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Complex multiplication

We have an equivalence of categories between complex tori C/L and elliptic curves
E/C that relates homothety classes of lattices L to isomorphism classes of E/C via

{lattices L ⊆ C}/∼
∼−→ {elliptic curves E/C}/≃

L 7−→ EL : y2 = 4x3 − g2(L)x− g3(L)
j(L) = j(EL)

with ring isomorphisms

End(C/L) ≃ End(EL) ≃ O(L) := {α ∈ C : αL ⊆ L}

The ring O(L) ≃ End(EL) is either Z, or it is an order O in an imaginary quadratic
field and EL has complex multiplication by O and L is homothetic to an O-ideal.



Proper O-ideals and the ideal class group

The O-ideals L for which End(EL) ≃ O are proper, meaning that O(L) = O.
Note that O ⊆ O(L) always holds, but in general O(L) may be larger than O.

The sets
{L ⊆ C : O(L) = O}/∼ ←→ {E/C : End(E) = O}/≃

are both in bijection with the ideal class group

cl(O) := {proper O-ideals a}/∼

where the equivalence relation on proper O-ideals is defined by

a ∼ b ⇐⇒ αa = βb for some nonzero α, β ∈ O,

and the group operation is [a][b] = [ab].



Fractional ideals and class groups in general
Let O be an integral domain with fraction field K.
For any λ ∈ K× and O-ideal a, the O-module

λa := {λa : a ∈ a} ⊆ K

is a fractional O-ideal. We can assume λ = 1
a for some a ∈ O.

The product of two fractional ideals is another fractional ideal:

(λa)(λa′) := (λλ′)aa′.

A fractional O-ideal I is invertible if IJ = O for some fractional O-ideal J .
The set of invertible fractional O-ideals forms a group IO under multiplication.

For every λ ∈ K× the fractional O-ideal (λ) := λO is invertible, with inverse (λ−1).
Such fractional O-ideals are principal, and they form a subgroup PO ⊆ IO.
We now define cl(O) := IO/PO (we will prove our definitions of cl(O) are compatible).



The (absolute) norm of an ideal
Let K/k be a finite extension of fields. Multiplication by λ ∈ K× is an invertible linear
transformation Mλ ∈ GL(K) of K as a k-vector space. The norm and trace of λ are

NK/kλ := det Mλ ∈ k× TK/kλ := tr Mλ ∈ k.

When k = Q we may write N := NK/Q and T := TK/Q, and if K is an imaginary
quadratic field embedded in C, we have Nα = αᾱ and Tα = α + ᾱ.

Definition
Let O be an order in a number field K. The norm of a nonzero O-ideal a is the index

Na := [O : a] = #(O/a) ∈ Z>0.

For any nonzero α ∈ O we have N(α) = |Nα|, since det Mα is the signed volume of
the fundamental parallelepiped of the lattice (α) in the Q-vector space K.



Norms of fractional ideals

Proposition
Let O be an order in a number field, α ∈ O nonzero, and a a nonzero O-ideal. Then

N(αa) = N(α)Na

Proof.N(αa) = [O : αa] = [O : a][a : αa] = [O : a][O : αO] = NaN(α) = N(α)Na.

Every fractional ideal in a number field can be written as 1
aa with a ∈ Z>0

(if α ∈ O has minpoly f ∈ Z[x] then β = (f(α)− f(0))/α ∈ O and αβ = f(0) ∈ Z).

Definition
Let b = 1

aa be a nonzero fractional ideal in an order O of a number field with a ∈ Z>0.
The (absolute) norm of b is

Nb := Na

Na
∈ Q>0.



Proper and invertible fractional ideals

Let O be an order in an imaginary quadratic field. For any fractional O-ideal b we
define O(b) := {α ∈ K : αb ⊆ b} and call b proper if O(b) = O.

Lemma
Let a be a nonzero O-ideal and let b = λa with λ ∈ K×.
Then b is proper ⇔ a is proper, and b is invertible ⇔ a is invertible.
Proof. First claim: {α : αb ⊆ b} = {α : αλa ⊆ λa} = {α : αa ⊆ a}.
Second: if a is invertible then b−1 = α−1a−1, and if b is invertible then a−1 = αb−1.

Theorem
Let a = [α, β] be an O-ideal. Then a is proper if and only if a is invertible. Whenever
a is invertible we have aā = (Na), where ā = [ᾱ, β̄] and (Na) is the principal O-ideal
generated by the integer Na; the inverse of a is the fractional O-ideal a−1 = 1

Na ā.
Proof. To the board!



The ideal class group
The fact that proper and invertible fractional ideals coincide implies that our two
definitions of the ideal class group cl(O) as
• equivalence classes of proper O-ideals
• the group of invertible fractional ideals modulo principal ideals

coincide. In particular, cl(O) is a group!

Corollary
Let O be an order in an imaginary quadratic field and let a and b be invertible
(equivalently, proper) fractional O-ideals. Then N(ab) = NaNb.
Proof. It suffices to consider the case where a and b are invertible O-ideals. We have

(N(ab)) = abab = abab = aabb = (Na)(Nb),

and it follows that N(ab) = NaNb, since Na, Nb, N(ab) ∈ Z>0.

