18.783 Elliptic Curves
Lecture 10

Andrew Sutherland

October 7, 2025

Lecture 9 recap: generic DLP bounds

Pohlig-Hellman: O(nlogn + n,/p), where n = log N, largest prime p|N.
Baby-steps giant-steps: (2 + o(1))V/N time, (2 + o(1))V/N space.
Pollard-p (Las Vegas): (1/7/2 + o(1))V/N expected time, O(log N) space.

Theorem (Shoup)
Let G be cyclic group of prime order N.

e Every deterministic generic algorithm for the discrete logarithm problem in G
uses at least (v/2 + o(1))V/N group operations.

o Every Las Vegas generic algorithm for the discrete logarithm problem in G
expects to use at least (v/2/2 4 o(1))v/N group operations.

Shoup's lower bounds match the best upper bounds to within a factor of 2.

Index calculus: a non-generic algorithm for the DLP

Let G = (a) = (Z/pZ)* and identify G with [1, N]NZ, where N = #G =p — 1.
For e € Z we can use the prime factorization a¢3~! =[], p’ to obtain a relation

erlog, p1 + - +eplog, py +log, 5 = e. (1)

which would allow us to compute log, 8 if we knew the values of log,, p;.

Our plan: Pick a smallish set of primes S = {p:p < B} = {p1,...pp} (factor base),
and generate relations as in (1) by picking random e € [1, N] and attempting to factor
a®3~1 over our factor base (e.g. by trial division, or something more clever).

How we win: Collect relations that uniquely determine log,, p1,...,log, py,log, B
and use linear algebra over the ring Z/NZ to solve the system for log,, [3.

When we expect to win: After about 7(B) - N/ (N, B) attempts, where ¢)(N, B) is
the number of B-smooth integers in [1, N], those with all prime factors less than B.

Optimizing the smoothness bound B

Theorem (Canfield-Erd6s-Pomerance)

As u, z — oo withu < (1 — €)logz/loglogz we have i) (z, z'/*) = zu—uto®),

With trial division factoring takes O(mw(B)M(log N)) time and we expect to need
O(r(B)un(B)M(log N)) ~ B> = Nty

time to get enough relations, where u := log N/log B so that N/v = B,

To minimize f(u) := log(N*"u*) = 2log N + ulogu we want to choose u so that

f'(u) = —2u=2log N + +logu+1=0.

Ignoring O(1) terms, we want u?logu ~ 21log N, meaning u ~ 2,/log N/loglog N.

Expected running time of our index calculus algorithm

Our choice of u ~ 24/log N/loglog N yields the smoothness bound
B = N'""=exp(u"log N) = exp(}/2/log N loglog N) = L[/, /2],
where we have used the standard subexponential asymptotic notation
La,d] == exp((c + o(1))(log N)*(loglog N)'~*),
interpolating L0, ¢] = (log N)*t°() (polynomial), Ly|[1,c] = N¢T°(1) (exponential).
Assuming the linear algebra is negligible (it is), the total expected time is
B*u® = Ly[Y/2,1/2)* - Ly[Y/2,1] = Ly[Y/2,2].

With ECM, smoothness testing becomes negligible and we can achieve Ly[1/2,v/2].
More sophisticated techniques (NFS) heuristically yield Ly[1/3, (64/9)"%].

Current state of the art

For finite fields Fyn o~ [, [x]/(f) the function field sieve uses a factor base of low degree
polynomials in [, [x] representing elements of Fj,» to obtain an Ly[1/3, c] bound.

In 2013 Joux found an Ly/[1/4, c]-time algorithm for IF 5. for suitable p and n.

Joux and collaborators improved these techniques rapidly, eventually leading to a DLP
algorithm for 5, with p = O(n) that runs in time n'°8™, which is better than Ly[e, c]
for any €, ¢ > 0 (quasi-polynomial time).

The Pollard p — 1 factorization method

Algorithm

Given an integer N and a smoothness bound B, attempt to factor IV as follows:
1. Pick a random integer a € [1, N — 1]; if gcd(a, N) = d # 1 return (d, N/d).
2. Set b = a and for increasing primes ¢ < B:

2.1 Replace b with b*° mod N where =1 < N < ¢¢. If b = 1 then give up.
2.2 if ged(b—1,N) =d # 1 then return (d, N/d).

Theorem

Let p,q|N be primes. If p— 1 is {-smooth but ¢ — 1 is not for some prime { < B
then the algorithm succeeds with probability at least 1 — 1/(¢+1).

