18.783 Elliptic Curves Lecture 17

Andrew Sutherland

November 4, 2025

Complex multiplication

We have an equivalence of categories between complex tori \mathbb{C}/L and elliptic curves E/\mathbb{C} that relates homothety classes of lattices L to isomorphism classes of E/\mathbb{C} via

with ring isomorphisms

$$\operatorname{End}(\mathbb{C}/L) \simeq \operatorname{End}(E_L) \simeq \mathcal{O}(L) := \{ \alpha \in \mathbb{C} : \alpha L \subseteq L \}$$

The ring $\mathcal{O}(L) \simeq \operatorname{End}(E_L)$ is either \mathbb{Z} , or it is an order \mathcal{O} in an imaginary quadratic field and E_L has complex multiplication by \mathcal{O} and L is homothetic to an \mathcal{O} -ideal.

Proper \mathcal{O} -ideals and the ideal class group

The \mathcal{O} -ideals L for which $\operatorname{End}(E_L) \simeq \mathcal{O}$ are proper, meaning that $\mathcal{O}(L) = \mathcal{O}$. Note that $\mathcal{O} \subseteq \mathcal{O}(L)$ always holds, but in general $\mathcal{O}(L)$ may be larger than \mathcal{O} .

The sets

$$\{L \subseteq \mathbb{C} : \mathcal{O}(L) = \mathcal{O}\}/_{\sim} \longleftrightarrow \{E/\mathbb{C} : \operatorname{End}(E) = \mathcal{O}\}/_{\simeq}$$

are both in bijection with the ideal class group

$$cl(\mathcal{O}) := \{ proper \mathcal{O} \text{-ideals } \mathfrak{a} \} /_{\sim}$$

where the equivalence relation on proper \mathcal{O} -ideals is defined by

$$\mathfrak{a} \sim \mathfrak{b} \iff \alpha \mathfrak{a} = \beta \mathfrak{b} \text{ for some nonzero } \alpha, \beta \in \mathcal{O},$$

and the group operation is $[\mathfrak{a}][\mathfrak{b}] = [\mathfrak{a}\mathfrak{b}].$

Fractional ideals and class groups in general

Let \mathcal{O} be an integral domain with fraction field K. For any $\lambda \in K^{\times}$ and \mathcal{O} -ideal \mathfrak{a} , the \mathcal{O} -module

$$\lambda \mathfrak{a} := \{ \lambda a : a \in \mathfrak{a} \} \subseteq K$$

is a fractional \mathcal{O} -ideal. We can assume $\lambda = \frac{1}{a}$ for some $a \in \mathcal{O}$. The product of two fractional ideals is another fractional ideal:

$$(\lambda \mathfrak{a})(\lambda \mathfrak{a}') := (\lambda \lambda') \mathfrak{a} \mathfrak{a}'.$$

A fractional \mathcal{O} -ideal I is invertible if $IJ = \mathcal{O}$ for some fractional \mathcal{O} -ideal J. The set of invertible fractional \mathcal{O} -ideals forms a group $\mathcal{I}_{\mathcal{O}}$ under multiplication.

For every $\lambda \in K^{\times}$ the fractional \mathcal{O} -ideal $(\lambda) := \lambda \mathcal{O}$ is invertible, with inverse (λ^{-1}) . Such fractional \mathcal{O} -ideals are principal, and they form a subgroup $\mathcal{P}_{\mathcal{O}} \subseteq \mathcal{I}_{\mathcal{O}}$. We now define $\mathrm{cl}(\mathcal{O}) := \mathcal{I}_{\mathcal{O}}/\mathcal{P}_{\mathcal{O}}$ (we will prove our definitions of $\mathrm{cl}(\mathcal{O})$ are compatible).

