18.783 Elliptic Curves
Lecture 3

Andrew Sutherland

September 11, 2025

Representing finite fields

For I, ~ Z/pZ we use integers in [0, p — 1] denoting elements of Z/pZ.

For F, ~]Fg ~ Fp[z]/(z?) we use vectors in IFg denoting elements of F,[z]/(x%),
which can view as elements of F[x]/(f) for some irreducible f € F,,[z] of degree d.
It does not matter which f we pick, but some choices are better than others.

This reduces all computation in finite fields to integer and polynomial arithmetic.

We should note that there are other choices. If F* = (r) (so is a primitive root), we
could use 0 to denote 0 and e € [1,q — 1] to denote r°.

Integer arithmetic

Complexity of ring operations on n-bit integers:

addition/subtraction O(n)
multiplication (FFT) O(nlogn) &

To multiply polynomials in Fp[z] we use Kronecker substitution.
Let f € Z[z] denote the lift of f € Fplz] to Z]z]. We compute h = fg € Fp[z] via

A~ A

h(2™) = f(2™)9(2™)

with m > 21gp +1g(d + 1), where d := deg f. The kth coefficient of h can be
obtained by extracting the kth block of m bits from h(2™) and reducing it modulo p.

All ring operations in Fy[z] can thus be reduced to ring operations in Z, provided we
know how to reduce integers modulo p.

Euclidean division

For positive integers a,b we want to compute the unique ¢, > 0 for which
a=bqg+r (0 <r<b),
that is, ¢ = |a/b| and r = a mod b. Recall Newton's method to find a root of f(x):

To compute ¢ ~ 1/b, we apply this to f(x) = 1/x — b, using the Newton iteration

1

flzi) w0

1+ 7 fl(x,t)) _%
i

= 2z; — ba?.

We can then compute ¢ = |ca] and r = a — bq.

Euclidean division

As an example, let us approximate 1/b = 1/123456789 working in base 10 (in an
actual implementation would use base 2, or base 2, where w is the word size).

zg = 1x1078

r1 = 2(1x107%) — (1.2 x 10%)(1 x 1078)?
= 0.80x 1078

Ty = 2(0.80 x 107%) — (1.234 x 10%)(0.80 x 1078)?
= 0.8102x 1078

3 = 2(0.8102 x 107%) — (1.2345678 x 10%)(0.8102 x 1078)?
= 0.81000002 x 1075,

We double the precision we are using at each step, and each z; is correct up to an error
in its last decimal place. The value x3 suffices to correctly compute [a/b| for a < 10°.

Euclidean division

There is an analogous algorithm for Euclidean division in F[z].
Given a,b € F,[x] with b monic we con compute the unique g, € Fp[z] for which

a=bqg+r (degr < degb).

See the lecture notes for details. In both cases if the divisor b is fixed we can save time
by precomputing ¢ =~ 1/b (as on Problem Set 1).

Theorem

Let ¢ = p© be a prime power and assume loge = O(logp) or p = O(1).
The time to multiply two elements in F is O(nlogn), where n = logq.

Under a widely believed conjecture we know that multiplication in I, takes time
O(nlogn) (but not necessarily O(M(n))), without any assumptions about p and d.

Inverting elements of a finite field
Given integers a > b > 0 the (extended) Euclidean algorithm computes s,t € Z with
ged(a,b) =as+ bt (|s| <b/ged(a,b), |t| < a/ged(a,b))
If @ = p is prime, then ps + bt = 1 and t = b~! mod p with ¢t € [0,p — 1].
The Euclidean algorithm works in any Euclidean ring, including [, [x].

But note that F,,[z] has a larger unit group than Z and gcd(a, b) is defined only units.
More formally, gcd(a, b) = (a,b) = (c) is a principal ideal. In Z there is a unique
positive choice of ¢, while in Fp,[z] there is a unique monic choice of c.

The fast Euclidean algorithm (see lecture notes) yields the following theorem.
Theorem

Let ¢ = p® be a prime power and assume logd = O(log p) or p = O(1).
The time to invert an element of ¢ is O(M(n)logn) = O(n log®n), where n = logq.

Exponentiation (aka scalar multiplication for multiplicative groups)

Given a group element g and a positive integer a we want to compute g* =gg---¢g
(or if we write the group operation additively, ag =g+ g+ ---+ g).
We can achieve this using a “square-and-multiply” (or “double-and-add”) algorithm:
1. Let a = 31 (2%a; and initialize h to g.
2. For ¢ from n — 1 down to O:

a. Replace h with h?
b. If a; = 1 then replace h with hg.

At the end of the ith loop we have h = ¢® with b = Z’;;é 2ai;.

This allows us to compute ¢g* using at most 2n = O(n) group operations.
The leading constant 2 can be improved (see Problem Set 2).

For g € F¥ and a < ¢ — 1 the time to compute g* is O(nM(n)) = O(n*logn).
We can reduce a modulo ¢ — 1, and we note that we can compute ¢! = ¢g772.

Root-finding over finite fields

Given f € F,[z] we wish to compute its F-rational roots, the set {a € F, : f(a) = 0}.

We can determine the multiplicity of a root a by evaluating derivatives of f at a,
since (z — a)’ divides f(x) if and only if f)(a) =0 for 0 <i < j.

An Fg-root of f lies in F, if and only if it is also a root of 29 — z, thus the F-rational
roots of f are precisely the roots of g(z) := ged(f, z9 — z), all of which are distinct.

When ¢ is larger than d := deg f, we do not want to compute ged(f(x),z? — x) using
the Euclidean algorithm; the cost would be superinear in g (exponential in n = log q).

Instead we compute h(z) = 29 mod f by exponentiating x by ¢ in the ring F,[x]/(f)
using binary exponentiation, and then compute g(z) := ged(f(z), h(z) — z). The
polynomial g that splits into distinct linear factors, one for each [Fy-rational root of f
(the degree of g tells us the number of roots).

Randomized root-finding

Having computed g(z) = ged(f(z),2? —x) = (r —aq) --- (x — a,) as a product of
monic linear factors whose roots are the F,-rational roots of f, we already know how
many distinct [F-rational roots f has: degg.

We can use the same approach to compute the number of distinct [Fn-rational roots f
has forn =1,2,...,deg f, and by computing their multiplicities we can determine the
degrees of all the irreducible factors of f € [Fy[z].

But no polynomial-time algorithm is known for computing the actual roots aq,...,a,
when r > 1. We need to use randomization to do this efficiently.. Assume ¢ is odd.

Rabin: Pick a uniform random ¢ € F, and compute h(z) = ged(g(z), (z + §)* + 1).

With probability %, the polynomial h will be a non-trivial factor of g (see proof).

We can then apply this recursively to h or g/h (or both).

Summary

The table below summarizes the bit-complexity of the various arithmetic operations we
have considered, both in the integer ring Z and in a finite field IF, of cardinality ¢ = p°,
with n denoting the bit-size of the inputs and M(n) the time to multiply in [F,.
Assuming log e = O(logp) (or a form of Linnik's conjecture), M(n) = O(nlogn).

integers Zfinite field IF,
addition /subtraction O(n) O(n)

multiplication O(nlogn) M(n)

Euclidean division (reduction) O(nlogn) O(M(n))

extended gcd (inversion) O(nlog?n) O(M(n)logn)

exponentiation O(nM(n)

square-roots (probabilistic) O(nM(n))

root-finding (probabilistic) O(M(d(n + logd))(n + logd))
factoring (probabilistic) O(M(d(n + logd))d(n + logd))
irreducibility testing O(M(d(n + logd))d(n + logd))

