18.783 Elliptic Curves Lecture 12

Andrew Sutherland

October 14, 2025

The endomorphism ring of an elliptic curve ${\cal E}$

Recall that the endomorphism ring $\operatorname{End}(E)$ is the ring of morphisms $E \to E$ in which addition is defined pointwise and we multiply via composition.

- $\operatorname{End}(E)$ has no zero divisors;
- deg: $\operatorname{End}(E) \to \mathbb{Z}_{\geq 0}$ defined by $\alpha \mapsto \operatorname{deg} \alpha$ is multiplicative (with $\operatorname{deg} 0 := 0$);
- $\deg n = n^2$ for all $n \in \mathbb{Z} \subseteq \operatorname{End}(E)$;
- $\hat{\alpha} \in \operatorname{End}(E)$ with $\alpha \hat{\alpha} = \hat{\alpha} \alpha = \deg \alpha = \deg \hat{\alpha}$, and $\hat{\hat{\alpha}} = \alpha$;
- $\hat{n} = n$ for all $n \in \mathbb{Z} \subseteq \operatorname{End}(E)$;
- $\widehat{\alpha + \beta} = \widehat{\alpha} + \widehat{\beta}$ and $\widehat{\alpha\beta} = \widehat{\beta}\widehat{\alpha}$ for all $\alpha, \beta \in \operatorname{End}(E)$;
- $\operatorname{tr} \alpha := \alpha + \hat{\alpha}$ satisfies $\operatorname{tr} \alpha = \operatorname{tr} \hat{\alpha}$ and $\operatorname{tr} (\alpha + \beta) = \operatorname{tr} \alpha + \operatorname{tr} \beta$;
- $\operatorname{tr} \alpha = \operatorname{deg} \alpha + 1 \operatorname{deg}(\alpha 1) \in \mathbb{Z}$ for all $\alpha \in \operatorname{End}(E)$;
- α and $\hat{\alpha}$ are the roots of the characteristic equation $x^2 (\operatorname{tr} \alpha)x + \operatorname{deg} \alpha \in \mathbb{Z}[x]$.

Tensor products of algebras

Definition

For a commutative ring R, an (associative unital) R-algebra A is a ring equipped with a homomorphism $R \to A$ whose image lies in the center. Every ring is a \mathbb{Z} -algebra.

Definition

The tensor product of two R-algebras A and B is the R-algebra $A\otimes_R B$ generated by the formal symbols $\alpha\otimes\beta$ with $\alpha\in A,\ \beta\in B$, subject to the relations

$$(\alpha_1 + \alpha_2) \otimes \beta = \alpha_1 \otimes \beta + \alpha_2 \otimes \beta, \quad \alpha \otimes (\beta_1 + \beta_2) = \alpha \otimes \beta_1 + \alpha \otimes \beta_2$$

$$r\alpha \otimes \beta = \alpha \otimes r\beta = r(\alpha \otimes \beta), \quad (\alpha_1 \otimes \beta_1)(\alpha_2 \otimes \beta_2) = \alpha_1\alpha_2 \otimes \beta_1\beta_2$$

It comes with an R-linear map $\varphi\colon A\times B\to A\otimes_R B$ defined by $(\alpha,\beta)\mapsto \alpha\otimes\beta$ with the universal property that every R-bilinear map of R-algebras $\psi\colon A\times B\to C$ factors uniquely through $A\otimes_R B$: there is a unique $\psi'\colon A\otimes_R B\to C$ such that $\psi=\psi'\circ\varphi$.

Base change

Definition

If $R \to S$ is a homomorphism of commutative rings, then S is an R-algebra. If A is an R-algebra, the S-algebra $S \to A \otimes_R S$ is the base change of A to S. (the map $S \to A \otimes_R S$ is defined by $s \mapsto 1 \otimes s$).

Lemma

If R is an integral domain with fraction field S then every element of $A \otimes_R S$ can be written as a pure tensor $\alpha \otimes s$.

