
18.783 Elliptic Curves
Lecture 13

Andrew Sutherland

October 21, 2025



Ordinary and supersingular elliptic curves

Definition
Let E/k be an elliptic curve of positive characteristic p.
If E[p] ≃ Z/pZ then E is ordinary, otherwise E is supersingular.

We proved the following in previous lectures:
• Any isogeny α can be decomposed as α = αsep ◦ πn, where αsep is separable.
• degs α := deg αsep, degi α := pn, and deg α = (degs α)(degi α).
• We have # ker α = degs α (so E is supersingular if and only if degs[p] = 1).
• We have deg(α ◦ β) = (deg α)(deg β), and similarly for degs and degi.
• A sum of inseparable isogenies is inseparable.
• The sum of a separable and an inseparable isogeny is separable.
• The multiplication-by-n map [n] is inseparable if and only if p|n.
• Supersingularity is invariant under base change: E[p] = {Q ∈ E(k̄) : pQ = 0}.



Supersingularity is an isogeny invariant

Theorem
Let ϕ : E1 → E2 be an isogeny of elliptic curves. Then E1 is supersingular if and only
if E2 is supersingular (and E1 is ordinary if and only if E2 is ordinary).

Proof: Let p1 ∈ End(E1) and p2 ∈ End(E2) denote multiplication-by-p maps.
We have p2 ◦ ϕ = ϕ + · · · + ϕ = ϕ ◦ p1, thus

p2 ◦ ϕ = ϕ ◦ p1

degs(p2 ◦ ϕ) = degs(ϕ ◦ p1)
degs(p2) degs(ϕ) = degs(ϕ) degs(p1)

degs(p2) = degs(p1).

The elliptic curve Ei is supersingular if and only if degs(pi) = 1; the theorem follows.



Criteria for supersingularity
Assume p > 3, so that E : y2 = x3 + Ax + B, and E(p) : y2 = x3 + Apx + Bp,
so that π : E → E(p). We also define E(q) : y2 = x3 + Aqx + Bq for any q = pn.

Note that [p] = ππ̂, so E is supersingular if and only if π̂ : E(p) → E is inseparable.

Theorem
An elliptic curve E/Fq with q = pn is supersingular if and only if tr πE ≡ 0 mod p.

Proof: If E is supersingular then [p] = ππ̂ is purely inseparable, in which case π̂ is
inseparable, as are π̂n = π̂n = π̂E and πE = πn.

Their sum [tr πE ] = πE + π̂E is inseparable, so p must divide tr πE .
Equivalently, tr πE ≡ 0 mod p.

Conversely, if tr πE ≡ 0 mod p, then [tr πE ] is inseparable, as is π̂E = [tr πE ] − πE .
This means that π̂n and π̂ are inseparable, which implies that E is supersingular.



Trace zero elliptic curves are supersingular

Corollary
Let E/Fp be an elliptic curve over a field of prime order p > 3.
Then E is supersingular if and only if tr πE = 0, equivalently, #E(Fp) = p + 1.

Proof: By Hasse’s theorem, | tr πE | ≤ 2√
p, and 2√

p < p for p > 3.

Warning: The corollary does not hold for p = 2, 3.

The corollary should convince you that supersingular elliptic curves are rare.
Of the ≈ 4√

p possible Frobenius traces for E/Fp, only one yields supersingular curves.



Endomorphism algebras of ordinary elliptic curves
Theorem
Let E be an elliptic curve over a finite field Fq and suppose πE ̸∈ Z.
Then End0(E) = Q(πE) ≃ Q(

√
D) is an imaginary quadratic field, D = (tr πE)2 − 4q.

This applies in particular whenever q is prime, and also whenever E is ordinary.

Proof: To the blackboard!

Corollary
Let E be an elliptic curve over Fq with q = pn. If n is odd or E is ordinary, then
End0(E) = Q(πE) ≃ Q(

√
D) is an imaginary quadratic field with D = (tr πE)2 − 4q.

Proof: If πE ∈ Z then D = (tr πE)2 − 4 deg πE = 0 and 2√
q = ± tr πE ∈ Z,

which is possible only when q is a square and tr πE is a multiple of p.
But then n is even and E is supersingular.



