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Ordinary and supersingular elliptic curves

Definition
Let E/k be an elliptic curve of positive characteristic p.
If E[p] ~ Z/pZ then E is ordinary, otherwise E is supersingular.

We proved the following in previous lectures:
e Any isogeny o can be decomposed as o = aiep, © ™", Where e, is separable.
o deg, a = deg agep, deg; a :=p”, and dega = (deg, ov)(deg; ).
e We have # ker a = deg, a (so E is supersingular if and only if deg,[p] = 1).
e We have deg(a o 3) = (dega)(deg 3), and similarly for deg, and deg;.
e A sum of inseparable isogenies is inseparable.
e The sum of a separable and an inseparable isogeny is separable.
e The multiplication-by-n map [n] is inseparable if and only if p|n.

e Supersingularity is invariant under base change: E[p] = {Q € E(k) : pQ = 0}.



Supersingularity is an isogeny invariant

Theorem
Let ¢: E1 — E5 be an isogeny of elliptic curves. Then E; is supersingular if and only
if By is supersingular (and E is ordinary if and only if E is ordinary).

Proof: Let p; € End(E1) and ps € End(E2) denote multiplication-by-p maps.
We have ppop =0+ ---+ ¢ = ¢ opy, thus

p2od=¢op;
deg,(p2 0 ¢) = deg (¢ o p1)
deg,(p2) deg,(¢) = deg,(¢) deg,(p1)
deg,(p2) = deg,(p1).

The elliptic curve Ej; is supersingular if and only if deg,(p;) = 1; the theorem follows.



Criteria for supersingularity

Assume p > 3, so that E: y?> = 23 + Az + B, and E®). y? = 23 4+ APz 4 BP,
so that 7: E — E®). We also define E@: y? = 23 + A% + BY for any q = p™.

Note that [p] = 7, so E is supersingular if and only if #: E®) — E is inseparable.

Theorem

An elliptic curve E /F, with ¢ = p™ is supersingular if and only if tr 7y = 0 mod p.
Proof: If E is supersingular then [p] = 77 is purely inseparable, in which case 7 is
inseparable, as are 1" = " = 7 and g = 7.

Their sum [tr mg] = 7 + 7g is inseparable, so p must divide tr 7g.
Equivalently, tr 7y = 0 mod p.

Conversely, if tr mg = 0 mod p, then [tr 7g]| is inseparable, as is g = [tr 7] — 7E.
This means that 7" and 7 are inseparable, which implies that E is supersingular.



Trace zero elliptic curves are supersingular

Corollary

Let E/F, be an elliptic curve over a field of prime order p > 3.
Then E is supersingular if and only if tr mgp = 0, equivalently, #E(F,) = p+ 1.

Proof: By Hasse's theorem, |trmg| < 2,/p, and 2,/p < p for p > 3.

Warning: The corollary does not hold for p = 2, 3.

The corollary should convince you that supersingular elliptic curves are rare.
Of the = 4,/p possible Frobenius traces for £//IF,,, only one yields supersingular curves.



Endomorphism algebras of ordinary elliptic curves

Theorem

Let E be an elliptic curve over a finite field F, and suppose ng & 7.
Then End’(E) = Q(rg) ~ Q(v/D) is an imaginary quadratic field, D = (tr 7g)? — 4q.
This applies in particular whenever q is prime, and also whenever E is ordinary.

Proof: To the blackboard!

Corollary

Let E be an elliptic curve over F, with q = p™. If n is odd or E is ordinary, then
End’(F) = Q(ng) ~ Q(v/D) is an imaginary quadratic field with D = (tr 7g)? — 4q.

Proof: If 7 € Z then D = (trmg)? — 4degmg = 0 and 2,/q=xtrng € Z,
which is possible only when ¢ is a square and tr 7g is a multiple of p.
But then n is even and E is supersingular.



Endomorphism algebras of ordinary elliptic curves

If E/F, is an ordinary elliptic curve, or more generally, whenever 7 ¢ Z, the subring
Z|ng| of End(E) generated by 7 is a lattice of rank 2.

It follows that Z[rg] is an order in the imaginary quadratic field K := End’(E), and is
therefore contained in the maximal order Ok (the ring of integers of K).

Definition

The conductor of an order O in a number field K is the positive integer [Ok : O].

Theorem

Let E/F, be an elliptic curve for which End’(E) is an imaginary quadratic field K
with ring of integers O . Then

Zlrg] C End(F) C Ok,

and the conductor of End(FE) divides Ok : Z[rg]].



The j-invariant of an elliptic curve

Definition

The j-invariant of the elliptic curve E: y> = 23 + Az + B is

4A3

i(F) :=j(A,B) =17284—————..

Note that A(E) = —16(4A3 + 27B2) # 0.

Theorem
For every jo € k there is an elliptic curve E/k with j-invariant j(E) = jo.

Proof: We assume char(k) # 2,3. If jo =0 take A =0,B =1 and if jo = 1728 take
A=1,B=0. Otherwise, let A = 3jo(1728 — jo) and B = 2jo(1728 — jo)? so that
443 4.3353(1728 — jo)3

i(A,B) =1728———— = 1728 = jo.
4, B) 443 + 27B2 4-3353(1728 — jo)® + 27 - 22;2(1728 — jo)t "




The j-invariant is a k-isomorphism invariant

Theorem

Elliptic curves E: y?> = 2®> + Az + B and E': y?> = 23 + A’z + B’ defined over k are
isomorphic (over k) if and only if A’ = u*A and B' = 5B, for some j1 € k.

Proof: To the blackboard!

Theorem

Let E and E' be elliptic curves over k. Then Ey ~ E; if and only if j(E) = j(E').
If j(E) = j(E") and char(k) # 2,3 then there is a field extension K /k of degree at
most 6, 4, or 2, for j(E) =0, j(E) = 1728, or j(E) # 0,1728, such that Ex ~ E}..
Proof: See notes.

The first statement is true in characteristic 2 and 3, but the second statement is not;
one may need to take K /k of degree up to 12 when k has characteristic 2 or 3.



Supersingular elliptic curves

Theorem

Let E be a supersingular elliptic curve over a field k of characteristic p > 0. Then
J(E) lies in F,2 (and possibly in Fy).

Proof: E is supersingular, so 7 is purely inseparable and 7 = 7rgepm with deg rgep = 1.
We thus have [p] = r = frsepwz, SO Tsep IS @n isomorphism EP) & R

By our theorem on j-invariants

2

. . 2 oap? pp? . 2
i(E) = j(E®)) = j(A"", B”) = j(A, B} = j(E).
Thus j(FE) is fixed by the p>-power Frobenius automorphism o: z 2P of k.

It follows that j(E) lies in the subfield of k fixed by o, which is either F,2 or ),
depending on whether k£ contains a quadratic extension of its prime field or not.
In either case, j(E) lies in 2.



Endomorphism algebras of supersingular elliptic curves
Let E/k be an elliptic curve over a field k of characteristic p > 0.

Theorem
E is supersingular if and only if EndO(E,;) is a quaternion algebra.
Proof: To the blackboard!

Corollary

Let E be an elliptic curve over a finite field F, of characteristic p.
Either E is supersingular, tr 7 = 0 mod p, and EndO(EFq) is a quaternion algebra,

or E is ordinary, tr g #Z 0 mod p, and Endo(EFq) is an imaginary quadratic field.

When E/F, is ordinary we always have End’(E) = EndO(EFq).
But when F is supersingular this need not hold. In particular, if ¢ = p™ with n odd
then End®(E) is an imaginary quadratic field, while EndO(EFq) is a quaternion algebra.



