18.783 Elliptic Curves Lecture 21

Andrew Sutherland

November 25, 2025

The first main theorem of complex multiplication

Let \mathcal{O} be an imaginary quadratic order with discriminant D, and let

$$\mathrm{Ell}_{\mathcal{O}}(\mathbb{C}) := \{ j(E) \in \mathbb{C} : \mathrm{End}(E) = \mathcal{O} \}.$$

In the previous lecture we proved that the Hilbert class polynomial

$$H_D(X) := H_{\mathcal{O}}(X) := \prod_{j(E) \in \text{Ell}_{\mathcal{O}}(\mathbb{C})} (X - j(E))$$

has integer coefficients. We defined L to be the splitting field of $H_D(X)$ over $K:=\mathbb{Q}(\sqrt{D})$, and showed that there is an injective group homomorphism

$$\Psi \colon \operatorname{Gal}(L/K) \hookrightarrow \operatorname{cl}(\mathcal{O})$$

that commutes with the group actions of $\operatorname{Gal}(L/K)$ and $\operatorname{cl}(\mathcal{O})$ on the roots of $H_D(X)$. It remains to show that Ψ is surjective, equivalently, that $H_D(X)$ is irreducible over K.

The decomposition group

Let L/K be a Galois extension of number fields, and let \mathfrak{p} be a prime ideal of $\mathcal{O}_K := K \cap \overline{\mathbb{Z}}$ (a "prime" of K). The \mathcal{O}_L -ideal $\mathfrak{p}\mathcal{O}_L$ has a unique factorization

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1} \cdots \mathfrak{q}_n^{e_n}$$

into primes \mathfrak{q}_i of L for which $\mathfrak{q}_i \cap \mathcal{O}_K = \mathfrak{p}$. If $\mathfrak{p}\mathcal{O}_L$ is squarefree $(\mathfrak{p} \nmid \operatorname{disc} \mathcal{O}_L)$ then \mathfrak{p} is unramified in L, and $\operatorname{Gal}(L/K)$ acts transitively on $\{\mathfrak{q}|\mathfrak{p}\} := \{\mathfrak{q}_1, \dots, \mathfrak{q}_n\}$.

Definition

Let L/K be a Galois extension of number fields, let $\mathfrak p$ be a prime of K that is unramified in L. For each prime $\mathfrak q \in \{\mathfrak q|\mathfrak p\}$ the stabilizer subgroup

$$D_{\mathfrak{q}} := \{ \sigma \in \operatorname{Gal}(L/K) : \mathfrak{q}^{\sigma} = \mathfrak{q} \}$$

is the decomposition group of \mathfrak{q} .

Frobenius elements

Let $\mathbb{F}_{\mathfrak{p}}:=\mathcal{O}_K/\mathfrak{p}$ and $\mathbb{F}_{\mathfrak{q}}:=\mathcal{O}_L/\mathfrak{q}$ be the residue fields of the maximal ideals \mathfrak{p} and \mathfrak{q} (the rings \mathcal{O}_K and \mathcal{O}_L are Dedekind domains, so nonzero prime ideals are maximal). These are finite fields of cardinality $\mathrm{N}\mathfrak{p}:=[\mathcal{O}_K:\mathfrak{p}]$ and $\mathrm{N}\mathfrak{q}:=[\mathcal{O}_L:\mathfrak{q}]$.

The image of \mathcal{O}_K in $\mathcal{O}_L/\mathfrak{q}$ is $\mathcal{O}_K/(\mathfrak{q}\cap\mathcal{O}_K)=\mathcal{O}_K/\mathfrak{p}=\mathbb{F}_\mathfrak{p}$, so $\mathbb{F}_\mathfrak{p}$ is a subfield of $\mathbb{F}_\mathfrak{q}$.