Endomorphism algebras of ordinary elliptic curves
If E/Fq is an ordinary elliptic curve, or more generally, whenever πE ̸∈ Z, the subring
Z[πE ] of End(E) generated by πE is a lattice of rank 2.
It follows that Z[πE ] is an order in the imaginary quadratic field K := End0(E), and is
therefore contained in the maximal order OK (the ring of integers of K).

Definition
The conductor of an order O in a number field K is the positive integer [OK : O].

Theorem
Let E/Fq be an elliptic curve for which End0(E) is an imaginary quadratic field K
with ring of integers OK . Then

Z[πE ] ⊆ End(E) ⊆ OK ,

and the conductor of End(E) divides [OK : Z[πE ]].



The j-invariant of an elliptic curve
Definition
The j-invariant of the elliptic curve E : y2 = x3 + Ax + B is

j(E) := j(A, B) := 1728 4A3

4A3 + 27B2 .

Note that ∆(E) = −16(4A3 + 27B2) ̸= 0.

Theorem
For every j0 ∈ k there is an elliptic curve E/k with j-invariant j(E) = j0.
Proof: We assume char(k) ̸= 2, 3. If j0 = 0 take A = 0, B = 1 and if j0 = 1728 take
A = 1, B = 0. Otherwise, let A = 3j0(1728 − j0) and B = 2j0(1728 − j0)2 so that

j(A, B) = 1728 4A3

4A3 + 27B2 = 1728 4 · 33j3
0(1728 − j0)3

4 · 33j3
0(1728 − j0)3 + 27 · 22j2

0(1728 − j0)4 = j0.



The j-invariant is a k̄-isomorphism invariant

Theorem
Elliptic curves E : y2 = x3 + Ax + B and E′ : y2 = x3 + A′x + B′ defined over k are
isomorphic (over k) if and only if A′ = µ4A and B′ = µ6B, for some µ ∈ k×.
Proof: To the blackboard!

Theorem
Let E and E′ be elliptic curves over k. Then Ek̄ ≃ E′

k̄
if and only if j(E) = j(E′).

If j(E) = j(E′) and char(k) ̸= 2, 3 then there is a field extension K/k of degree at
most 6, 4, or 2, for j(E) = 0, j(E) = 1728, or j(E) ̸= 0, 1728, such that EK ≃ E′

K .
Proof: See notes.

The first statement is true in characteristic 2 and 3, but the second statement is not;
one may need to take K/k of degree up to 12 when k has characteristic 2 or 3.



Supersingular elliptic curves

Theorem
Let E be a supersingular elliptic curve over a field k of characteristic p > 0. Then
j(E) lies in Fp2 (and possibly in Fp).
Proof: E is supersingular, so π̂ is purely inseparable and π̂ = π̂sepπ with deg π̂sep = 1.
We thus have [p] = π̂π = π̂sepπ2, so π̂sep is an isomorphism E(p2) → E.
By our theorem on j-invariants

j(E) = j(E(p2)) = j(Ap2
, Bp2) = j(A, B)p2 = j(E)p2

.

Thus j(E) is fixed by the p2-power Frobenius automorphism σ : x 7→ xp2 of k.

It follows that j(E) lies in the subfield of k fixed by σ, which is either Fp2 or Fp,
depending on whether k contains a quadratic extension of its prime field or not.
In either case, j(E) lies in Fp2.



Endomorphism algebras of supersingular elliptic curves
Let E/k be an elliptic curve over a field k of characteristic p > 0.

Theorem
E is supersingular if and only if End0(Ek̄) is a quaternion algebra.
Proof: To the blackboard!

Corollary
Let E be an elliptic curve over a finite field Fq of characteristic p.
Either E is supersingular, tr πE ≡ 0 mod p, and End0(EFq

) is a quaternion algebra,
or E is ordinary, tr πE ̸≡ 0 mod p, and End0(EFq

) is an imaginary quadratic field.

When E/Fq is ordinary we always have End0(E) = End0(EFq
).

But when E is supersingular this need not hold. In particular, if q = pn with n odd
then End0(E) is an imaginary quadratic field, while End0(EFq

) is a quaternion algebra.


