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Complex multiplication

We have an equivalence of categories between complex tori C/L and elliptic curves
E/C that relates homothety classes of lattices L to isomorphism classes of E/C via

{lattices L C C}/~. — {elliptic curves E/C}/~
L+—— Eyp: y2 =423 — g2(L)x — g3(L)
J(L) = j(EL)
with ring isomorphisms

End(C/L) ~End(EL) ~O(L) :={a € C:aL C L}

The ring O(L) ~ End(EyL) is either Z, or it is an order O in an imaginary quadratic
field and E1, has complex multiplication by O and L is homothetic to an O-ideal.



Proper O-ideals and the ideal class group

The O-ideals L for which End(E1) ~ O are proper, meaning that O(L) = O.
Note that O C O(L) always holds, but in general O(L) may be larger than O.

The sets
{LCC:0(L)=0}/. +—{E/C:End(E) =0}/~

are both in bijection with the ideal class group
cl(O) := {proper O-ideals a}/..
where the equivalence relation on proper O-ideals is defined by
a~b — aa = b for some nonzero o, 8 € O,

and the group operation is [a][b] = [ab].



Fractional ideals and class groups in general

Let O be an integral domain with fraction field K.
For any A € K* and O-ideal a, the O-module

Aa:={da:a€a} CK

is a fractional O-ideal. We can assume A = % for some a € O.
The product of two fractional ideals is another fractional ideal:

(Aa)(Aa') := (AN )ad'.

A fractional O-ideal I is invertible if IJ = O for some fractional O-ideal J.
The set of invertible fractional O-ideals forms a group Zp under multiplication.

For every A € K* the fractional O-ideal (\) := \O is invertible, with inverse (A\71).
Such fractional O-ideals are principal, and they form a subgroup Po C Zp.
We now define cl(O) := Zn /Po (we will prove our definitions of cl(O) are compatible).



The (absolute) norm of an ideal

Let K/k be a finite extension of fields. Multiplication by A € K is an invertible linear
transformation M) € GL(K) of K as a k-vector space. The norm and trace of A are

NK/k;)‘ =det M), € k> TK/k)\ =tr M), € k.

When k = Q we may write N := Ng g and T := Tx /g, and if K is an imaginary
quadratic field embedded in C, we have Na = aa@ and Ta = a + a.

Definition

Let O be an order in a number field K. The norm of a nonzero O-ideal a is the index

Na:= [0 : a] = #(0/a) € Zxo.

For any nonzero o € O we have N(a) = |Na, since det M, is the signed volume of
the fundamental parallelepiped of the lattice («) in the Q-vector space K.



Norms of fractional ideals

Proposition

Let O be an order in a number field, o € O nonzero, and a a nonzero O-ideal. Then
N(aa) = N(a)Na

Proof.N(aa) =[O : aa] =[O : d][a: aa] =[O : a][O : O] = NaN(a) = N(«)Na.

Every fractional ideal in a number field can be written as %a with a € Z~g

(if & € O has minpoly f € Z[z] then 5 = (f(a) — f(0))/a € O and aff = f(0) € Z).

Definition

Let b = éa be a nonzero fractional ideal in an order O of a number field with a € Z~.
The (absolute) norm of b is

Nb:= — .
b Na€Q>0



Proper and invertible fractional ideals

Let O be an order in an imaginary quadratic field. For any fractional O-ideal b we
define O(b) :={a € K : ab C b} and call b proper if O(b) = O.

Lemma

Let a be a nonzero O-ideal and let b = Aa with A € K*.
Then b is proper < a is proper, and b is invertible < a is invertible.
Proof. First claim: {a:ab C b} ={a:alaC Aa} ={a:aa Ca}.

Second: if a is invertible then b= = a—'a™!, and if b is invertible then a=! = ab~!.

Theorem

Let a = [, 3] be an O-ideal. Then a is proper if and only if a is invertible. Whenever
a is invertible we have aa = (Na), where a = [&, 3] and (Na) is the principal (’) ideal
generated by the integer Na; the inverse of a is the fractional O-ideal a=! =

Proof. To the board!

NCl



The ideal class group

The fact that proper and invertible fractional ideals coincide implies that our two
definitions of the ideal class group cl(O) as

e equivalence classes of proper O-ideals

e the group of invertible fractional ideals modulo principal ideals
coincide. In particular, cl(O) is a group!
Corollary

Let O be an order in an imaginary quadratic field and let a and b be invertible
(equivalently, proper) fractional O-ideals. Then N(ab) = NaNb.

Proof. It suffices to consider the case where a and b are invertible O-ideals. We have
(N(ab)) = abab = abab = aabb = (Na)(Nb),
and it follows that N(ab) = NaNb, since Na, Nb, N(ab) € Z~o.

