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The first main theorem of complex multiplication

Let O be an imaginary quadratic order with discriminant D, and let

EllO(C) := {j(E) ∈ C : End(E) = O}.

In the previous lecture we proved that the Hilbert class polynomial

HD(X) := HO(X) :=
∏

j(E)∈EllO(C)

(
X − j(E)

)

has integer coefficients. We defined L to be the splitting field of HD(X) over
K := Q(

√
D), and showed that there is an injective group homomorphism

Ψ: Gal(L/K) ↪→ cl(O)

that commutes with the group actions of Gal(L/K) and cl(O) on the roots of HD(X).
It remains to show that Ψ is surjective, equivalently, that HD(X) is irreducible over K.



The decomposition group
Let L/K be a Galois extension of number fields, and let p be a prime ideal of
OK := K ∩ Z (a “prime” of K). The OL-ideal pOL has a unique factorization

pOL = qe1
1 · · · qen

n

into primes qi of L for which qi ∩ OK = p. If pOL is squarefree (p ∤ disc OL) then p is
unramified in L, and Gal(L/K) acts transitively on {q|p} := {q1, . . . , qn}.

Definition
Let L/K be a Galois extension of number fields, let p be a prime of K that is
unramified in L. For each prime q ∈ {q|p} the stabilizer subgroup

Dq := {σ ∈ Gal(L/K) : qσ = q}

is the decomposition group of q.



Frobenius elements
Let Fp := OK/p and Fq := OL/q be the residue fields of the maximal ideals p and q
(the rings OK and OL are Dedekind domains, so nonzero prime ideals are maximal).
These are finite fields of cardinality Np := [OK : p] and Nq := [OL : q].
The image of OK in OL/q is OK/(q ∩ OK) = OK/p = Fp, so Fp is a subfield of Fq.

Each σ ∈ Dq fixes q and induces an automorphism σ̄ ∈ Gal(Fq/Fp) via σ̄(x) := σ(x).
When p is unramified this defines a group isomorphism

Dq
∼−→ Gal(Fq/Fp)

Definition
Let L/K be a Galois extension of number fields and q a prime of L with p := q ∩ OK

unramified. The unique σq ∈ Dq for which σ̄q is the Frobenius automorphism x 7→ xNp

is the Frobenius element at q. The Frobenius elements of q|p are all conjugate, and we
use σp to denote this conjugacy class; σp is a single element when Gal(L/K) is abelian.



Primes of good reduction

If E/C has CM by an imaginary quadratic order O of discriminant D := disc O,
then j(E) is a root of HD(X) in the splitting field L of HD(X) over K := Q(

√
D),

and we can choose a Weierstrass model y2 = x3 + Ax + B for E with A, B ∈ OL

(take A = 3j(E)(1728 − j(E)) and B = 2j(E)(1728 − j(E))2, for example).

For primes q of L that do not divide ∆(E) := −16(4A3 + 27B2) we can reduce A, B
modulo q to obtain an elliptic curve E over the residue field Fq := OL/q. We then
call q a prime of good reduction for E (this is all but finitely many primes of L).

More generally, we call q a prime of good reduction for E if there is any model for E
with coefficients in OL such that q ∤ ∆(E) (this includes general Weierstrass equations
that may have good reduction even at primes above 2). In general there is not a single
model that works for all primes of good reduction (there is when h(D) = 1).



The first main theorem of complex multiplication

Theorem
Let O be an imaginary quadratic order of discriminant D and L the splitting field of
HD(X) over K := Q(

√
D). The map Ψ: Gal(L/K) → cl(O) sending σ ∈ Gal(L/K)

to the unique ασ ∈ cl(O) such that j(E)σ = ασj(E) for j(E) ∈ EllO(L) is a group
isomorphism compatible with the actions of Gal(L/K) and cl(O).
Proof: To the board!

Corollary
Let O be an imaginary quadratic order with discriminant D. The Hilbert class
polynomial HD(x) is irreducible over K = Q(

√
D) and for any E/C with CM by O

the field K(j(E)) is a finite abelian extension of K with Gal(K(j(E))/K) ≃ cl(O).



Ring class fields and Kronecker symbols

Definition
Let O be an imaginary quadratic order with discriminant D. The ring class field of O
(and of D) is the splitting field of HD(X) over K = Q(

√
D), equivalently, the field

L = K(j(E)) generated by the j-invariant of any elliptic curve E/C with CM by O.

Definition
Let p be a prime and D an integer. For p > 2 the Kronecker symbol is(

D

p

)
:= #{x ∈ Fp : x2 = D} − 1,

and
(

D
2

)
= 1 for D ≡ ±1 mod 8,

(
D
2

)
= −1 for D ≡ ±3 mod 8, and

(
D
2

)
= 0 otherwise.



Primes that split completely in the ring class field

Definition
A prime p ∈ Z splits completely in a number field L if pOL = q1 · · · qn with the qi

distinct primes of norm Nq = p (so Fq = Fp).

Theorem
Let O be an imaginary quadratic order with discriminant D and ring class field L.
Let p ∤ D be an odd prime that is unramified in L.1 The following are equivalent:
(i) p is the norm of a principal O-ideal;
(ii)

(
D
p

)
= 1 and HD(X) splits into linear factors in Fp[X];

(iii) p splits completely in L;
(iv) 4p = t2 − v2D for some integers t and v with t ̸≡ 0 mod p.

Proof: To the board!

1If p does not divide D then in fact it must be unramified in L.