The (absolute) norm of an ideal

Let K/k be a finite extension of fields. Multiplication by $\lambda \in K^{\times}$ is an invertible linear transformation $M_{\lambda} \in \mathrm{GL}(K)$ of K as a k-vector space. The norm and trace of λ are

$$N_{K/k}\lambda := \det M_{\lambda} \in k^{\times}$$
 $T_{K/k}\lambda := \operatorname{tr} M_{\lambda} \in k.$

When $k=\mathbb{Q}$ we may write $\mathrm{N}:=N_{K/\mathbb{Q}}$ and $\mathrm{T}:=T_{K/\mathbb{Q}}$, and if K is an imaginary quadratic field embedded in \mathbb{C} , we have $\mathrm{N}\alpha=\alpha\bar{\alpha}$ and $\mathrm{T}\alpha=\alpha+\bar{\alpha}$.

Definition

Let $\mathcal O$ be an order in a number field K. The norm of a nonzero $\mathcal O$ -ideal $\mathfrak a$ is the index

$$\mathrm{N}\mathfrak{a} := [\mathcal{O} : \mathfrak{a}] = \#(\mathcal{O}/\mathfrak{a}) \in \mathbb{Z}_{>0}.$$

For any nonzero $\alpha \in \mathcal{O}$ we have $N(\alpha) = |N\alpha|$, since $\det M_{\alpha}$ is the signed volume of the fundamental parallelepiped of the lattice (α) in the \mathbb{Q} -vector space K.

Norms of fractional ideals

Proposition

Let $\mathcal O$ be an order in a number field, $\alpha \in \mathcal O$ nonzero, and $\mathfrak a$ a nonzero $\mathcal O$ -ideal. Then

$$N(\alpha \mathfrak{a}) = N(\alpha)N\mathfrak{a}$$

 $\textbf{Proof.} N(\alpha \mathfrak{a}) = [\mathcal{O}:\alpha \mathfrak{a}] = [\mathcal{O}:\mathfrak{a}][\mathfrak{a}:\alpha \mathfrak{a}] = [\mathcal{O}:\mathfrak{a}][\mathcal{O}:\alpha \mathcal{O}] = N\mathfrak{a}N(\alpha) = N(\alpha)N\mathfrak{a}.$

Every fractional ideal in a number field can be written as $\frac{1}{a}\mathfrak{a}$ with $a \in \mathbb{Z}_{>0}$ (if $\alpha \in \mathcal{O}$ has minpoly $f \in \mathbb{Z}[x]$ then $\beta = (f(\alpha) - f(0))/\alpha \in \mathcal{O}$ and $\alpha\beta = f(0) \in \mathbb{Z}$).

Definition

Let $\mathfrak{b} = \frac{1}{a}\mathfrak{a}$ be a nonzero fractional ideal in an order \mathcal{O} of a number field with $a \in \mathbb{Z}_{>0}$.

The (absolute) norm of b is

$$N\mathfrak{b} := \frac{N\mathfrak{a}}{N\mathfrak{a}} \in \mathbb{Q}_{>0}.$$

Proper and invertible fractional ideals

Let \mathcal{O} be an order in an imaginary quadratic field. For any fractional \mathcal{O} -ideal \mathfrak{b} we define $\mathcal{O}(\mathfrak{b}):=\{\alpha\in K:\alpha\mathfrak{b}\subseteq\mathfrak{b}\}$ and call \mathfrak{b} proper if $\mathcal{O}(\mathfrak{b})=\mathcal{O}$.

Lemma

Let \mathfrak{a} be a nonzero \mathcal{O} -ideal and let $\mathfrak{b} = \lambda \mathfrak{a}$ with $\lambda \in K^{\times}$.

Then $\mathfrak b$ is proper $\Leftrightarrow \mathfrak a$ is proper, and $\mathfrak b$ is invertible $\Leftrightarrow \mathfrak a$ is invertible.

 $\textbf{Proof. First claim: } \{\alpha:\alpha\mathfrak{b}\subseteq\mathfrak{b}\}=\{\alpha:\alpha\lambda\mathfrak{a}\subseteq\lambda\mathfrak{a}\}=\{\alpha:\alpha\mathfrak{a}\subseteq\mathfrak{a}\}.$

Second: if $\mathfrak a$ is invertible then $\mathfrak b^{-1}=\alpha^{-1}\mathfrak a^{-1}$, and if $\mathfrak b$ is invertible then $\mathfrak a^{-1}=\alpha\mathfrak b^{-1}$.

