18.783 Elliptic Curves Lecture 22

Andrew Sutherland

December 2, 2025

ℓ-isogeny graphs

Throughout this lecture, k is a field and $\ell \neq \operatorname{char}(k)$ is a prime. Let E_1/k be an elliptic curve and let $j_1 := j(E_1)$. The k-rational roots of

$$\phi_{\ell}(Y) := \Phi_{\ell}(j_1, Y)$$

are precisely the j-invariants of the elliptic curves E_2/k that are ℓ -isogenous to E_1 .

Definition

The ℓ -isogeny graph $G_{\ell}(k)$ is the directed graph with vertex set k and edges (j_1,j_2) present with multiplicity equal to the multiplicity of j_2 as a root of $\Phi_{\ell}(j_1,Y)$.

 $G_\ell(k)$ may contain self-loops (ℓ -isogenies may be endomorphisms), and edges may occur with multiplicity (ℓ -isogenies $E_1 \to E_2$ may have distinct kernels).

If (j_1,j_2) is an edge in $G_\ell(k)$ then so is (j_2,j_1) (there is a dual isogeny). For $j_1,j_2\not\in\{0,1728\}$ these edges have the same multiplicity.

Horizontal and vertical ℓ -isogenies

Theorem

Let $\varphi \colon E \to E'$ be an ℓ -isogeny of elliptic curves over k. Then $\operatorname{End}^0(E') \simeq \operatorname{End}^0(E)$. If $\operatorname{End}^0(E) = K$ is an imaginary quadratic field then $\operatorname{End}(E) = \mathcal{O}$ and $\operatorname{End}(E') = \mathcal{O}'$ are orders in K such that one of the following holds:

(i)
$$\mathcal{O} = \mathcal{O}'$$
, (ii) $[\mathcal{O} : \mathcal{O}'] = \ell$, (iii) $[\mathcal{O}' : \mathcal{O}] = \ell$.

Proof: To the board!

Definition

Let $\varphi \colon E \to E'$ be an ℓ -isogeny, with $\operatorname{End}(E) = \mathcal{O}$ and $\operatorname{End}(E') = \mathcal{O}'$ of rank 2.

- (i) When $\mathcal{O} = \mathcal{O}'$ we say that φ is horizontal;
- (ii) When $[\mathcal{O}:\mathcal{O}']=\ell$ we say that φ is descending;
- (iii) When $[\mathcal{O}':\mathcal{O}]=\ell$ we say that φ is ascending.

We collectively refer to ascending and descending isogenies as vertical isogenies.

$\ell\text{-isogeny graphs over }\mathbb{C}$

Theorem

Let E/\mathbb{C} be an elliptic curve with CM by an order $\mathcal O$ of discriminant D. If $\ell \nmid [\mathcal O_K : \mathcal O]$ then E admits $1 + (\frac{D}{\ell})$ horizontal, $\ell - (\frac{D}{\ell})$ descending, and no ascending ℓ -isogenies. Otherwise E admits no horizontal, ℓ descending, and one ascending ℓ -isogenies.

Proof: To the board!

Over the complex numbers ℓ -isogeny graphs are (countably) infinite: there are infinitely many connected components (there is at least one for each $\mathcal{O} \subseteq \mathcal{O}_K$ with $\ell \nmid [\mathcal{O}_K : \mathcal{O}]$), and each component is infinite, since we can always keep descending.

Vertices corresponding to elliptic curves with $\ell|[\mathcal{O}_K:\mathcal{O}]$ all look the same: there is a single ascending edge and ℓ descending edges.

ℓ-isogeny graphs over finite fields

Lemma

Let $\mathcal O$ be an imaginary quadratic order of discriminant D and $q\perp D$ be a prime power. The set $\mathrm{Ell}_{\mathcal O}(\mathbb F_q)$ is either empty or has cardinality h(D). If $\mathrm{Ell}_{\mathcal O}(\mathbb F_q)$ is nonempty, so is $\mathrm{Ell}'_{\mathcal O}(\mathbb F_q)$ for every imaginary quadratic order $\mathcal O'$ that contains $\mathcal O$.

Proof: To the board!

Corollary

Let E/\mathbb{F}_q be an elliptic curve with CM by $\mathcal O$ of discriminant $D\perp q$ in an imaginary quadratic field K, and let $\ell\nmid q$ be prime. If $\ell\nmid [\mathcal O_K:\mathcal O]$ then E admits $1+(\frac{D}{\ell})$ horizontal ℓ -isogenies and no ascending ℓ -isogenies, otherwise, E admits no horizontal ℓ -isogenies and one ascending ℓ -isogeny.

The CM action over finite fields

If E/\mathbb{F}_q is an elliptic curve with CM by an imaginary quadratic order $\mathcal O$ and $\mathfrak a$ is a proper $\mathcal O$ -ideal, then we have an $\mathfrak a$ -torsion subgroup

$$E[\mathfrak{a}] := \{ P \in E(\overline{\mathbb{F}}_q) : \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \}.$$

Provided the norm of \mathfrak{a} is prime to q, there is a corresponding separable isogeny $\varphi_{\mathfrak{a}} \colon E \to E'$ with $\ker \varphi_{\mathfrak{a}} = E[\mathfrak{a}]$ and $\deg \varphi_{\mathfrak{a}} = \mathrm{N}\mathfrak{a}$ which is unique up to isomorphism.

Every ideal class contains infinitely many prime ideals, so we can always realize the CM action using horizontal ℓ -isogenies.