Each $\sigma \in D_{\mathfrak{q}}$ fixes \mathfrak{q} and induces an automorphism $\bar{\sigma} \in \operatorname{Gal}(\mathbb{F}_{\mathfrak{q}}/\mathbb{F}_{\mathfrak{p}})$ via $\bar{\sigma}(x) := \overline{\sigma(x)}$. When \mathfrak{p} is unramified this defines a group isomorphism

$$D_{\mathfrak{q}} \stackrel{\sim}{\longrightarrow} \operatorname{Gal}(\mathbb{F}_{\mathfrak{q}}/\mathbb{F}_{\mathfrak{p}})$$

Definition

Let L/K be a Galois extension of number fields and \mathfrak{q} a prime of L with $\mathfrak{p}:=\mathfrak{q}\cap\mathcal{O}_K$ unramified. The unique $\sigma_{\mathfrak{q}}\in D_{\mathfrak{q}}$ for which $\bar{\sigma}_{\mathfrak{q}}$ is the Frobenius automorphism $x\mapsto x^{\mathrm{N}\mathfrak{p}}$ is the Frobenius element at \mathfrak{q} . The Frobenius elements of $\mathfrak{q}|\mathfrak{p}$ are all conjugate, and we use $\sigma_{\mathfrak{p}}$ to denote this conjugacy class; $\sigma_{\mathfrak{p}}$ is a single element when $\mathrm{Gal}(L/K)$ is abelian.

Primes of good reduction

If E/\mathbb{C} has CM by an imaginary quadratic order \mathcal{O} of discriminant $D:=\mathrm{disc}\,\mathcal{O}$, then j(E) is a root of $H_D(X)$ in the splitting field L of $H_D(X)$ over $K:=\mathbb{Q}(\sqrt{D})$, and we can choose a Weierstrass model $y^2=x^3+Ax+B$ for E with $A,B\in\mathcal{O}_L$ (take A=3j(E)(1728-j(E)) and $B=2j(E)(1728-j(E))^2$, for example).

For primes \mathfrak{q} of L that do not divide $\Delta(E):=-16(4A^3+27B^2)$ we can reduce A,B modulo \mathfrak{q} to obtain an elliptic curve \overline{E} over the residue field $\mathbb{F}_{\mathfrak{q}}:=\mathcal{O}_L/\mathfrak{q}$. We then call \mathfrak{q} a prime of good reduction for E (this is all but finitely many primes of L).

More generally, we call \mathfrak{q} a prime of good reduction for E if there is any model for E with coefficients in \mathcal{O}_L such that $\mathfrak{q} \nmid \Delta(E)$ (this includes general Weierstrass equations that may have good reduction even at primes above 2). In general there is not a single model that works for all primes of good reduction (there is when h(D)=1).

The first main theorem of complex multiplication

Theorem

Let $\mathcal O$ be an imaginary quadratic order of discriminant D and L the splitting field of $H_D(X)$ over $K:=\mathbb Q(\sqrt D)$. The map $\Psi\colon \operatorname{Gal}(L/K)\to\operatorname{cl}(\mathcal O)$ sending $\sigma\in\operatorname{Gal}(L/K)$ to the unique $\alpha_\sigma\in\operatorname{cl}(\mathcal O)$ such that $j(E)^\sigma=\alpha_\sigma j(E)$ for $j(E)\in\operatorname{Ell}_{\mathcal O}(L)$ is a group isomorphism compatible with the actions of $\operatorname{Gal}(L/K)$ and $\operatorname{cl}(\mathcal O)$.

Proof: To the board!

Corollary

Let $\mathcal O$ be an imaginary quadratic order with discriminant D. The Hilbert class polynomial $H_D(x)$ is irreducible over $K=\mathbb Q(\sqrt D)$ and for any $E/\mathbb C$ with CM by $\mathcal O$ the field K(j(E)) is a finite abelian extension of K with $\mathrm{Gal}(K(j(E))/K)\simeq\mathrm{cl}(\mathcal O)$.

Ring class fields and Kronecker symbols

Definition

Let $\mathcal O$ be an imaginary quadratic order with discriminant D. The ring class field of $\mathcal O$ (and of D) is the splitting field of $H_D(X)$ over $K=\mathbb Q(\sqrt{D})$, equivalently, the field L=K(j(E)) generated by the j-invariant of any elliptic curve $E/\mathbb C$ with CM by $\mathcal O$.

Definition

Let p be a prime and D an integer. For p>2 the Kronecker symbol is

$$\left(\frac{D}{p}\right) := \#\{x \in \mathbb{F}_p : x^2 = D\} - 1,$$

and $\binom{D}{2} = 1$ for $D \equiv \pm 1 \mod 8$, $\binom{D}{2} = -1$ for $D \equiv \pm 3 \mod 8$, and $\binom{D}{2} = 0$ otherwise.

Primes that split completely in the ring class field

Definition

A prime $p \in \mathbb{Z}$ splits completely in a number field L if $p\mathcal{O}_L = \mathfrak{q}_1 \cdots \mathfrak{q}_n$ with the \mathfrak{q}_i distinct primes of norm $\mathbb{N}\mathfrak{q} = p$ (so $\mathbb{F}_\mathfrak{q} = \mathbb{F}_p$).