Theorem

Let $\mathfrak{a}=[\alpha,\beta]$ be an \mathcal{O} -ideal. Then \mathfrak{a} is proper if and only if \mathfrak{a} is invertible. Whenever \mathfrak{a} is invertible we have $\mathfrak{a}\bar{\mathfrak{a}}=(N\mathfrak{a})$, where $\bar{\mathfrak{a}}=[\bar{\alpha},\bar{\beta}]$ and $(N\mathfrak{a})$ is the principal \mathcal{O} -ideal generated by the integer $N\mathfrak{a}$; the inverse of \mathfrak{a} is the fractional \mathcal{O} -ideal $\mathfrak{a}^{-1}=\frac{1}{N\mathfrak{a}}\bar{\mathfrak{a}}$.

Proof. To the board!

The ideal class group

The fact that proper and invertible fractional ideals coincide implies that our two definitions of the ideal class group $cl(\mathcal{O})$ as

- equivalence classes of proper \mathcal{O} -ideals
- the group of invertible fractional ideals modulo principal ideals

coincide. In particular, $\operatorname{cl}(\mathcal{O})$ is a group!

Corollary

Let $\mathcal O$ be an order in an imaginary quadratic field and let $\mathfrak a$ and $\mathfrak b$ be invertible (equivalently, proper) fractional $\mathcal O$ -ideals. Then $N(\mathfrak a\mathfrak b)=N\mathfrak a N\mathfrak b$.

Proof. It suffices to consider the case where $\mathfrak a$ and $\mathfrak b$ are invertible $\mathcal O$ -ideals. We have

$$(\mathrm{N}(\mathfrak{a}\mathfrak{b}))=\mathfrak{a}\mathfrak{b}\overline{\mathfrak{a}\overline{\mathfrak{b}}}=\mathfrak{a}\mathfrak{b}\overline{\mathfrak{a}\overline{\mathfrak{b}}}=\mathfrak{a}\overline{\mathfrak{a}}\mathfrak{b}\overline{\mathfrak{b}}=(\mathrm{N}\mathfrak{a})(\mathrm{N}\mathfrak{b}),$$

and it follows that $N(\mathfrak{ab}) = N\mathfrak{a}N\mathfrak{b}$, since $N\mathfrak{a}, N\mathfrak{b}, N(\mathfrak{ab}) \in \mathbb{Z}_{>0}$.

Warning: The ideal norm is not multiplicative in general! (we used invertibility).

The class group action on CM elliptic curves

Let \mathcal{O} be an order in an imaginary quadratic field and let

$$\operatorname{Ell}_{\mathcal{O}} := \{ j(E/\mathbb{C}) : \operatorname{End}(E) = \mathcal{O} \}.$$

Every E/\mathbb{C} with $\operatorname{End}(E) = \mathcal{O}$ is isomorphic to $E_{\mathfrak{b}}$ for some proper \mathcal{O} -ideal \mathfrak{b} . For any proper \mathcal{O} -ideal \mathfrak{a} let

$$\mathfrak{a}E_{\mathfrak{b}}:=E_{\mathfrak{a}^{-1}\mathfrak{b}}.$$

We use $E_{\mathfrak{a}^{-1}\mathfrak{b}}$ rather than $E_{\mathfrak{a}\mathfrak{b}}$ because $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{b}$ but we want $\mathfrak{b} \subseteq \mathfrak{a}^{-1}\mathfrak{b}$. We now define the action of $[\mathfrak{a}] \in \mathrm{cl}(\mathcal{O})$ via

$$[\mathfrak{a}]j(E_{\mathfrak{b}}) := j(E_{\mathfrak{a}^{-1}\mathfrak{b}}), \tag{1}$$

which we can also write as

$$[\mathfrak{a}]j(\mathfrak{b}) := j(\mathfrak{a}^{-1}\mathfrak{b}).$$

Note that this definition does not depend on the choice of representatives $\mathfrak a$ and $\mathfrak b$.