Corollary

Let \mathcal{O} be an imaginary quadratic order of discriminant D and let \mathbb{F}_q be a finite field with $q \perp D$. If the set $\mathrm{Ell}_{\mathcal{O}}(\mathbb{F}_q)$ is nonempty then it is a $\mathrm{cl}(\mathcal{O})$ -torsor in which the action of the ideal class of any proper \mathcal{O} -ideal of prime norm $\ell \nmid q$ is given by a horizontal ℓ -isogeny, and the inverse of this action is given by the dual isogeny.

Isogeny volcanoes

Definition

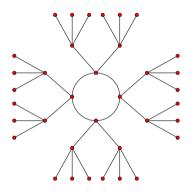
An ℓ -volcano V is a connected undirected graph whose vertices are partitioned into one or more levels V_0,\ldots,V_d such that the following hold:

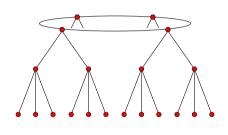
- 1. The subgraph on V_0 (the surface) is a regular graph of degree at most 2.
- 2. For i > 0, each vertex in V_i has exactly one neighbor in level V_{i-1} , and this accounts for every edge not on the surface.
- **3.** For i < d, each vertex in V_i has degree $\ell + 1$.

Level V_d is called the floor of the volcano; the floor and surface coincide when d=0.

Like $G_\ell(k)$, an ℓ -volcano may have multiple edges and self-loops, but it is an undirected graph. If the surface of an ℓ -volcano has more than two vertices, it must be a simple cycle. Two vertices may be connected by 1 or 2 edges, and a single vertex may have 0, 1, or 2 self-loops. The shape of an ℓ -volcano is determined by the integers ℓ , d, $|V_0|$.

Isogeny volcanoes





If we ignore components that contain the two exceptional j-invariants 0 and 1728, the ordinary components of $G_\ell(\mathbb{F}_q)$ are all ℓ -volcanoes. This was proved by David Kohel in his Ph.D. thesis, although the term "volcano" was coined later by Fouquet and Morain.

Isogeny volcanoes

Theorem (Kohel)

Let \mathbb{F}_q be a finite field, let $\ell \nmid q$ be a prime, and let V be an ordinary component of $G_{\ell}(\mathbb{F}_q)$ that does not contain the j-invariants 0 or 1728. Then V is an ℓ -volcano and:

- (i) The vertices in level V_i all have the same endomorphism ring \mathcal{O}_i .
- (ii) The subgraph on V_0 has degree $1 + (\frac{D_0}{\ell})$, where $D_0 = \operatorname{disc}(\mathcal{O}_0)$.
- (iii) If $(\frac{D_0}{\ell}) \geq 0$, then $|V_0|$ is the order of $[l] \in cl(\mathcal{O}_0)$, where $\ell\mathcal{O}_0 = l\bar{l}$, else $|V_0| = 1$.
- (iv) V has depth d, where $4q = t^2 \ell^2 v^2 D_0$ with $\ell \nmid v$, $t^2 = (\operatorname{tr} \pi_E)^2$, for $j(E) \in V$.
- (v) $\ell \nmid [\mathcal{O}_K : \mathcal{O}_0]$ and $[\mathcal{O}_i : \mathcal{O}_{i+1}] = \ell$ for $0 \leq i < d$.

Proof: To the board!

Remark

This theorem extends to $0,1728 \in V$ with minor modifications.

Finding the floor

The vertices that lie on the floor of an ℓ -volcano V are distinguished by their degree.

Lemma

Let v be a vertex in an ordinary component V of depth d in $G_{\ell}(\mathbb{F}_a)$.

Then either $\deg v \leq 2$ and $v \in V_d$, or $\deg v = \ell + 1$ and $v \notin V_d$.

Algorithm (FindFloor)

Given an ordinary vertex $v_0 \in G_{\ell}(\mathbb{F}_q)$, find a vertex on the floor of its component.

- 1. If $\deg v_0 \leq 2$ then output v_0 and terminate.
- **2.** Pick a random neighbor v_1 of v_0 and set $s \leftarrow 1$.
- **3.** While $\deg v_s>1$: pick a random neighbor $v_{s+1}\neq v_{s-1}$ of v_s and increment s.
- **4.** Output v_s .

Pro tip: rather than picking v_{s+1} as a root of $\phi(Y) = \Phi_{\ell}(v_s, Y)$ use $\phi(Y)/(Y-v_{s-1})^e$, where e is the multiplicity of v_{s-1} as a root of $\phi(Y)$.

Finding a shortest path to the floor

Algorithm (FindShortestPathToFloor)

Given an ordinary $v_0 \in G_{\ell}(\mathbb{F}_q)$, find a shortest path to the floor of its component.

- 1. Let $v_0 = j(E)$. If $\deg v_0 \le 2$ then output v_0 and terminate.
- 2. Pick three neighbors of v_0 and extend paths from each of these neighbors in parallel, stopping as soon as any of them reaches the floor.¹
- 3. Output a path that reached the floor.

If δ is the length of the shortest path to the floor V_d , then $j(E) \in V_{d-\delta}$. This effectively gives us an "altimeter" $\delta(v)$ that we may use to navigate V. We can determine whether a given edge (v_1, v_2) is horizontal, ascending, or descending, by comparing $\delta(v_1)$ to $\delta(v_2)$, and we can determine the exact level of any vertex.

A more sophisticated approach uses the Weil pairing for large d (but this is rare).

¹If v_0 does not have three distinct neighbors then just pick all of them.