Proof. When we reach ¢ in 2.2 we will have b = ™ = 1 mod p, since (p — 1)|m.

But some prime ¢/ > ¢ divides ¢ — 1 but not m, so Pr[b # 1 mod ¢] > 1 — 1/(¢+1).

Robbing a random bank

If #(Z/NZ)* has a prime factor p for which p — 1 is B-smooth then Pollard’s
algorithm is very likely to succeed, but this is unlikely for any particular N = pq.

u

For random pq in [IN,2N] we expect the probability is u™*, where u = log N/ log B.
That is small, but only subexponentially so; if we try u* random pq we should succeed.

If we let u = /2Tog N/loglog N, then B = N'/* = Ly[1/2,1/v/32] and we should
expect to factor a random pq in [N, 2N] in time N'/%u* = Ly[1/2,/2].

Key point: By varying pq we vary the group (Z/pqZ)*. But what if pq is fixed?

Lenstra: We can vary the group by picking a random elliptic curve “modulo pq".

The elliptic curve factorization method (ECM)

Algorithm

Given N € 7Z, a smoothness bound B, and a prime bound M, attempt to factor IV:

1. Pick random a, g, yo € [0, N — 1] and set b = y2 — 23 — axo.

2. if d = ged(4a® + 27b%, N) # 1 return (d, N/d) if d < N but give up if d = N.
3. Let @ = (xo : yo : 1) and for increasing primes ¢ < B:

3.1 Replace Q with £°Q mod N where ¢¢=! < (v/M + 1)? < £¢. Give up if Q. = 0.
3.2 If d = ged(Q., N) # 1 then return (d, N/d).

Theorem

Let Py and P, be the reductions of (xg : yo : 1) modulo distinct p1, p2|N with p1 < M.
If |Py| is L-smooth and |Ps| is not for some ¢ < B then the algorithm succeeds in 3.2.

Heuristic complexity of ECM

The Hasse interval [p+1 —2,/p, p+ 1+ 2,/p] is too narrow to apply CEP bounds.
We can prove #E(Fy) € [p+1— /p, p+ 1+ /p] with probability at least 1/2, and
roughly uniformly distributed over this interval (Sato-Tate on average).

If we heuristically assume integers in [p+1—,/p, p+ 1+ /p| are as likely to be
smooth as integers in [p, 2p] we can compute the optimal choice of B = Ljs[1/2,1/v2].
We generally don't know what M should be, so start small and double it. This yields

Ly[/2,V2]M(log N),

where p is the smallest prime factor of N. We can then use ECM to test whether a
given integer N is Ly[1/2, c]-smooth in expected time

Lz, [/2, \f} A exp (\/2 log (exp(cy/log N loglog N)) log log (exp(cy/log N log log N)))
= LN[1/47 \ﬁ]

Montgomery curves
Definition
A Montgomery curve is an elliptic curve defined by an equation of the form
By’ =2+ Az’ + ¢
with B # 0 and A # +2. Put v = Bx + AB/3, w = B%y, x = v/B, y = w/B? to get
w? =v* + (B* — A’B?/3)v + (24°B? /27 — AB?/3),
an elliptic curve in Weierstrass form.
To compute (z3,y3) = (1,y1) + (22,y2) we use
x5 = Bm? — (A+ 21 + 22), y3 = m(z1 — x3) — Y1,

where m = (y2 — y1)/(21 — x2) or m = (323 + 2Ax, +1)/(2By1).

Montgomery ladder

Let (z4,94) = (z1,y1) — (x2,92). In projective coordinates we have

w3 = 24 [(21 — 21) (w2 + 22) + (21 + 21) (22 — 22)]2 ;
23 = a4 [(21 — 21) (2 + 22) — (21 + 21) (T2 — 22)].
This allows us to compute Py + P» using 6 multiplications, assuming we know P| — P».
Algorithm (Montgomery Ladder)
Input: A point P = (27 : z1) on a Montgomery curve and a positive integer m.
Output: The point mP = (T, : 2m).
1. Let m = ¥ ;m;2' be the binary representation of m.
2. Set Q[0] = P and compute Q[1] = 2P (note that P = Q[1] — Q|0]).
3. Fori=k —1down to 0: Q[1 —m;] < Q[1] + Q[0], @[m;] + 2QI0].
4. Return QI0].