Warning: The ideal norm is not multiplicative in general! (we used invertibility).



The class group action on CM elliptic curves
Let O be an order in an imaginary quadratic field and let
Ellp := {j(£/C) : End(E) = O}.

Every F/C with End(E) = O is isomorphic to Ej for some proper O-ideal b.

For any proper O-ideal a let
ClEb = Eaflb.

We use F,-1, rather than Eg, because ab C b but we want b C a~'b. We now define
the action of [a] € cl(O) via

[al§(Ey) = j(Ea-10), (1)

which we can also write as
[a]j(b) := j(a"'D).

Note that this definition does not depend on the choice of representatives a and b.



The class group action on CM elliptic curves

If @ is a nonzero principal O-ideal then b and a='b are homothetic and aEjy ~ Ej.
It follows that the identity element of cl(O) acts trivially on the set Ellp(C).

For any proper O-ideals a, b, ¢ we have
a(bEc) = aEb_lc = Ea—lb—lc = E(ba)—lc = (ba)Ec = (ab)Ec.

We thus have a group action of cl(Q) on Ellp(C), and it has the following properties:
e free: every stabilizer is trivial, since [a]j(b) = j(b) @ b~a"'b < a~ O.
e transitive: for every j(a),j(b) we have [c]j(a) = j(b) for some [¢] € cl(O).
Such group actions are regular. If X is a G-set, the G-action is regular if for every
x,y € X there is a unique g € G for which gz =y, and we call X a G-torsor.

If we fix 21 € X, we can make X a group isomorphic to G by defining z, to be the
unique g € G for which gx1 = x4, and defining x,xp 1= 2 4p.
If we don't want to fix z1, we can instead think of ratios (or differences) of elements.



Isogenies of elliptic curves over C

Let ¢: F1 — FE5 be an isogeny of elliptic curves over C, and let L1 and Lo be
corresponding lattices, so £y = Er,, and Ey = Er,. Recall that there is a unique
a = ag with al; € Lo such that the following diagram commutes:

C/Ll —a—> C/LQ
| |

[F] [}

1 1

Since we only care about lattices up to homothety, we can replace L1 with al; to
make o = 1. In other words, up to isomorphism, every isogeny ¢: Ey — Eo over C
is induced by a lattice inclusion L1 C Ls, and we then have

#kerp = [Ly: Ly].



The CM action via isogenies

Now assume F;/C has CM by O. Then L; is homothetic to an invertible O-ideal b,
and we may assume L; = b and E; = Ej. If ais an invertible O-ideal the inclusion
b C a~1b induces an isogeny

gba: Eb — Eaflb = U.E[,

If Fs also has CM by O then Lo is homothetic to an invertible O-ideal c.
If we replace b by (N¢)b then ¢ divides (hence contains) b, since N¢ = cc.
If we now put a = bc™! then the isogeny

¢a: By — E. = aFy
induced by the inclusion b C ¢ corresponds to the action of a on Ej.

Now Ellp(C) is a cl(O)-torsor. Thus all elliptic curves E/C with CM by O are
isogenous, and every isogeny between two such E has the form Ey, — aFj.



Isogeny kernels

Definition
Let E/k be any elliptic curve with CM by an imaginary quadratic order O, and let a be
an O-ideal. The a-torsion subgroup of E is defined by

Ela] :={P € E(k) : «(P) =0 for all « € a},
where we are viewing each o € a C O ~ End(F) as an endomorphism.

Theorem

Let O be an imaginary quadratic order, let E/C be an elliptic curve with CM by O, let
a be an invertible O-ideal, and let ¢o: E — aF be the corresponding isogeny. Then

(i) ker ¢q = Ela];
(ii) deg¢q = Na.
Proof. To the board!



Imaginary quadratic discriminants

Definition
Let O = [1, 7] be an imaginary quadratic order. The discriminant of O is the
discriminant of the minimal polynomial of 7, which we can compute as

1 7

2
disc(0) = (1 + 7)2 — 477 = (1 — 7)% = det <1 T) .

If A is the area of a fundamental parallelogram of O then
disc(0) = (1 — 7)? = —4|im7|> = —4A4?%

thus the discriminant does not depend on our choice of 7, it is intrinsic to the lattice O.



Imaginary quadratic discriminants

Negative integers D = 0,1 mod 4 are (imaginary quadratic) discriminants.
If D is not u?>Dg for some u > 1 and Dy = 0,1 mod 4 then D is fundamental.

Theorem

Let D be an imaginary quadratic discriminant. There is a unique imaginary quadratic
order O with disc(O) = D = u?Dy, where Dy is the fundamental discriminant of the
maximal order O in K = Q(v/Dg), and u = [Ok : O].

Proof. See notes.

The index u = [Of : O] is the conductor of the order O.



