18.783 Elliptic Curves Lecture 11

Andrew Sutherland

October 9, 2025

Primality proving

- Primality proving is one of the founding problems of computational number theory.
- A factorization cannot be considered complete without a proof of primality.
- Probabilistic factorization algorithms will typically not terminate on prime inputs.
- Elliptic curves play a crucial role in practical primality proving.
- Existing polynomial-time algorithms are not as practical and do not provide a useful certificate of primality.
- Algorithms for primes of specific forms such as Mersenne primes are very efficient but are not applicable in any generality.
- There are very efficient probabilistic algorithms for proving compositeness without providing a factorization, but these do not prove primality.

Using Fermat's little theorem to prove compositeness

Theorem (Fermat 1640)

If N is prime then $a^N \equiv a \mod N$ for all integers a.

Example

The fact that $2^{91} \equiv 37 \bmod 91$ proves that 91 is not prime (without factoring it).

Example

We have $2^{341} \equiv 2 \mod 341$ (which proves nothing), but $3^{341} \equiv 168 \mod 341$ proves that 341 is not prime (thus we may need to try different values of a).

Example

We have $a^{561} \equiv a \bmod 561$ for every integer a. But $561 = 3 \cdot 11 \cdot 17$ is not prime!

Carmichael numbers

Definition

A composite $N \in \mathbb{Z}$ such that $a^N \equiv a \mod N$ for all $a \in \mathbb{Z}$ is a Carmichael number.

The sequence of Carmichael numbers begins $561,1105,1729,2821,\ldots$, and forms sequence A002997 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Statistics on the 20,138,200 Carmichael numbers less than 10^{21} can be found here.

Theorem (Alford-Granville-Pomerance 1994)

The sequence of Carmichael numbers is infinite.

There are thus infinitely many composite integers that will pass any primality test based on Fermat's little theorem.

A better test for compositeness

Recall the Euler function $\phi(N) := \#(\mathbb{Z}/N\mathbb{Z})^{\times}$.

Theorem

A positive integer N is prime if and only if $\phi(N) = N - 1$.

Proof: Every nonzero residue class in $\mathbb{Z}/N\mathbb{Z}$ is invertible if and only if N is prime.

Lemma

Let $p=2^st+1$ be prime with t odd and suppose $a\in\mathbb{Z}$ is not divisible by p. Exactly one of the following holds:

- (i) $a^t \equiv 1 \bmod p$.
- (ii) $a^{2^i t} \equiv -1 \mod p$ for some $0 \le i < s$.

Proof: To the blackboard!

A witness for compositeness

Definition

Let $N=2^st+1$ with t odd. An integer $a\not\equiv 0 \bmod N$ is a witness for N if

$$(i)a^t \not\equiv 1 \bmod N$$
 and $(ii)a^{2^it} \not\equiv -1 \bmod N$ for $0 \le i < s$.

If N has a witness a then N is composite (and a is a certificate of this fact).

Theorem (Monier-Rabin 1980)

Let N be an odd composite integer.

A random integer $a \in [1, N-1]$ is a witness for N with probability at least 3/4.

Proof: See notes.

If we pick 100 random $a \in [1, N-1]$ we are nearly certain to find a witness if N is composite. But if we do not find one we cannot say whether N is prime or composite.

The Miller-Rabin algorithm

Algorithm

Given an odd integer N > 1:

- 1. Pick a random integer $a \in [1, N-1]$.
- 2. Write $N=2^st+1$, with t odd, and compute $b=a^t \bmod N$. If $b\equiv \pm 1 \bmod N$, return **true** (a is not a witness, N could be prime).
- **3.** For i from 1 to s-1:
 - **3.1** Set $b \leftarrow b^2 \mod N$.
 - **3.2** If $b \equiv -1 \mod N$, return **true** (a is not a witness, N could be prime).
- **4.** Return **false** (a is a witness, N is definitely not prime).

On prime inputs this algorithm will always output **true**.

On composite inputs it will output **false** with probability at least 3/4.

The Miller-Rabin algorithm

Example

For N=561 we have $561=2^4\cdot 35+1$, so s=4 and t=35, and for a=2 we have

$$2^{35} \equiv 263 \mod 561,$$

which is not $\pm 1 \bmod 561$ so we continue and compute

$$263^2 \equiv 166 \mod 561,$$

 $166^2 \equiv 67 \mod 561,$

$$67^2 \equiv 1 \bmod 561.$$

We never hit -1, so a=2 is a witness for N=561 and we return **false**, since we have proved that 561 is not prime.

How good is the Miller-Rabin test?

The Miller-Rabin test will detect composite inputs with probability at least 3/4. By running it k times we can amplify this probability to $1-2^{-2k}$.

But its performance on random composite inputs is much better than this.

Theorem (Damgard-Landrock-Pomerance 1993)

Let N be a random odd integer in $[2^{k-1},2^k]$ and a a random integer in [1,N-1]. Then $\Pr[N \text{ is prime}\,|\, a \text{ is not a witness for }N] \geq 1-k^2\cdot 4^{2-\sqrt{k}}.$

Some typical values of k:

$$k = 256:$$
 $1 - k^2 \cdot 4^{2 - \sqrt{k}} = 1 - 2^{-12},$
 $k = 4096:$ $1 - k^2 \cdot 4^{2 - \sqrt{k}} = 1 - 2^{-100}.$

Note that this applies to just a single test and can also be amplified!