Theorem

Let \mathcal{O} be an imaginary quadratic order with discriminant D and ring class field L. Let $p \nmid D$ be an odd prime that is unramified in L.¹ The following are equivalent:

- (i) p is the norm of a principal \mathcal{O} -ideal;
- (ii) $(\frac{D}{p}) = 1$ and $H_D(X)$ splits into linear factors in $\mathbb{F}_p[X]$;
- (iii) p splits completely in L;
- (iv) $4p = t^2 v^2D$ for some integers t and v with $t \not\equiv 0 \bmod p$.

Proof: To the board!

¹If p does not divide D then in fact it must be unramified in L.

Factoring primes in imaginary quadratic fields

Lemma

Let K be an imaginary quadratic field of discriminant D with ring of integers $\mathcal{O}_K=[1,\omega]$ and let $p\in\mathbb{Z}$ be prime. Every \mathcal{O}_K -ideal of norm p is of the form $\mathfrak{p}=[p,\omega-r]$, where $r\in\mathbb{Z}$ is a root of the minimal polynomial of ω modulo p. The number of such ideals \mathfrak{p} is $1+(\frac{D}{p})\in\{0,1,2\}$ and the prime factorization of $p\mathcal{O}_K$ is

$$(p) = \begin{cases} \mathfrak{p}\overline{\mathfrak{p}} & \text{if } (\frac{D}{p}) = 1, \\ \mathfrak{p}^2 & \text{if } (\frac{D}{p}) = 0, \\ (p) & \text{if } (\frac{D}{p}) = -1. \end{cases}$$

with $\mathfrak{p} \neq \overline{\mathfrak{p}}$ when $(\frac{D}{n}) = 1$.

Corollary

When p divides the conductor $[\mathcal{O}_K : \mathcal{O}]$ there are no proper \mathcal{O} -ideals of norm p and otherwise there are $1 + (\frac{D}{p}) = 0, 1, 2$ when p is inert, ramified, split in K, respectively.

Class field theory

Definition

The Hilbert class field of a number field K is a maximal unramified abelian extension.

As conjectured by Hilbert and proved by Furtwängler, if L is the Hilbert class field of K then $\operatorname{Gal}(L/K) \simeq \operatorname{cl}(\mathcal{O}_K)$. The ring class field L of an order \mathcal{O} in an imaginary quadratic field K is the Hilbert class field of K if and only if $\mathcal{O} = \mathcal{O}_K$, since L/K is ramified at primes dividing the conductor of \mathcal{O} .

Each number field L is characterized by the set of primes of \mathbb{Q} that split completely in L; for any two number fields these sets are either equal or have infinite difference.

Corollary

Let $\mathcal O$ be an order of discriminant D in an imaginary quadratic field K. The splitting field L of $H_D(X)$ over K is unramified at all primes that do not divide the conductor of $\mathcal O$. In particular, every rational prime $p \nmid D$ is unramified in L.

²This includes "infinite primes" of K; these are always unramified when K is imaginary quadratic.

The norm equation

The equation

$$4p = t^2 - v^2 D \tag{1}$$

in part (iv) of the theorem is known as the norm equation. It arises from the principal \mathcal{O} -ideal (λ) of norm p given by part (i), generated by a root $\lambda \in \mathcal{O} \subseteq \mathcal{O}_K$ of $x^2 - tx + p$, which has norm p and trace t. By the quadratic equation

$$\lambda = \frac{-t \pm \sqrt{t^2 - 4p}}{2} = \frac{-t \pm v\sqrt{D}}{2}.$$

Clearing denominators and taking norms yields $N(2\lambda)=4\lambda\bar{\lambda}=4p=t^2-v^2D$.

The primes p that split completely in the ring class field of $\mathcal O$ are precisely those that satisfy (1) for some t,v. For D<-4 the value of $\pm t$ is uniquely determined by p.

Reducing endomorphisms

Let E/\mathbb{C} have CM by an imaginary quadratic order $\mathcal O$ of discriminant D and let p be an odd prime that splits completely in the ring class field L for $\mathcal O$. Then j(E) is a root of $H_D(X)$ that reduces to a root of $H_D(X)$ in the residue field $\mathbb{F}_{\mathfrak{q}}=\mathbb{F}_p$ of any prime \mathfrak{q} of L above p. Pick a model $y^2=x^3+Ax+B$ for E over $\mathcal O_L$ such that $\mathfrak{q} \nmid \Delta(E)$.

