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What is an elliptic curve?

The equation x2

a2 + y2

b2 = 1 defines an ellipse.

Like all conic sections, an ellipse is a curve of genus 0.
Elliptic curves have genus 1, so an ellipse is not an elliptic curve.

The area of this ellipse is πab. What is its circumference?



The circumference of an ellipse
Let f(x) = b

√
1 − x2/a2 and put r = b/a. Then the circumference is

4
∫ a

0

√
1 + f ′(x)2 dx = 4

∫ a

0

√
1 + r2x2/(a2 − x2) dx.

With the substitution x = at this becomes

4a

∫ 1

0

√
1 − e2t2

1 − t2 dt,

where e =
√

1 − r2 is the eccentricity of the ellipse.

This is an elliptic integral. The integrand u = u(t) satisfies

u2(1 − t2) = 1 − e2t2.

This equation defines an elliptic curve.



An elliptic curve over the real numbers
With a suitable change of variables, every elliptic curve with real coefficients can be
put in the standard form

y2 = x3 + Ax + B,

for some constants A and B. Below is an example of such a curve.

y2 = x3 − 4x + 6
over R



An elliptic curve over a finite field

y2 = x3 − 4x + 6
over F197



An elliptic curve over the complex numbers

An elliptic curve over C is a compact manifold of the form C/L,
where L = Z + ωZ is a lattice in the complex plane.



Definitions

Definition
An elliptic curve is a smooth projective curve of genus 1 with a distinguished point.

Definition (more precise)

An elliptic curve (over a field k) is a smooth projective curve of genus 1 (defined over
k) with a distinguished (k-rational) point.

Not every smooth projective curve of genus 1 corresponds to an elliptic curve, it needs
to have at least one rational point!

For example, the (desingularization of) the curve defined by y2 = −x4 − 1 over Q is a
smooth projective curve of genus 1 with no rational points.



The projective plane

Definition
The projective plane is the set P2(k) of all nonzero triples (x, y, z)
in k3 modulo the equivalence relation (x, y, z) ∼ (λx, λy, λz).

The projective point (x : y : z) is the equivalence class of (x, y, z).

Points of the form (x : y : 1) are called affine points.
They form an affine (Euclidean) plane A2(k) embedded in P2(k).

Points of the form (x : y : 0) are called points at infinity.
These consist of points (x : 1 : 0) and (1 : 0 : 0) that form the line at infinity,
a copy of P1(k) embedded in P2(k).

We could equivalently declared the planes (1 : y : z) or (x : 1 : z) to be affine,
with (0 : y : z) and (x : 0 : z) the corresponding lines at infinity.



Plane projective curves
Definition
A plane projective curve Cf /k is a homogeneous polynomial f(x, y, z) with coefficients
in k.1 The degree of Cf is the degree of f(x, y, z).

For any field K containing k, the K-rational points of Cf form the set

Cf (K) = {(x : y : z) ∈ P2(K) | f(x, y, z) = 0}.

A point P ∈ Cf (K) is singular if ∂f
∂x , ∂f

∂y , ∂f
∂z all vanish at P .

Cf is smooth (or nonsingular) if there are no singular points in Cf (k̄).

Every polynomial equation g(x, y) = h(x, y) of total degree d determines a projective
curve Cf of degree d with f(x, y, 1) = g(x, y) − h(x, y).

We will often use affine equations to define project curves (via homogenization).

1Fine print: up to scalar equivalence and with no repeated factors in k̄[x, y, z].



Examples of plane projective curves over Q

affine equation f(x, y, z) points at ∞
y = mx + b y − mx − bz (1 : m : 0)
x2 + y2 = 1 x2 + y2 − z2 none
1 x2 − y2 = 1 x2 − y2 − z2 (1 : 1 : 0), (1, −1, 0)
y2 = x3 + Ax + B y2z − x3− Axz2− Bz3 (0 : 1 : 0)
x2 + y2 = 1 − x2y2 x2z2+ y2z2− z4 + x2y2 (1 : 0 : 0), (0 : 1 : 0)

The first four curves are smooth (provided that 4A3 + 27B2 ̸= 0).
The last curve is singular (both points at infinity are singular).



Genus

Over C, an irreducible projective curve is a connected compact manifold of dimension
one. Topologically, it is a sphere with handles.

The number of handles is the genus.

genus 0 genus 1 genus 2 genus 3

In fact, the genus can be defined algebraically over any field, not just C.



Newton polytopes
Definition
The Newton polytope of a polynomial f(x, y) =

∑
aijxiyj is the convex hull of the set

{(i, j) : aij ̸= 0} in R2.