Example

The ring of integers \mathcal{O}_K of a number field K/\mathbb{Q} is a \mathbb{Z} -algebra of rank $n:=[K:\mathbb{Q}]$. The base change $\mathcal{O}_K\otimes_{\mathbb{Z}}\mathbb{Q}$ is a \mathbb{Q} -algebra of dimension n isomorphic to K.

The endomorphism algebra of an elliptic curve

Definition

The endomorphism algebra of an elliptic curve E is the \mathbb{Q} -algebra

$$\operatorname{End}^0(E) := \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

Its elements can all be written in the form $r\alpha$ with $r \in \mathbb{Q}$ and $\alpha \in \operatorname{End}(E)$. We extend the map $\alpha \to \hat{\alpha}$ to $\operatorname{End}^0(E)$ by defining $\widehat{r\alpha} = r\hat{\alpha}$. We then have $\hat{\alpha} = \alpha$. $\widehat{\alpha\beta} = \hat{\beta}\hat{\alpha}$ and $\widehat{\alpha+\beta} = \hat{\alpha}+\hat{\beta}$ for $\alpha,\beta \in \operatorname{End}^0(E)$, and $\hat{r} = r$ for $r \in \mathbb{Q}$.

An anti-homomorphism $\varphi\colon R\to S$ of rings is a homomorphism of additive groups with $\varphi(1_R)=1_S$ and $\varphi(\alpha\beta)=\varphi(\beta)\varphi(\alpha)$ for all $\alpha,\beta\in R$. An involution (or anti-involution) is an anti-homomorphism $\varphi\colon R\to R$ that is its own inverse: $\varphi\circ\varphi$ is the identity map.

The involution $\alpha \mapsto \hat{\alpha}$ of $\operatorname{End}(E)$ is called the Rosati involution.

Norm and trace

Definition

For $\alpha \in \operatorname{End}^0(E)$, we define the (reduced) norm $\operatorname{N}\alpha := \alpha\hat{\alpha}$ and trace $\operatorname{T}\alpha := \alpha + \hat{\alpha}$. We have $\operatorname{N}\hat{\alpha} = \operatorname{N}\alpha$, $\operatorname{T}\hat{\alpha} = \operatorname{T}\alpha$, $\operatorname{N}(\alpha\beta) = \operatorname{N}\alpha\operatorname{N}\beta$, $\operatorname{T}(\alpha+\beta) = \operatorname{T}\alpha + \operatorname{T}\beta$, $\operatorname{T}(r\alpha) = r\operatorname{T}\alpha$, and we note that $\operatorname{T}\alpha = \alpha + \hat{\alpha} = 1 + \alpha\hat{\alpha} - (1-\alpha)(1-\hat{\alpha}) = 1 + \operatorname{N}\alpha - \operatorname{N}(1-\alpha) \in \mathbb{Q}$.

Lemma

For all $\alpha \in \operatorname{End}^0(E)$ we have $\operatorname{N}\alpha \in \mathbb{Q}_{\geq 0}$ with $\operatorname{N}\alpha = 0$ if and only if $\alpha = 0$.

Proof: If $\alpha = r\phi$ then $N\alpha = \alpha \hat{\alpha} = r\phi r\hat{\phi} = r^2 \deg \phi \ge 0$ with equality only if $r\phi = 0$.

Corollary

Every nonzero $\alpha \in \operatorname{End}^0(E)$ has a multiplicative inverse α^{-1} .

Proof: If $\beta = \hat{\alpha}/N\alpha$, then $\alpha\beta = N\alpha/N\alpha = 1$ and $\beta\alpha = N\hat{\alpha}/N\alpha = 1$, so $\beta = \alpha^{-1}$.

Lemma

An element $\alpha \in \operatorname{End}^0(E)$ is fixed by the Rosati involution if and only if $\alpha \in \mathbb{Q}$.

Proof: If $\hat{\alpha} = \alpha$ then $T\alpha = \alpha + \hat{\alpha} = 2\alpha$ and $\alpha = T\alpha/2 \in \mathbb{Q}$.