The class group action on CM elliptic curves

If \mathfrak{a} is a nonzero principal \mathcal{O} -ideal then \mathfrak{b} and $\mathfrak{a}^{-1}\mathfrak{b}$ are homothetic and $\mathfrak{a}E_{\mathfrak{b}}\simeq E_{\mathfrak{b}}$. It follows that the identity element of $\mathrm{cl}(\mathcal{O})$ acts trivially on the set $\mathrm{Ell}_{\mathcal{O}}(\mathbb{C})$.

For any proper \mathcal{O} -ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ we have

$$\mathfrak{a}(\mathfrak{b}E_{\mathfrak{c}})=\mathfrak{a}E_{\mathfrak{b}^{-1}\mathfrak{c}}=E_{\mathfrak{a}^{-1}\mathfrak{b}^{-1}\mathfrak{c}}=E_{(\mathfrak{b}\mathfrak{a})^{-1}\mathfrak{c}}=(\mathfrak{b}\mathfrak{a})E_{\mathfrak{c}}=(\mathfrak{a}\mathfrak{b})E_{\mathfrak{c}}.$$

We thus have a group action of $cl(\mathcal{O})$ on $Ell_{\mathcal{O}}(\mathbb{C})$, and it has the following properties:

- free: every stabilizer is trivial, since $[\mathfrak{a}]j(\mathfrak{b})=j(\mathfrak{b})\Leftrightarrow \mathfrak{b}\sim \mathfrak{a}^{-1}\mathfrak{b}\Leftrightarrow \mathfrak{a}\sim \mathcal{O}.$
- transitive: for every $j(\mathfrak{a}), j(\mathfrak{b})$ we have $[\mathfrak{c}]j(\mathfrak{a}) = j(\mathfrak{b})$ for some $[\mathfrak{c}] \in \mathrm{cl}(\mathcal{O})$.

Such group actions are regular. If X is a G-set, the G-action is regular if for every $x,y\in X$ there is a **unique** $g\in G$ for which gx=y, and we call X a G-torsor.

If we fix $x_1 \in X$, we can make X a group isomorphic to G by defining x_g to be the unique $g \in G$ for which $gx_1 = x_g$, and defining $x_gx_h := x_{gh}$. If we don't want to fix x_1 , we can instead think of ratios (or differences) of elements.

Isogenies of elliptic curves over ${\mathbb C}$

Let $\phi\colon E_1\to E_2$ be an isogeny of elliptic curves over $\mathbb C$, and let L_1 and L_2 be corresponding lattices, so $E_1=E_{L_1}$ and $E_2=E_{L_2}$. Recall that there is a unique $\alpha=\alpha_\phi$ with $\alpha L_1\subseteq L_2$ such that the following diagram commutes:

$$\begin{array}{ccc} \mathbb{C}/L_1 & \longrightarrow \mathbb{C}/L_2 \\ | & | & | \\ \Phi_1 & \Phi_2 \\ \downarrow & \downarrow \\ E_1(\mathbb{C}) & -\phi \mapsto E_2(\mathbb{C}) \ . \end{array}$$

Since we only care about lattices up to homothety, we can replace L_1 with αL_1 to make $\alpha=1$. In other words, up to isomorphism, every isogeny $\phi\colon E_1\to E_2$ over $\mathbb C$ is induced by a lattice inclusion $L_1\subseteq L_2$, and we then have

$$\# \ker \phi = [L_2 : L_1].$$

The CM action via isogenies

Now assume E_1/\mathbb{C} has CM by \mathcal{O} . Then L_1 is homothetic to an invertible \mathcal{O} -ideal \mathfrak{b} , and we may assume $L_1=\mathfrak{b}$ and $E_1=E_{\mathfrak{b}}$. If \mathfrak{a} is an invertible \mathcal{O} -ideal the inclusion $\mathfrak{b}\subseteq\mathfrak{a}^{-1}\mathfrak{b}$ induces an isogeny

$$\phi_{\mathfrak{a}} \colon E_{\mathfrak{b}} \to E_{\mathfrak{a}^{-1}\mathfrak{b}} = \mathfrak{a}E_{\mathfrak{b}}$$