An easy way to compute the genus of a (sufficiently general) irreducible curve defined
by an affine equation f(x, y) = 0 is to count the integer lattice points in the interior of
its Newton polytope:

y2 = x3 + Ax + B.



Weierstrass equations
Let A, B ∈ k with 4A3 + 27B2 ̸= 0, and assume char(k) ̸= 2, 3.

The (short/narrow) Weierstrass equation y2 = x3 + Ax + B defines a smooth
projective genus 1 curve over k with the rational point (0 : 1 : 0).

In other words, an elliptic curve!
Up to isomorphism, every elliptic curve over k can be defined this way.

The general Weierstrass equation
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

works over any field, including those of characteristic 2 and 3.



Rational points in genus 0
Let C be a smooth projective curve over Q of genus 0 with a rational point P , for
example, consider the unit circle with P = (−1 : 0 : 1).

Any line ℓ with rational slope t that passes through P intersects C in exactly one
“other” point Q ∈ C(Q) (when ℓ is a tangent, Q = P ). Conversely, for Q ∈ C(Q) the
line PQ is vertical or has rational slope t.

Treating the vertical line as the point at infinity on the projective line P1(Q), there is a
rational map from C(Q) and P1(Q), and vice versa.

This applies to any conic. In fact, every genus 0 curve with a rational point is
isomorphic to P1(Q), in other words, they are all the same curve!



Rational points in genus 1
Now let E be an elliptic curve over Q defined by a Weierstrass equation.

If P is a rational point and ℓ is a line through P with rational slope,
it is not necessarily true that ℓ intersects E in another rational point.

However, if P and Q are two rational points on E, then the line PQ intersects E in a
third rational point R (by Bezout’s theorem).

Even better, it allows us to define a group operation on the set E(Q),
and also on the set E(k), for any elliptic curve E/k.



The elliptic curve group law

Three points on a line sum to zero.



The elliptic curve group law
With addition defined as above, the set E(k) becomes an abelian group.

• The point (0 : 1 : 0) at infinity is the identity element 0.
• The inverse of P = (x : y : z) is the point −P = (x : −y : z).
• Commutativity is obvious: P + Q = Q + P .
• Associativity also holds, but is not so obvious: P + (Q + R) = (P + Q) + R.

The computation of P + Q = R is purely algebraic. The coordinates of R are rational
functions of the coordinates of P and Q that can be computed over any field.

By adding a point to itself repeatedly, we can compute 2P := P + P ,
3P := P + P + P , and in general, nP := P + · · · + P for any positive integer n.

We also define 0P := 0 and (−n)P := −nP .

We can thus perform scalar multiplication by any integer n.
In other words, E(k) is a Z-module (just like any abelian group).



The group E(k)
When k = C, the group operation on E(C) ≃ C/L is just addition of complex
numbers, modulo the lattice L.

When k = Q things get much more interesting. The group E(Q) may be finite or
infinite, but in every case it is finitely generated.

Theorem (Mordell 1922)

The group E(Q) is a finitely generated abelian group. Thus

E(Q) ≃ T ⊕ Zr,

where the torsion subgroup T is a finite abelian group corresponding to the elements
of E(Q) with finite order, and r is the rank of E(Q).

It may happen (and often does) that r = 0 and T is the trivial group.
In this case the only element of E(Q) is the point at infinity.



The group E(Q)
The torsion subgroup T of E(Q) is well understood.

Theorem (Mazur 1977)

The torsion subgroup of E(Q) is isomorphic to one of the following:

Z/nZ or Z/2Z ⊕ Z/2mZ,

where n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} and m ∈ {1, 2, 3, 4}.

Barry Mazur receiving the National Medal of Science



Ranks of elliptic curves over Q

The rank r of E(Q) is not well understood. Things we do not know:

1. Is there an effective algorithm to compute r?
2. Which values of r can occur?
3. How often does each possible value of r occur, on average?
4. Is there an upper limit, or can r be arbitrarily large?

We know a few things, and we can usually compute r when it is small.
When r is large often the best we can do is a lower bound.

The largest r known occurs for a curve with r ≥ 29 that was discovered just last year
by Elkies and Klagsbrun.

It replaced the previous record of r ≥ 28 due to Elkies which held for almost 20 years.



Ranks of elliptic curves over Q

The most significant thing we do know about r is a bound on its average value.

Theorem (Bhargava, Shankar 2010-2012)

The average rank of all elliptic curves over Q is less than 1.