Lemma

Let $\alpha \in \operatorname{End}^0(E)$. Then α and $\hat{\alpha}$ are roots of the polynomial

$$x^2 - (\mathrm{T}\alpha)x + \mathrm{N}\alpha \in \mathbb{Q}[x]$$

Proof: $0 = (\alpha - \alpha)(\hat{\alpha} - \hat{\alpha}) = \alpha^2 - \alpha(\alpha + \hat{\alpha}) + \alpha\hat{\alpha} = \alpha^2 - (T\alpha)\alpha + N\alpha$.

Corollary

For any nonzero $\alpha \in \operatorname{End}^0(E)$, if $T\alpha = 0$ then $\alpha^2 = -N\alpha < 0$ and $\alpha \notin \mathbb{Q}$.

Quaternion algebras

Definition

A quaternion algebra H over a field k is a k-algebra with a basis $\{1,\alpha,\beta,\alpha\beta\}$ satisfying $\alpha^2,\beta^2\in k^\times$ and $\alpha\beta=-\beta\alpha$. We distinguish quaternion algebras as non-split or split depending on whether they are division rings or not.

Example

Non-split: the \mathbb{R} -algebra with basis $\{1, i, j, ij\}$ satisfying $i^2 = j^2 = -1$ and ij = -ji.

Split: the ring of 2×2 matrices over k (char $(k) \neq 2$) with $\alpha^2 = \beta^2 = 1$, where

$$\alpha := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \beta := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \alpha\beta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad \beta\alpha = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Endomorphism algebra classification theorem

Theorem

Let E/k be an elliptic curve. Then $\operatorname{End}^0(E)$ is isomorphic to one of the following:

- the field of rational numbers Q;
- an imaginary quadratic field $\mathbb{Q}(\alpha)$ with $\alpha^2 < 0$;
- a quaternion algebra $\mathbb{Q}(\alpha, \beta)$ with $\alpha^2, \beta^2 < 0$.

Proof: To the blackboard!

Definition

An elliptic curve with $\operatorname{End}^0(E) \neq \mathbb{Q}$ is said to have complex multiplication.

Orders in Q-algebras

Definition

Let K be a $\mathbb{Q}\text{-algebra}$ of finite dimension r as a $\mathbb{Q}\text{-vector}$ space.

A subring $\mathcal O$ of K is an order in K if is is a free $\mathbb Z$ -module of rank r.

Equivalently, $\mathcal O$ is finitely generated as a $\mathbb Z$ -module with $K=\mathcal O\otimes_{\mathbb Z}\mathbb Q.$

Example

 \mathbb{Z} is an order in \mathbb{Q} , but $2\mathbb{Z}$ and $\{a/2^n: a, n \in \mathbb{Z}\} \subseteq \mathbb{Q}$ are not orders in \mathbb{Q} .

Corollary

The endomorphism ring $\operatorname{End}(E)$ is an order in $\operatorname{End}^0(E)$.

Proof: To the blackboard!

Orders in number fields

Definition

An algebraic number $\alpha\in\mathbb{C}$ is any root of a polynomial with coefficients in \mathbb{Z} . An algebraic integer $\alpha\in\mathbb{C}$ is any root of a monic polynomial with coefficients in \mathbb{Z} . The algebraic integers form a ring $\overline{\mathbb{Z}}$.

Definition

A number field K is a finite extension of \mathbb{Q} . Its ring of integers $\mathcal{O}_{\mathcal{K}}$ is the ring $K \cap \overline{\mathbb{Z}}$, which is a free \mathbb{Z} -module of rank $\dim_{\mathbb{Q}} K$, hence an order in K. Moreover, it is the unique maximal order in K.

Theorem

Let K be an imaginary quadratic field with ring of integers $\mathcal{O}_{\mathcal{K}}$. The orders in K are precisely the subrings $\mathbb{Z}+f\mathcal{O}_{\mathcal{K}}$ with $f\in\mathbb{Z}_{>0}$.

Proof: See notes.