Warning: The ideal norm is not multiplicative in general! (we used invertibility).



The class group action on CM elliptic curves
Let O be an order in an imaginary quadratic field and let

EllO := {j(E/C) : End(E) = O}.

Every E/C with End(E) = O is isomorphic to Eb for some proper O-ideal b.
For any proper O-ideal a let

aEb := Ea−1b.

We use Ea−1b rather than Eab because ab ⊆ b but we want b ⊆ a−1b. We now define
the action of [a] ∈ cl(O) via

[a]j(Eb) := j(Ea−1b), (1)

which we can also write as
[a]j(b) := j(a−1b).

Note that this definition does not depend on the choice of representatives a and b.



The class group action on CM elliptic curves
If a is a nonzero principal O-ideal then b and a−1b are homothetic and aEb ≃ Eb.
It follows that the identity element of cl(O) acts trivially on the set EllO(C).

For any proper O-ideals a, b, c we have

a(bEc) = aEb−1c = Ea−1b−1c = E(ba)−1c = (ba)Ec = (ab)Ec.

We thus have a group action of cl(O) on EllO(C), and it has the following properties:
• free: every stabilizer is trivial, since [a]j(b) = j(b)⇔ b ∼ a−1b⇔ a ∼ O.
• transitive: for every j(a), j(b) we have [c]j(a) = j(b) for some [c] ∈ cl(O).

Such group actions are regular. If X is a G-set, the G-action is regular if for every
x, y ∈ X there is a unique g ∈ G for which gx = y, and we call X a G-torsor.

If we fix x1 ∈ X, we can make X a group isomorphic to G by defining xg to be the
unique g ∈ G for which gx1 = xg, and defining xgxh := xgh.
If we don’t want to fix x1, we can instead think of ratios (or differences) of elements.



Isogenies of elliptic curves over C
Let ϕ : E1 → E2 be an isogeny of elliptic curves over C, and let L1 and L2 be
corresponding lattices, so E1 = EL1 and E2 = EL2 . Recall that there is a unique
α = αϕ with αL1 ⊆ L2 such that the following diagram commutes:

C/L1 C/L2

E1(C) E2(C) .

α

Φ1 Φ2

ϕ

Since we only care about lattices up to homothety, we can replace L1 with αL1 to
make α = 1. In other words, up to isomorphism, every isogeny ϕ : E1 → E2 over C
is induced by a lattice inclusion L1 ⊆ L2, and we then have

# ker ϕ = [L2 : L1].



The CM action via isogenies
Now assume E1/C has CM by O. Then L1 is homothetic to an invertible O-ideal b,
and we may assume L1 = b and E1 = Eb. If a is an invertible O-ideal the inclusion
b ⊆ a−1b induces an isogeny

ϕa : Eb → Ea−1b = aEb

If E2 also has CM by O then L2 is homothetic to an invertible O-ideal c.
If we replace b by (Nc)b then c divides (hence contains) b, since Nc = cc̄.
If we now put a = bc−1 then the isogeny

ϕa : Eb → Ec = aEb

induced by the inclusion b ⊆ c corresponds to the action of a on Eb.

Now EllO(C) is a cl(O)-torsor. Thus all elliptic curves E/C with CM by O are
isogenous, and every isogeny between two such E has the form Eb → aEb.



Isogeny kernels

Definition
Let E/k be any elliptic curve with CM by an imaginary quadratic order O, and let a be
an O-ideal. The a-torsion subgroup of E is defined by

E[a] := {P ∈ E(k̄) : α(P ) = 0 for all α ∈ a},

where we are viewing each α ∈ a ⊆ O ≃ End(E) as an endomorphism.

Theorem
Let O be an imaginary quadratic order, let E/C be an elliptic curve with CM by O, let
a be an invertible O-ideal, and let ϕa : E → aE be the corresponding isogeny. Then
(i) ker ϕa = E[a];
(ii) deg ϕa = Na.
Proof. To the board!



Imaginary quadratic discriminants

Definition
Let O = [1, τ ] be an imaginary quadratic order. The discriminant of O is the
discriminant of the minimal polynomial of τ , which we can compute as

disc(O) = (τ + τ̄)2 − 4τ τ̄ = (τ − τ̄)2 = det
(

1 τ
1 τ̄

)2

.

If A is the area of a fundamental parallelogram of O then

disc(O) = (τ − τ̄)2 = −4| im τ |2 = −4A2,

thus the discriminant does not depend on our choice of τ , it is intrinsic to the lattice O.



Imaginary quadratic discriminants

Negative integers D ≡ 0, 1 mod 4 are (imaginary quadratic) discriminants.
If D is not u2D0 for some u > 1 and D0 ≡ 0, 1 mod 4 then D is fundamental.

Theorem
Let D be an imaginary quadratic discriminant. There is a unique imaginary quadratic
order O with disc(O) = D = u2DK , where DK is the fundamental discriminant of the
maximal order OK in K = Q(

√
DK), and u = [OK : O].

Proof. See notes.

The index u = [OK : O] is the conductor of the order O.