Factoring primes in imaginary quadratic fields
Lemma
Let K be an imaginary quadratic field of discriminant D with ring of integers
OK = [1, ω] and let p ∈ Z be prime. Every OK-ideal of norm p is of the form
p = [p, ω − r], where r ∈ Z is a root of the minimal polynomial of ω modulo p. The
number of such ideals p is 1 +

(
D
p

)
∈ {0, 1, 2} and the prime factorization of pOK is

(p) =


pp if

(
D
p

)
= 1,

p2 if
(

D
p

)
= 0,

(p) if
(

D
p

)
= −1.

with p ̸= p when
(

D
p

)
= 1.

Corollary
When p divides the conductor [OK : O] there are no proper O-ideals of norm p and
otherwise there are 1 +

(
D
p

)
= 0, 1, 2 when p is inert, ramified, split in K, respectively.



Class field theory

Definition
The Hilbert class field of a number field K is a maximal unramified2 abelian extension.

As conjectured by Hilbert and proved by Furtwängler, if L is the Hilbert class field
of K then Gal(L/K) ≃ cl(OK). The ring class field L of an order O in an imaginary
quadratic field K is the Hilbert class field of K if and only if O = OK , since L/K is
ramified at primes dividing the conductor of O.
Each number field L is characterized by the set of primes of Q that split completely
in L; for any two number fields these sets are either equal or have infinite difference.

Corollary
Let O be an order of discriminant D in an imaginary quadratic field K. The splitting
field L of HD(X) over K is unramified at all primes that do not divide the conductor
of O. In particular, every rational prime p ∤ D is unramified in L.

2This includes “infinite primes” of K; these are always unramified when K is imaginary quadratic.



The norm equation

The equation
4p = t2 − v2D (1)

in part (iv) of the theorem is known as the norm equation. It arises from the principal
O-ideal (λ) of norm p given by part (i), generated by a root λ ∈ O ⊆ OK of
x2 − tx + p, which has norm p and trace t. By the quadratic equation

λ = −t ±
√

t2 − 4p

2 = −t ± v
√

D

2 .

Clearing denominators and taking norms yields N(2λ) = 4λλ̄ = 4p = t2 − v2D.

The primes p that split completely in the ring class field of O are precisely those that
satisfy (1) for some t, v. For D < −4 the value of ±t is uniquely determined by p.



Reducing endomorphisms
Let E/C have CM by an imaginary quadratic order O of discriminant D and let p be
an odd prime that splits completely in the ring class field L for O. Then j(E) is a root
of HD(X) that reduces to a root of HD(X) in the residue field Fq = Fp of any prime
q of L above p. Pick a model y2 = x3 + Ax + B for E over OL such that q ∤ ∆(E).

Any nonzero φ ∈ End(E) is defined by rational functions whose coefficients we can
assume lie in OL, allowing us to reduce them to Fq = OL/q, yielding φ ∈ End(E)
satisfying the characteristic equation of φ. We have an injective ring homomorphism

End(E) ↪→ End(E)

that is in fact a ring isomorphism (by the Deuring lifting theorem).

It is clear that for j(E) ̸= 0, 1728 we have an isomorphism of endomorphism algebras,
and for O = OK , of endomorphism rings, since t ̸≡ 0 mod p implies that E is ordinary,
so End(E) must be an order in K = Q(

√
D).



The Deuring lifting theorem

Theorem (Deuring)

Let O be an imaginary quadratic order of discriminant D with ring class field L, and
let q be the norm of a prime ideal in OL with q ⊥ D. Then HD(X) splits into distinct
linear factors in Fq[X] and its roots form the set

EllO(Fq) := {j(E) ∈ Fq : End(E) ≃ O}

of j-invariants of elliptic curves E/Fq with CM by O.

Theorem (Deuring lifting theorem)

Let E/Fq be an elliptic curve over a finite field and let ϕ ∈ End(E) be nonzero. There
exists an elliptic curve E∗ over a number field L with an endomorphism ϕ∗ ∈ End(E∗)
such that E∗ has good reduction modulo a prime q of L with residue field OL/q ≃ Fq,
and E and ϕ are the reductions modulo q of E∗ and ϕ∗.



The CM method
Let O be an imaginary quadratic order of discriminant D < −4, and let p ∤ D be an
odd prime satisfying the norm equation 4p = t2 − v2D (via Cornacchia’s algorithm).

Given the Hilbert class polynomial HD ∈ Z[X], we can reduce it modulo p and use any
root j to construct an elliptic curve E/Fp defined by y2 = x3 + Ax + B by putting
A = 3j0(1728 − j0) and B = 2j0(1728 − j0)2. We then must have

#E(Fp) = p + 1 ± t

since πE has norm p and must therefore have trace ±t by the norm equation.
By taking a quadratic twist we can achieve either sign.

If we want #E(Fp) = N we instead solve 4N = a2 − v2D for some discriminant D,
put t := a + 2, and check if p := N − 1 + t is prime. If so then

4p = 4N − 4 + 4t = a2 − v2D − 4 + 4a + 8 = (a + 2)2 − v2D = t2 − v2D,

and if not we try using a different D.



Summing up the theory of complex multiplication

Let O be an imaginary quadratic order of discriminant D.
E L a ax2 + bxy + cy2

j(E) j(L) [a] reduced form

EllO(C) {j(L) : O(L) = O} cl(O) cl(D)

isomorphism homothety mod principal ideals SL2(Z)-equivalence

Objects: elliptic curves, lattices, proper ideals, binary quadratic forms.
Equivalences: isomorphism, homethety, ideal classes, SL2(Z)-equivalence.

If we put K = Q(
√

D) then Gal(K(j(E))/K) ≃ cl(O) for any j(E) ∈ EllO(C)