If E_2 also has CM by $\mathcal O$ then L_2 is homothetic to an invertible $\mathcal O$ -ideal $\mathfrak c$. If we replace $\mathfrak b$ by $(N\mathfrak c)\mathfrak b$ then $\mathfrak c$ divides (hence contains) $\mathfrak b$, since $N\mathfrak c = \mathfrak c \overline{\mathfrak c}$. If we now put $\mathfrak a = \mathfrak b \mathfrak c^{-1}$ then the isogeny

$$\phi_{\mathfrak{a}} \colon E_{\mathfrak{b}} \to E_{\mathfrak{c}} = \mathfrak{a} E_{\mathfrak{b}}$$

induced by the inclusion $\mathfrak{b} \subseteq \mathfrak{c}$ corresponds to the action of \mathfrak{a} on $E_{\mathfrak{b}}$.

Now $\mathrm{Ell}_{\mathcal{O}}(\mathbb{C})$ is a $\mathrm{cl}(\mathcal{O})$ -torsor. Thus all elliptic curves E/\mathbb{C} with CM by \mathcal{O} are isogenous, and every isogeny between two such E has the form $E_{\mathfrak{b}} \to \mathfrak{a}E_{\mathfrak{b}}$.

Isogeny kernels

Definition

Let E/k be any elliptic curve with CM by an imaginary quadratic order \mathcal{O} , and let \mathfrak{a} be an \mathcal{O} -ideal. The \mathfrak{a} -torsion subgroup of E is defined by

$$E[\mathfrak{a}]:=\{P\in E(\bar{k}): \alpha(P)=0 \text{ for all } \alpha\in\mathfrak{a}\},$$

where we are viewing each $\alpha \in \mathfrak{a} \subseteq \mathcal{O} \simeq \operatorname{End}(E)$ as an endomorphism.

Theorem

Let $\mathcal O$ be an imaginary quadratic order, let $E/\mathbb C$ be an elliptic curve with CM by $\mathcal O$, let $\mathfrak a$ be an invertible $\mathcal O$ -ideal, and let $\phi_{\mathfrak a} \colon E \to \mathfrak a E$ be the corresponding isogeny. Then

- (i) $\ker \phi_{\mathfrak{a}} = E[\mathfrak{a}];$
- (ii) $\deg \phi_{\mathfrak{a}} = \mathrm{N}\mathfrak{a}$.

Proof. To the board!

Imaginary quadratic discriminants

Definition

Let $\mathcal{O}=[1,\tau]$ be an imaginary quadratic order. The discriminant of \mathcal{O} is the discriminant of the minimal polynomial of τ , which we can compute as

$$\operatorname{disc}(\mathcal{O}) = (\tau + \bar{\tau})^2 - 4\tau\bar{\tau} = (\tau - \bar{\tau})^2 = \det\begin{pmatrix} 1 & \tau \\ 1 & \bar{\tau} \end{pmatrix}^2.$$

If A is the area of a fundamental parallelogram of $\mathcal O$ then

$$\operatorname{disc}(\mathcal{O}) = (\tau - \bar{\tau})^2 = -4|\operatorname{im}\tau|^2 = -4A^2,$$

thus the discriminant does not depend on our choice of τ , it is intrinsic to the lattice \mathcal{O} .

Imaginary quadratic discriminants

Negative integers $D \equiv 0, 1 \mod 4$ are (imaginary quadratic) discriminants. If D is not u^2D_0 for some u > 1 and $D_0 \equiv 0, 1 \mod 4$ then D is fundamental.

Theorem

Let D be an imaginary quadratic discriminant. There is a unique imaginary quadratic order \mathcal{O} with $\mathrm{disc}(\mathcal{O}) = D = u^2 D_K$, where D_K is the fundamental discriminant of the maximal order \mathcal{O}_K in $K = \mathbb{Q}(\sqrt{D_K})$, and $u = [\mathcal{O}_K : \mathcal{O}]$.

Proof. See notes.

The index $u = [\mathcal{O}_K : \mathcal{O}]$ is the conductor of the order \mathcal{O} .