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Primality proving

e Primality proving is one of the founding problems of computational number theory.
e A factorization cannot be considered complete without a proof of primality.

e Probabilistic factorization algorithms will typically not terminate on prime inputs.
e Elliptic curves play a crucial role in practical primality proving.

e Existing polynomial-time algorithms are not as practical and do not provide a
useful certificate of primality.

e Algorithms for primes of specific forms such as Mersenne primes are very efficient
but are not applicable in any generality.

e There are very efficient probabilistic algorithms for proving compositeness without
providing a factorization, but these do not prove primality.



Using Fermat’s little theorem to prove compositeness

Theorem (Fermat 1640)

If N is prime then o™ = a mod N for all integers a.

Example

The fact that 27" = 37 mod 91 proves that 91 is not prime (without factoring it).

Example

We have 234! = 2 mod 341 (which proves nothing), but 33! = 168 mod 341 proves
that 341 is not prime (thus we may need to try different values of a).

Example

We have a®%! = a mod 561 for every integer a. But 561 = 3-11-17 is not prime!



Carmichael numbers
Definition

A composite N € Z such that a® = a mod N for all @ € Z is a Carmichael number.

The sequence of Carmichael numbers begins 561,1105,1729, 2821, ..., and forms
sequence A002997 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Statistics on the 20,138,200 Carmichael numbers less than 10%! can be found here.

Theorem (Alford-Granville-Pomerance 1994)

The sequence of Carmichael numbers is infinite.

There are thus infinitely many composite integers that will pass any primality test
based on Fermat’s little theorem.


https://oeis.org/A002997
http://www.s369624816.websitehome.co.uk/rgep/cartable.html

A better test for compositeness

Recall the Euler function ¢(N) := #(Z/NZ)*.

Theorem
A positive integer N is prime if and only if (N) = N — 1.

Proof: Every nonzero residue class in Z/NZ is invertible if and only if N is prime.

Lemma

Let p = 2%t 4+ 1 be prime with t odd and suppose a € Z is not divisible by p.
Exactly one of the following holds:

(i) a' =1 mod p.
(ii) a%* = —1mod p for some 0 < i < s.
Proof: To the blackboard!



A witness for compositeness

Definition
Let N = 2% + 1 with ¢t odd. An integer a % 0 mod N is a witness for N if

(Ja' £ 1mod N and  (ii)a2" 2 —1 mod N for 0 <i < s.

If N has a witness a then N is composite (and a is a certificate of this fact).

Theorem (Monier-Rabin 1980)

Let N be an odd composite integer.
A random integer a € [1, N — 1] is a witness for N with probability at least 3/4.

Proof: See notes.

If we pick 100 random a € [1, N — 1] we are nearly certain to find a witness if N is
composite. But if we do not find one we cannot say whether N is prime or composite.



The Miller-Rabin algorithm

Algorithm

Given an odd integer N > 1:

1. Pick a random integer a € [1, N — 1].

2. Write N = 25t + 1, with ¢ odd, and compute b = a’ mod N.

If b= 41 mod N, return true (a is not a witness, N could be prime).
3. Fori from 1 to s —1:

3.1 Set b < b?>mod N.
3.2 If b= —1mod N, return true (a is not a witness, N could be prime).
Return false (a is a witness, IV is definitely not prime).

On prime inputs this algorithm will always output true.
On composite inputs it will output false with probability at least 3/4.



The Miller-Rabin algorithm

Example

For N = 561 we have 561 = 2% .35+ 1, so s =4 and t = 35, and for a = 2 we have
23% = 263 mod 561,
which is not £1 mod 561 so we continue and compute

263% = 166 mod 561,
1662 = 67 mod 561,
672 = 1 mod 561.

We never hit —1, so a = 2 is a witness for N = 561 and we return false,
since we have proved that 561 is not prime.



How good is the Miller-Rabin test?

The Miller-Rabin test will detect composite inputs with probability at least 3/4.
By running it k times we can amplify this probability to 1 — 272~
But its performance on random composite inputs is much better than this.

Theorem (Damgard-Landrock-Pomerance 1993)

Let N be a random odd integer in [2=1,2¥] and a a random integer in [1, N — 1].
Then Pr[N is prime|a is not a witness for N| > 1 — k? - 42—k,

Some typical values of k:
k=256: 1—k2.42Vh=o1_92712
k=4006:  1—k%.42Vk =1 o100,

Note that this applies to just a single test and can also be amplified!