Any nonzero $\varphi \in \operatorname{End}(E)$ is defined by rational functions whose coefficients we can assume lie in \mathcal{O}_L , allowing us to reduce them to $\mathbb{F}_{\mathfrak{q}} = \mathcal{O}_L/\mathfrak{q}$, yielding $\overline{\varphi} \in \operatorname{End}(\overline{E})$ satisfying the characteristic equation of φ . We have an injective ring homomorphism

$$\operatorname{End}(E) \hookrightarrow \operatorname{End}(\overline{E})$$

that is in fact a ring isomorphism (by the Deuring lifting theorem).

It is clear that for $j(E) \neq 0,1728$ we have an isomorphism of endomorphism algebras, and for $\mathcal{O} = \mathcal{O}_K$, of endomorphism rings, since $t \not\equiv 0 \bmod p$ implies that \overline{E} is ordinary, so $\operatorname{End}(\overline{E})$ must be an order in $K = \mathbb{Q}(\sqrt{D})$.

The Deuring lifting theorem

Theorem (Deuring)

Let $\mathcal O$ be an imaginary quadratic order of discriminant D with ring class field L, and let q be the norm of a prime ideal in $\mathcal O_L$ with $q \perp D$. Then $H_D(X)$ splits into distinct linear factors in $\mathbb F_q[X]$ and its roots form the set

$$\mathrm{Ell}_{\mathcal{O}}(\mathbb{F}_q) := \{ j(E) \in \mathbb{F}_q : \mathrm{End}(E) \simeq \mathcal{O} \}$$

of j-invariants of elliptic curves E/\mathbb{F}_q with CM by \mathcal{O} .

Theorem (Deuring lifting theorem)

Let E/\mathbb{F}_q be an elliptic curve over a finite field and let $\phi \in \operatorname{End}(E)$ be nonzero. There exists an elliptic curve E^* over a number field L with an endomorphism $\phi^* \in \operatorname{End}(E^*)$ such that E^* has good reduction modulo a prime \mathfrak{q} of L with residue field $\mathcal{O}_L/\mathfrak{q} \simeq \mathbb{F}_q$, and E and ϕ are the reductions modulo \mathfrak{q} of E^* and ϕ^* .

The CM method

Let $\mathcal O$ be an imaginary quadratic order of discriminant D<-4, and let $p\nmid D$ be an odd prime satisfying the norm equation $4p=t^2-v^2D$ (via Cornacchia's algorithm).

Given the Hilbert class polynomial $H_D\in\mathbb{Z}[X]$, we can reduce it modulo p and use any root j to construct an elliptic curve E/\mathbb{F}_p defined by $y^2=x^3+Ax+B$ by putting $A=3j_0(1728-j_0)$ and $B=2j_0(1728-j_0)^2$. We then must have

$$\#E(\mathbb{F}_p) = p + 1 \pm t$$

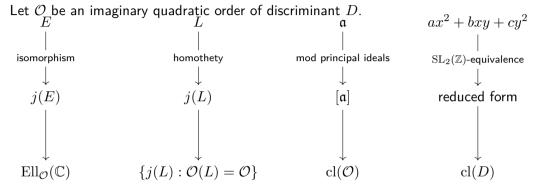
since π_E has norm p and must therefore have trace $\pm t$ by the norm equation. By taking a quadratic twist we can achieve either sign.

If we want $\#E(\mathbb{F}_p)=N$ we instead solve $4N=a^2-v^2D$ for some discriminant D, put t:=a+2, and check if p:=N-1+t is prime. If so then

$$4p = 4N - 4 + 4t = a^2 - v^2D - 4 + 4a + 8 = (a+2)^2 - v^2D = t^2 - v^2D,$$

and if not we try using a different D.

Summing up the theory of complex multiplication



Objects: elliptic curves, lattices, proper ideals, binary quadratic forms. Equivalences: isomorphism, homethety, ideal classes, $\mathrm{SL}_2(\mathbb{Z})$ -equivalence.

If we put $K = \mathbb{Q}(\sqrt{D})$ then $\operatorname{Gal}(K(j(E))/K) \simeq \operatorname{cl}(\mathcal{O})$ for any $j(E) \in \operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$