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The first main theorem of complex multiplication
Let O be an imaginary quadratic order with discriminant D, and let
Ellp(C) := {j(F) € C: End(F) = O}.
In the previous lecture we proved that the Hilbert class polynomial

Hp(X) = Ho(X):= [[ (X-i(B)
J(E)€Elo(C)

has integer coefficients. We defined L to be the splitting field of Hp(X) over
K = Q(\/T?) and showed that there is an injective group homomorphism

U: Gal(L/K) < cl(O)

that commutes with the group actions of Gal(L/K) and cl(O) on the roots of Hp(X).
It remains to show that W is surjective, equivalently, that Hp(X) is irreducible over K.



The decomposition group

Let L/K be a Galois extension of number fields, and let p be a prime ideal of
Ok == KNZ (a“prime” of K). The Op-ideal pOy, has a unique factorization

POL =" -+ aiy

into primes q; of L for which q; N Ox = p. If pOy is squarefree (p 1 disc Op) then p is
unramified in L, and Gal(L/K) acts transitively on {q|p} := {q1,...,qn}

Definition
Let L/K be a Galois extension of number fields, let p be a prime of K that is
unramified in L. For each prime q € {q|p} the stabilizer subgroup

Dy :={ocGal(L/K):q° =q}

is the decomposition group of g.



Frobenius elements

Let Fy := Ok/p and Fy := O /q be the residue fields of the maximal ideals p and q
(the rings Ok and Of, are Dedekind domains, so nonzero prime ideals are maximal).
These are finite fields of cardinality Np := [Ok : p] and Nq := [Of, : q].

The image of Ok in Or/qis O /(N Ok) = Ok /p = F,, so Fy is a subfield of .

Each o € D fixes q and induces an automorphism o € Gal(FF,/Fy) via o(x) := o(x).
When p is unramified this defines a group isomorphism

Dy = Gal(Fy/Fy)

Definition

Let L/K be a Galois extension of number fields and q a prime of L with p :=qN O
unramified. The unique o4 € Dy for which 74 is the Frobenius automorphism z +— 2P
is the Frobenius element at q. The Frobenius elements of q|p are all conjugate, and we
use o, to denote this conjugacy class; oy, is a single element when Gal(L/K) is abelian.



Primes of good reduction

If E/C has CM by an imaginary quadratic order O of discriminant D := disc O,
then j(E) is a root of Hp(X) in the splitting field L of Hp(X) over K := Q(v/D),
and we can choose a Weierstrass model 32 = 23 + Az + B for E with A,B € Oy,
(take A = 35(E)(1728 — j(E)) and B = 2j(E)(1728 — j(E))?, for example).

For primes q of L that do not divide A(E) := —16(4A43 + 27B2%) we can reduce A, B
modulo g to obtain an elliptic curve E over the residue field Fy := Or,/q. We then
call g a prime of good reduction for E (this is all but finitely many primes of L).

More generally, we call q a prime of good reduction for E if there is any model for £
with coefficients in Of, such that q 4 A(E) (this includes general Weierstrass equations
that may have good reduction even at primes above 2). In general there is not a single
model that works for all primes of good reduction (there is when h(D) = 1).



The first main theorem of complex multiplication

Theorem

Let O be an imaginary quadratic order of discriminant D and L the splitting field of
Hp(X) over K := Q(v/D). The map ¥: Gal(L/K) — cl(O) sending o € Gal(L/K)
to the unique o, € cl(O) such that j(E)? = ayj(E) for j(E) € Ellp(L) is a group
isomorphism compatible with the actions of Gal(L/K) and cl(O).

Proof: To the board!

Corollary

Let O be an imaginary quadratic order with discriminant D. The Hilbert class
polynomial Hp(x) is irreducible over K = Q(v/D) and for any E/C with CM by O
the field K(j(E)) is a finite abelian extension of K with Gal(K (j(E))/K) ~ cl(O).



Ring class fields and Kronecker symbols

Definition

Let O be an imaginary quadratic order with discriminant D. The ring class field of O
(and of D) is the splitting field of Hp(X) over K = Q(v/D), equivalently, the field
L = K(j(E)) generated by the j-invariant of any elliptic curve E/C with CM by O.

Definition

Let p be a prime and D an integer. For p > 2 the Kronecker symbol is

and (%) =1 for D =+1 mod 8§, (%) = —1for D=4+3 mod 8§, and (%) = 0 otherwise.



Primes that split completely in the ring class field

Definition
A prime p € Z splits completely in a number field L if pOr = q1 - - - 5, with the q;
distinct primes of norm Nq = p (so Fq =F,).

Theorem

Let O be an imaginary quadratic order with discriminant D and ring class field L.

Let p{ D be an odd prime that is unramified in L.! The following are equivalent:
(i) p is the norm of a principal O-ideal;

(if) (%) =1 and Hp(X) splits into linear factors in F,[X];

(iii) p splits completely in L;

(iv) 4p = t?> —v2D for some integers t and v with t #Z 0 mod p.

Proof: To the board!

1f p does not divide D then in fact it must be unramified in L.