Elliptic curve primality proving

Definition

Let $P = (P_x \colon P_y \colon P_z) \in E(\mathbb{Q})$ with $P_x, P_y, P_z \in \mathbb{Z}$ and $\gcd(P_x, P_y, P_z) = 1$. For $N \in \mathbb{Z}_{>0}$, if $P_z \equiv 0 \bmod N$ then we say that P is zero mod N, and otherwise we say that P is nonzero mod N. If $\gcd(P_z, N) = 1$ then P is strongly nonzero mod N.

If P is strongly nonzero mod N, then P is nonzero mod p for every prime p|N. When N is prime, the notions of nonzero and strongly nonzero coincide.

Theorem (Goldwasser-Kilian 1986)

Let E/\mathbb{Q} be an elliptic curve, and let M,N>1 be integers with $M>(N^{1/4}+1)^2$ and $N\perp \Delta(E)$, and let $P\in E(\mathbb{Q})$. If MP is zero mod N and $(M/\ell)P$ is strongly nonzero mod N for every prime $\ell|M$ then N is prime.

Proof: To the blackboard!

Primality certificates

To apply the Goldwasser-Kilian theorem, we need to know the prime factors q of M. In particular, we need to be sure that these q are actually prime! To simplify matters, we restrict to the case that M=q is prime.

Definition

An elliptic curve primality certificate for p is a tuple of integers

$$(p, A, B, x_1, y_1, q),$$

where $P=(x_1:y_1:1)$ is a point on the elliptic curve $E\colon y^2=x^3+Ax+B$ over \mathbb{Q} , the integer p>1 is prime to $\Delta(E)$, and qP is zero mod p with $q>(p^{1/4}+1)^2$.

Note that $P=(x_1:y_1:1)$ is strongly nonzero mod p, since its z-coordinate is 1. A primality certificate (p,\ldots,q) reduces the question of p's primality to that of q. A chain of such certificates can lead to a q that is small enough for trial division.

Algorithm (Goldwasser-Kilian ECPP)

Given an odd integer p (a candidate prime), and a bound b, with p > b > 5, construct a primality certificate (p, A, B, x_1, y_1, q) with $q \leq (\sqrt{p} + 1)^2/2$ or prove p composite. **1.** Pick random integers $A, x_0, y_0 \in [0, p-1]$, and set $B = y_0^2 - x_0^3 - Ax_0$.

- Repeat until $gcd(4A^3 + 27B^2, p) = 1$, then define $E: y^2 = x^3 + Ax + B$.
- 2. Use Schoof's algorithm to compute $m = \#E(\mathbb{F}_p)$ assuming that p is prime.
- If anything goes wrong (which it might!), or if $m \notin \mathcal{H}(p)$, then return **composite**.
- **3.** Write m = cq, where c is b-smooth and q is b-coarse. If c = 1 or $q < (p^{1/4} + 1)^2$, then go to step 1.
 - **4.** (optional) Perform a Miller-Rabin test on q. If it returns **false** then go to step 1.
 - **5.** Compute $P = (P_x : P_y : P_z) = c \cdot (x_0 : y_0 : 1)$ on E, working modulo p.
- If $gcd(P_z, p) \neq 1$, go to step 1, else let $x_1 \equiv P_x/P_z \mod p$, $y_1 \equiv P_y/P_z \mod p$. **6.** Compute $Q = (Q_x : Q_y : Q_z) = q \cdot (x_1 : y_1 : 1)$ on E, working modulo p. If $Q_z \not\equiv 0 \bmod p$ then return **composite**.
- 7. If q > b, then recursively verify that q is prime using inputs q and b; otherwise, verify that q is prime by trial division. If q is found to be composite, go to step 1. **8.** Output the certificate $(p, A, \tilde{B}, x_1, y_1, q)$ such that $y_1^2 = x_1^3 + Ax_1 + \tilde{B}$ (over \mathbb{Z}).

Complexity analysis and subsequent improvements

You will analyze the heuristic complexity of this algorithm assuming that m is a random integer (in which case it is a polynomial-time Las Vegas algorithm)

Goldwasser-Kilian proved this for all but a subexponentially small set of inputs. Adleman-Huang proved this for all inputs by modifying the algorithm. (they "reduce" the problem to proving the primality of a random prime $p'\approx p^2$).

The Goldwasser-Killian algorithm has been superseded by the "fast ECPP" algorithm developed by Atkin and Morain, which uses the theory of complex multiplication to obtain a much better heuristic expected running time: $\tilde{O}(n^4)$. This algorithm can handle primes with tens of thousands (but not millions) of digits.

The AKS algorithm (as originally proposed) has a deterministic complexity of $\tilde{O}(n^{10.5})$. This can be improved to $\tilde{O}(n^6)$, and there is a randomized version that can be shown to run in $\tilde{O}(n^4)$ expected time, but it is still much slower than ECPP.