In fact, we know the average rank is greater than 0.2 and less than 0.9.
It is believed to be exactly 1/2 (half rank 0, half rank 1).

Manjul Bhargava Arul Shankar
1



The group E(Fp)

Over a finite field Fp, the group E(Fp) is necessarily finite.
On average, the size of the group is p + 1, but it varies, depending on E. The
following theorem of Hasse was originally conjectured by Emil Artin.

Theorem (Hasse 1933)

The cardinality of E(Fp) satisfies #E(Fp) = p + 1 − t, with |t| ≤ 2√
p.

The fact that E(Fp) is a group whose size is not fixed by p is unique
to genus 1 curves. This is the basis of many useful applications.

For curves C of genus g = 0, we always have #C(Fp) = p + 1.
For curves C of genus g > 1, the set C(Fp) does not form a group.



Reducing elliptic curves over Q modulo p

Let E/Q be an elliptic curve defined by y2 = x3 + Ax + B.
Let p be a prime that does not divide the discriminant ∆(E) = −16(4A3 + 27B2).
The elliptic curve E is then said to have good reduction at p.

If we reduce A and B modulo p, we obtain an elliptic curve Ep := E mod p
that is defined over the finite field Fp ≃ Z/pZ with p elements.

Thus from a single curve E/Q we get an infinite family of curves,
one for each prime p where E has good reduction.

Now we may ask, how does #Ep(Fp) vary with p?

We know #Ep(Fp) = p + 1 − ap for some integer ap with |ap| ≤ 2√
p.

So let xp := ap/
√

p. Then xp is a real number in the interval [−2, 2].

What is the distribution of xp as p varies?



(click to animate – requires Adobe reader)



The Sato-Tate conjecture
The Sato-Tate conjecture, was proved using extensions of the modularity theorem of
Taylor and Wiles that Andrew Wiles used to prove Fermat’s Last Theorem.

Taylor received the 2014 Breakthrough Prize in Mathematics for this and related work.

Theorem (Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Baron,
Taylor, 2008, 2010, 2011)

Let E/Q be an elliptic curve without complex multiplication.
Then the xp have a semi-circular distribution.

Mikio Sato Richard Taylor John Tate



The Birch and Swinnerton-Dyer conjecture

There is believed to be a relationship between the infinite sequence of integers ap

associated to an elliptic curve E/Q and the rank r of E(Q).

The L-function L(E, s) of an elliptic curve E/Q is a function of a complex variable s
that “encodes” the infinite sequence of integers ap.

For the “bad” primes that divide ∆(E), one defines ap to be 0, 1, or −1, depending on
the type of singularity E has when reduced mod p.

L(E, s) =
∏
p

(1 − app−s + χ(p)p1−2s)−1 =
∑
n≥1

ann−s

where χ(p) = 0 for primes p where E has bad reduction and χ(p) = 1 otherwise.



The Birch and Swinnerton-Dyer conjecture
Based on extensive computer experiments (back in the 1960s!),
Bryan Birch and Peter Swinnerton-Dyer made the following conjecture.

Conjecture (Birch and Swinnerton-Dyer)

Let E/Q be an elliptic curve with rank r. Then

L(E, s) = (s − 1)rg(s),

for some complex analytic function g(s) with g(1) ̸= 0, ∞.
In other words, the rank of E is equal to the order of vanishing of L(E, s) at 1.

Byran Birch EDSAC-2 Peter Swinnerton-Dyer

They later made a more precise conjecture that gives the value of g(1).



Fermat’s Last Theorem
Theorem (Wiles et al. 1995)

xn + yn = zn has no positive integer solutions for n > 2.

It suffices to consider n prime. Suppose an + bn = cn with a, b, c > 0 and n > 3 (the
case n = 3 was proved by Euler). Consider the elliptic curve Ea,b,c/Q defined by

y2 = x(x − an)(x − bn).

Serre and Ribet proved that Ea,b,c is not modular.
Wiles (with assistant from his student Taylor) proved that every semistable elliptic
curve over Q, including Ea,b,c, is modular. Fermat’s Last Theorem follows.
We now know that all elliptic curves E/Q are modular.

J.-P. Serre Ken Ribet Andrew Wiles Richard Taylor



Applications of elliptic curves over finite fields

There are several features that make elliptic curves over finite fields particularly well
suited to practical applications:

• There are many groups available, even when the finite field is fixed.
• The underlying group operation can be made very efficient.
• There are techniques to construct a group of any desired size.
• The representation of group elements appears to be opaque, making E(Fq) a

“black box group”, one to which only generic group algorithms apply.