Elliptic curve primality proving

Definition

Let P=(P,:Py:P,) € E(Q) with Py, Py, P, € Z and gcd(Py, Py, P;) = 1.

For N € Z~g, if P, =0 mod N then we say that P is zero mod N, and otherwise we
say that P is nonzero mod N. If gcd(P,, N) =1 then P is strongly nonzero mod N.

If P is strongly nonzero mod N, then P is nonzero mod p for every prime p|N.
When N is prime, the notions of nonzero and strongly nonzero coincide.

Theorem (Goldwasser-Kilian 1986)

Let E/Q be an elliptic curve, and let M, N > 1 be integers with M > (N'/* 4 1)?
and N L A(FE), and let P € E(Q). If MP is zero mod N and (M /()P is strongly
nonzero mod N for every prime ¢{|M then N is prime.

Proof: To the blackboard!



Primality certificates

To apply the Goldwasser-Kilian theorem, we need to know the prime factors ¢ of M.
In particular, we need to be sure that these ¢ are actually prime!
To simplify matters, we restrict to the case that M = ¢ is prime.

Definition
An elliptic curve primality certificate for p is a tuple of integers
(1%147371717,@17(1)7

where P = (21 : 91 : 1) is a point on the elliptic curve E: y? = 23 + Az + B over Q,
the integer p > 1 is prime to A(FE), and ¢P is zero mod p with ¢ > (p'/* + 1)2.

Note that P = (x1 : y;1 : 1) is strongly nonzero mod p, since its z-coordinate is 1.
A primality certificate (p, ..., q) reduces the question of p's primality to that of g.
A chain of such certificates can lead to a ¢ that is small enough for trial division.



Algorithm (Goldwasser-Kilian ECPP)

Given an odd integer p (a candidate prime), and a bound b, with p > b > 5, construct a
primality certificate (p, A4, B, z1,y1,q) with ¢ < (y/p + 1)?/2 or prove p composite.

1.

Pick random integers A, xo, 4o € [0,p — 1], and set B = y2 — 2} — Axo.
Repeat until gcd(4A3 4 2782, p) = 1, then define E: y? = 2° + Az + B.

. Use Schoof's algorithm to compute m = #E(FF,,) assuming that p is prime.

If anything goes wrong (which it might!), or if m & H(p), then return composite.

. Write m = cq, where ¢ is b-smooth and ¢ is b-coarse.

If c=1orq< (p'/*+ 1) then go to step 1.

. (optional) Perform a Miller-Rabin test on g. If it returns false then go to step 1.
. Compute P = (P, : P, : P.)=c-(z0:yo:1) on E, working modulo p.

If ged(P.,p) # 1, go to step 1, else let x; = P, /P, mod p, y; = P,/P. mod p.

. Compute Q@ = (Qz : Qy : Q2) =q - (z1 : 31 : 1) on E, working modulo p.

If Q. # 0 mod p then return composite.

If ¢ > b, then recursively verify that g is prime using inputs ¢ and b; otherwise, verify that
q is prime by trial division. If ¢ is found to be composite, go to step 1.

. Output the certificate (p, A, B, 21,1, q) such that y? = 23 + Az, + B (over Z).



Complexity analysis and subsequent improvements

You will analyze the heuristic complexity of this algorithm assuming that m is a
random integer (in which case it is a polynomial-time Las Vegas algorithm)

Goldwasser-Kilian proved this for all but a subexponentially small set of inputs.
Adleman-Huang proved this for all inputs by modifying the algorithm.
(they "reduce” the problem to proving the primality of a random prime p’ ~ p?).

The Goldwasser-Killian algorithm has been superseded by the “fast ECPP" algorithm
developed by Atkin and Morain, which uses the theory of complex multiplication to
obtain a much better heuristic expected running time: O(n*). This algorithm can
handle primes with tens of thousands (but not millions) of digits.

The AKS algorithm (as originally proposed) has a deterministic complexity of O(n'05).
This can be improved to O(n"), and there is a randomized version that can be shown
to run in O(n*) expected time, but it is still much slower than ECPP.