Factoring primes in imaginary quadratic fields

Lemma

Let K be an imaginary quadratic field of discriminant D with ring of integers
Ok = [1,w] and let p € Z be prime. Every O-ideal of norm p is of the form
p = [p,w —r], where r € Z is a root of the minimal polynomial of w modulo p. The
number of such ideals p is 1 + (%) € {0,1,2} and the prime factorization of pOy is

with p # p when (%) =1.

Corollary

When p divides the conductor [Ok : O] there are no proper O-ideals of norm p and
otherwise there are 1 + (%) =0, 1,2 when p is inert, ramified, split in K, respectively.



Class field theory

Definition
The Hilbert class field of a number field K is a maximal unramified? abelian extension.

As conjectured by Hilbert and proved by Furtwéngler, if L is the Hilbert class field

of K then Gal(L/K) ~ cl(Ok). The ring class field L of an order O in an imaginary
quadratic field K is the Hilbert class field of K if and only if O = Ok, since L/K is
ramified at primes dividing the conductor of O.

Each number field L is characterized by the set of primes of Q that split completely
in L; for any two number fields these sets are either equal or have infinite difference.

Corollary

Let O be an order of discriminant D in an imaginary quadratic field K. The splitting
field L of Hp(X) over K is unramified at all primes that do not divide the conductor
of O. In particular, every rational prime p t D is unramified in L.

2This includes “infinite primes” of K; these are always unramified when K is imaginary quadratic.



The norm equation

The equation
4p = t? —v?D (1)

in part (iv) of the theorem is known as the norm equation. It arises from the principal
O-ideal () of norm p given by part (i), generated by a root A € O C Ok of
22 — tx + p, which has norm p and trace t. By the quadratic equation

5= —t:t\/t2—4p_ —t+ VD
- 5 = )

2

Clearing denominators and taking norms yields N(2)\) = 4\\ = 4p = > — 2 D.

The primes p that split completely in the ring class field of O are precisely those that
satisfy (1) for some t,v. For D < —4 the value of £t is uniquely determined by p.



Reducing endomorphisms

Let E/C have CM by an imaginary quadratic order O of discriminant D and let p be
an odd prime that splits completely in the ring class field L for O. Then j(E) is a root
of Hp(X) that reduces to a root of Hp(X) in the residue field F; = F,, of any prime
q of L above p. Pick a model y?> = 2% + Az + B for E over O, such that q{ A(FE).

Any nonzero ¢ € End(E) is defined by rational functions whose coefficients we can
assume lie in Op, allowing us to reduce them to Fy = Oy, /q, yielding % € End(E)
satisfying the characteristic equation of ¢. We have an injective ring homomorphism

End(E) < End(E)
that is in fact a ring isomorphism (by the Deuring lifting theorem).

It is clear that for j(E) # 0,1728 we have an isomorphism of endomorphism algebras,
and for O = Of, of endomorphism rings, since ¢t # 0 mod p implies that E is ordinary,
so End(E) must be an order in K = Q(v/D).



The Deuring lifting theorem

Theorem (Deuring)

Let O be an imaginary quadratic order of discriminant D with ring class field L, and
let q be the norm of a prime ideal in O, with ¢ L. D. Then Hp(X) splits into distinct
linear factors in F,[X] and its roots form the set

Ellp(Fy) := {j(F) € Fy : End(F) ~ O}

of j-invariants of elliptic curves E /F, with CM by O.

Theorem (Deuring lifting theorem)

Let E/F, be an elliptic curve over a finite field and let ¢ € End(E) be nonzero. There
exists an elliptic curve E* over a number field L with an endomorphism ¢* € End(E*)
such that E* has good reduction modulo a prime q of L with residue field Or,/q ~ F,,
and E and ¢ are the reductions modulo q of E* and ¢*.



The CM method

Let O be an imaginary quadratic order of discriminant D < —4, and let pt D be an
odd prime satisfying the norm equation 4p = t> — v2D (via Cornacchia’s algorithm).

Given the Hilbert class polynomial Hp € Z[X], we can reduce it modulo p and use any
root j to construct an elliptic curve E/F,, defined by y? = 23 + Az + B by putting
A = 3jo(1728 — jg) and B = 255 (1728 — j0)%2. We then must have

#EFp) =p+1+£t

since mg has norm p and must therefore have trace +¢ by the norm equation.
By taking a quadratic twist we can achieve either sign.

If we want #E(F,) = N we instead solve 4N = a* — v2D for some discriminant D,
put t :=a + 2, and check if p:= N — 1 4t is prime. If so then

4p=4N —4+4t =a* —v’D —4+4a+8 = (a+2)* —v?’D =t* —’D,

and if not we try using a different D.



Summing up the theory of complex multiplication

Let (9Ebe an imaginary quadragc order of discriminant D.

a ax?® + bxy + cy?
isomorphism homothety mod principal ideals SL2(Z)-equivalence
l l l l
J(E) J(L) [a] reduced form
Ellp(C) {(L): O(L) = O} cl(O) cl(D)

Objects: elliptic curves, lattices, proper ideals, binary quadratic forms.
Equivalences: isomorphism, homethety, ideal classes, SLo(Z)-equivalence.

If we put K = Q(vD) then Gal(K (j(E))/K) = cl(O) for any j(E) € Ello(C)



