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Uniformization Theorem
Given a lattice L C C, let

Ep:y? =42® — go(L)z — g3(L),
be the corresponding elliptic curve, equipped with the map

by C/L — EL((C)
(0(2),9'(2)) 2z¢L,
0

z € L.

Z =

Over the course of the last two lectures we proved the following theorem.

Theorem (Uniformization Theorem)

The map L — Ej, defines a bijection between between homothety classes of lattices
L C C and isomorphism classes of elliptic curves E/C in which each ®, is an analytic
group isomorphism (in fact, an isomorphism of complex Lie groups).



Morphisms of complex tori

Definition
A morphism ¢: C/L; — C/ Ly of complex tori is a map induced by a holomorphic
function f: C — C such that the following diagram commutes:

C%(C

bl

C/Ll L) C/LQ

Example

For each a € C the holomorphic map z — az defines an analytic endomorphism of C.
When a1 C Lo this induces a holomorphic group homomorphism

Pa - C/Ll —)(C/LQ
z+ L1~ az+ Ly



Every morphism of complex tori is multiplication-by-«

Theorem

Let p: C/L1 — C/Ly be a holomorphic map with ¢(0) = 0.
There is a unique o € C for which ¢ = .

Proof.
To the board!

Corollary

For any two lattices L1, Lo C C the map
{a eC:alh C Lg} — {morphismscp: C/L1 — (C/Lg}
o Qo

is an isomorphism of groups. If L1 = Lo it is an isomorphism of commutative rings.



Morphisms of complex tori and isogenies of elliptic curves

Fori=1,2let L; C C be a lattice, let E; := Ey, be the corresponding elliptic curve.
Let pi(z) := p(z; L;), and let ®;: C/L; — E;(C).
Theorem
For any oo € C*, the following are equivalent:
(1) aL1 Q LQ,’
(i) pa2(az) = u(p1(2))/v(p1(z)) for some polynomials u,v € C[z];
(iii) There is a unique ¢, € Hom(E1, E2) such that the following diagram commutes:
C—— (C/Ll — & = El((C)
| !
o «
! %
C— (C/LQ — &y — EQ(C)

For every ¢ € Hom(E1, E») there is a unique o = oy satisfying (i)—(iii).
The maps ¢ — g and o +— ¢, are inverse isomorphisms between the abelian groups
Hom(E1, E2) and {a € C: aLy C La}.



Morphisms of complex tori and isogenies of elliptic curves

To prove our theorem relating morphisms of complex tori and elliptic curves, we need
the following lemma.

Recall that C(L) is the field of elliptic functions for the lattice L C C. The Weierstrass
o-function p(z) = p(z; L) and its derivative ¢'(z) are both elements of C(L).

Lemma
Let L. C C be a lattice. The following hold:
(i) C(L) = C(p, )
(i) C(L)*¥" = C(p);
(iii) if f € C(L)*¥*" is holomorphic on C — L then f € C|gp].

Proof.
To the board! ]



Endomorphism rings of complex tori and elliptic curves

We now specialize to the case L = Lo = L1, and put E = Ep, in which case the group
{a € C: aL C L} ~Hom(E, F) = End(E) becomes a ring, not just a group.

Corollary
Let L. C C be a lattice and let E := Ey,.. The following hold:

(i) The maps o — ¢ and ¢ — s are inverse ring isomorphisms
between {aw € C : «L C L} and End(E);

(ii) the involution ¢ — ¢ of End(E) corresponds to complex conjugation o — @
in{a e C:alL C L},

(iii) T(a) == a4+ & = tr ¢, and N(a) := adx = deg ¢, = degu = degv + 1, where
u,v € C[x] are as in the morphism/isogeny Theorem.

Proof.
To the board! ]



Complex multiplication

The corollary explains the origin of the term complex multiplication (CM).

When End(Ey) is larger than Z the extra endomorphisms in End(E}) are all
multiplication-by-a maps in End(C/L), for some o € C — R that is an algebraic
integer in an imaginary quadratic field.

