually equivalent)

An isogeny $\phi \colon E_1 \to E_2$ is a non-constant rational map with $\phi(O_1) = O_2$.

 E_1 and E_2 are isomorphic if there are isogenies $\phi_1 \colon E_1 \to E_2$ and $\phi_2 \colon E_2 \to E_1$ whose composition is the identity (the isogenies ϕ_1 and ϕ_2 are then called isomorphisms).

Morphisms $\phi \colon E_1 \to E_1$ with $\phi(O_1) = O_1$ are endomorphisms.

Note that $E_1 \to O_1$ is an endomorphism, but it is **not an isogeny** (for us at least).

Endomorphisms that are isomorphisms are called automorphisms.

Examples of isogenies and endomorphisms

- The negation map $[-1]: P \mapsto -P$ defined by $(x:y:z) \mapsto (x:-y:z)$ is an isogeny, an endomorphism, an isomorphism, and an automorphism.
- For any integer n the multiplication by n map $[n]\colon P\mapsto nP$ is an endomorphism. It is an isogeny for $n\neq 0$ and an automorphism for $n=\pm 1$.
- For E/\mathbb{F}_q we have the Frobenius endomorphism $\pi_E \colon (x:y:z) \mapsto (x^q:y^q:z^q)$. It induces a group isomorphism $E(\overline{\mathbb{F}}_q) \to E(\overline{\mathbb{F}}_q)$, but it is **not an isomorphism**.
- For E/\mathbb{F}_q of characteristic p the map $\pi\colon (x:y:z)\mapsto (x^p:y^p:z^p)$ is an isogeny, but typically not an endomorphism. For $E\colon y^2=x^3+Ax+B$ the image of π is the elliptic curve $E^{(p)}\colon y^2=x^3+A^px+B^p$, which need not be isomorphic to E.

The multiplication-by-2 map

Let E/k be defined by $y^2=x^3+Ax+B$ and let ϕ be the endomorphism $P\mapsto 2P$. The doubling formula for affine $P=(x:y:1)\in E(\bar k)$ is given by

$$\phi_x(x,y) = m(x,y)^2 - 2x = \frac{(3x^2 + A)^2 - 8xy^2}{4y^2},$$

$$\phi_y(x,y) = m(x,y)(x - \phi_x(x,y)) - y = \frac{12xy^2(3x^2 + A) - (3x^2 + A)^3 - 8y^4}{8y^3},$$

with $m(x,y):=(3x^2+A)/(2y)$. We then have $\phi:=(\psi_x/\psi_z:\psi_y/\psi_z:1)$ with

$$\psi_x(x, y, z) = 2yz((3x^2 + Az^2)^2 - 8xy^2z),$$

$$\psi_y(x, y, z) = 12xy^2z(3x^2 + Az^2) - (3x^2 + Az^2)^3 - 8y^4z^2,$$

$$\psi_z(x, y, z) = 8y^3z^3.$$

How do we evaluate this morphism at the point O := (0:1:0)?

The multiplication-by-2 map

How do we evaluate this morphism at the point O := (0:1:0)?

We can add any multiple of $f(x,y,z)=y^2z-x^3-Axz^2-Bz^3$ to any of ψ_x , ψ_y , ψ_z ; this won't change the morphism ϕ .

Replacing ψ_x by $\psi_x + 18xyzf$ and ψ_y by $\psi_y + (27f - 18y^2z)f$, and simplifying yields

$$\begin{split} & \psi_x(x,y,z) = 2y \big(xy^2 - 9Bxz^2 + A^2z^3 - 3Ax^2z \big), \\ & \psi_y(x,y,z) = y^4 - 12y^2z(2Ax + 3Bz) - A^3z^4 + 27Bz(2x^3 + 2Axz^2 + Bz^3) + 9Ax^2(3x^2 + 2Az^2), \\ & \psi_z(x,y,z) = 8y^3z. \end{split}$$

Now $\phi(O) = (\psi_x(0,1,0) : \psi_y(0,1,0) : \psi_z(0,1,0)) = (0:1:0) = O$, as expected.

That wasn't particularly fun. u But there is a way to completely avoid this! u

A standard form for isogenies

Lemma

Let $E_1: y^2 = f_1(x)$ and $E_2: y^2 = f_2(x)$ be elliptic curves over k and let $\alpha: E_1 \to E_2$ be an isogeny. Then α can be put in the affine standard form

$$\alpha(x,y) = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y\right),$$

where $u, v, s, t \in k[x]$ are polynomials with $u \perp v$ and $s \perp t$.

Corollary

When $\alpha \colon E_1 \to E_2$ is defined as above we necessarily have $v^3|t^2$ and $t^2|v^3f_1$.

It follows that v(x) and t(x) have the same set of roots in \bar{k} , and these roots are precisely the x-coordinates of the affine points in $E_1(\bar{k})$ that lie in the kernel of α . In particular, $\ker \alpha$ is a finite subgroup of $E_1(\bar{k})$.

Degree and separability

Definition

Let $\alpha(x,y) = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y\right)$ be an isogeny in standard form.

The degree of α is $\deg \alpha := \max(\deg u, \deg v)$.

We say that α is separable if (u/v)' is nonzero, otherwise α is inseparable.

Definition (equivalent)

Let $\alpha \colon E_1 \to E_2$ be an isogeny, let $\alpha^* \colon k(E_2) \to k(E_1)$ be the corresponding embedding of function fields, and consider the field extension $k(E_1)/\alpha^*(k(E_2))$.

The degree of α is the degree of the field extension $k(E_1)/\alpha^*(k(E_2))$.

We say that α is separable if $k(E_1)/\alpha^*(k(E_2))$ is separable, otherwise α is inseparable.

Examples

- The standard form of the negation map [-1] is [-1](x,y)=(x,-y). It is separable and has degree 1.
- The standard form of the multiplication-by-2 map [2] is

$$[2](x,y) = \left(\frac{x^4 - 2Ax^2 - 8Bx + A^2}{4(x^3 + Ax + B)}, \frac{x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - A^3 - 8B^2}{8(x^3 + Ax + B)^2}y\right).$$

It is separable and has degree 4.

• The standard form of the Frobenius endomorphism of E/\mathbb{F}_q is

$$\pi_E(x,y) = (x^q, (x^3 + Ax + B)^{(q-1)/2}y).$$

Note that we have used the curve equation to transform y^q (here q is odd). It is inseparable, because $(x^q)'=qx^{q-1}=0$, and it has degree q.