Corollary

Let E be an elliptic curve defined over C. Then End(E) is commutative and therefore
isomorphic to either Z or an order in an imaginary quadratic field.

Proof.

End(EL) ~ {a € C:aL C L} is commutative, so it cannot be an order in a
quaternion algebra. O

The corollary also applies to elliptic curves over QQ, number fields, or any field
embedded in C. It extends to all fields of characteristic 0 (via the Lefschetz principle).



Elliptic curves with complex multiplication

We have shown that for any lattice L C C we have ring isomorphisms
End(Er) ~{a € C:aL C L} ~End(C/L).

We have been treating the isomorphism on the left as an equality, and it will be

convenient to do the same for the isomorphism on the right.

The endomorphism algebra End®(Ey) is isomorphic to either Q or an imaginary
quadratic field, so we can always embed End’(Ey) in C.

Viewing End(Ey) as a subring of End(Ey), we have End(EL) = {a € C: oL C L}.

When End(C/L) is an imaginary quadratic order O, we can embed End®(E}) in C so
that each multiplication-by-av endomorphism of C/L is ¢, € End(EL) (versus ¢4 ).

This is the normalized identification of End(E7) with End(C/L) = O, which we use.



Tori with complex multiplication

Given an imaginary quadratic order O, is there a lattice L C C with End(C/L) = O?

Consider L = O. If « € End(Ep), then a0 C O, so a € O (note 1 € O).
Conversely, if « € O, then O C O and « € End(FEp); thus End(FEp) = O.

The same holds for any lattice homothetic to O. Indeed, the set {a € C: oL C L}
does not change if we replace L with L' = AL for any A € C*, so we are really only
interested in lattices up to homothety (and elliptic curves up to isomorphism).

But are there any lattices L not homothetic to O for which we have End(EL) = O?
We may assume L = [1,7] and write O = [1,w], for an imaginary quadratic integer w.
If End(EL) = O, thenw-1=w € L, so w =m + nt, for some m,n € Z with n # 0.

Thus nL = [n,n7] = [n,w —m] C [1,w] = O, so L is homothetic to a sublattice of O.
This sublattice is closed under multiplication by O, so L is homothetic to an O-ideal.



Proper ideals

The situation is a bit more complicated than it appears. While every lattice L for
which End(Er) = O is an O-ideal, the converse does not hold (unless O is the
maximal order O ). If we start with an arbitrary O-ideal L, then the set

OL)={aeC:aLCL}={aeK:aLCL}
is an order in K, but it is not necessarily true that O(L) is equal to O.

For O # Ok we can always find an O-ideal L for which O(L) strictly contains O.

Definition

Let O be an order in an imaginary quadratic field K, and let L be an O-ideal. We say
that L is a proper O-ideal if O(L) = O.



The ideal class group

Recall that the product of two O-ideals a and b is the ideal generated by all products
ab with a € a and b € b, and that ideal multiplication is commutative and associative.

It is enough to consider products of generators, so if a = [a1,az] and b = [b1, bo], then
ab is the ideal generated by the four elements a1b1, a1bs, asbi, asbs € O.

Since ab is an additive subgroup of O, it is a free Z-module of rank 2 and can be
written as [c1, ca] = [a1b1, a1be, agby, agbs] for some c1,co € O.
Call two O-ideals a and b equivalent if ca = Bb for some nonzero o, 5 € O.
Equivalence is compatible with multiplication of ideals:

aa=pband y¢c =350 = ayac= [Ibd.
Definition

Let O be an order in an imaginary quadratic field. The ideal class group cl(O) is the
multiplicative group of equivalence classes of proper O-ideals.



A preview of things to come...

Theorem

Let O be an order in an imaginary quadratic field. The ideal classes of cl(O) are in
bijection with the homothety classes of lattices L C C for which End(EL) ~ O.