There are three particular applications that we will explore in some detail:
1. factoring integers
2. primality proving
3. cryptography



Factoring integers with elliptic curves

The elliptic curve factorization method (ECM), due to Lenstra, is a randomized
algorithm that attempts to factor an integer n using random elliptic curves E/Q with
a known point P ∈ E(Q) of infinite order.

For each curve E, the algorithm attempts to find a scalar multiple of P equivalent to
zero in Ep(Fp), for some unknown prime p dividing n.

The algorithm will succeed when #Ep(Fp) is sufficiently smooth, meaning that all its
prime factors are small.

The expected running time is subexponential in log p and otherwise polynomial in
log n. No other algorithm with this property is known.

When p is large (say log p > log2/3 n), faster algorithms are known,
but these algorithms often use ECM as a subroutine.



Primality proving with elliptic curves

Elliptic curve primality proving (ECPP) was introduced by Goldwasser and Kilian and
later improved by Atkin and Morain, and by Bach.

Let n be an integer that we believe to be prime and let b =
√

n.
Suppose one can find E/Q with the following property: for every prime p|n, the group
Ep(Fp) contains a point of order m > b + 1 + 2

√
b.

The Hasse bound implies p > b =
√

n for all primes p|n, so n must be prime!

Heuristically, the expected running time of ECPP is quasi-quartic, and in practical
terms, it is the fastest general purpose algorithm available.

While the deterministic AKS algorithm has been proven to run in polynomial time, and
there are randomized versions of AKS with quasi-quartic expected running times, all
the AKS-variants slower than ECPP in practice.



The discrete log problem

Problem: Given a point P ∈ E(Fq) and Q = nP , determine n.

This is known as the discrete log problem, a term that originates from the
multiplicative group F×

q : given a ∈ F×
q and b = an, determine n = loga b.

In the group F×
q , this problem can be solved in subexponential time, but no

comparable result is known for the group E(Fq).

In fact, the best known algorithm for solving the discrete log problem
in E(Fq) takes time Ω(√q), which is fully exponential in log q.

This allows cryptographic systems based on the elliptic curve discrete log problem
(DLP) to use smaller key sizes than other systems.

We do not have any proof that the elliptic curve discrete log problem is hard, just as we
have no proof that factoring integers is hard, (both are easy on quantum computers).



Diffie-Hellman key exchange
Diffie and Hellman proposed a method for two parties to establish a secret key over a
public network, based on the discrete log problem.

Let E/Fp be an elliptic curve with a point P ∈ E(Fp).

Alice and Bob, who both know E and P , establish a secret S as follows:

1. Alice chooses a random integer a and sends aP to Bob.
2. Bob chooses a random integer b and sends bP to Alice.
3. Alice computes abP = S and Bob computes baP = S.

The coordinates of S depend on the random integer ab and can be hashed to yield a
shared secret consisting of log2 ab random bits.2

An eavesdropper may know E, P , aP and bP , but not a, b, or S.
It is believed that computing S from these values is as hard as computing discrete
logarithms in E(Fp) (but this has not been proven).

2We have omitted some details; as written, this is vulnerable to a man-in-the-middle attack.



Ephemeral Diffie-Hellman (ECDHE) and ECDSA

With ephemeral Diffie-Hellman (ECDHE) the elliptic curve E is fixed, but a new base
point P is chosen for each key exchange.

This provides what is known as perfect forward secrecy, which compartmentalizes the
security of each session (each most be broken independently)

ECDHE was adopted by Google in late 2011 and is the default protocol in TLS 1.2 and
later, which is now used to secure the majority of all internet traffic.

If you look at the security details of your web browsers connection to any secure
internet site, you will typically see ECDHE listed as the key exchange protocol, with
RSA or ECDSA used for authentication (to avoid man-in-the-middle attacks).

ECDSA is a digital signature scheme based on the elliptic curve discrete logarithm
problem that is used by Bitcoin and many other cryptocurrencies.



Pairing-based cryptography
Elliptic curves also support bilinear pairings ε : E(Fp) × E(Fp) → F×

p , which satisfy
ε(aP, bQ) = ε(P, Q)ab. Pairings enable more sophisticated cryptographic protocols.

For pairing friendly elliptic curves E/Fp, one can define a pairing
ε : E(Fp) × E(Fp) → Fpk , where #E(Fp) divides pk − 1 with k small.
As an example, here is how Alice, Bob, and Carol can establish a shared secret using a
single round of communication (as proposed by Joux).

1. Alice chooses a random a and sends aP to Bob and Carol,
Bob chooses a random b and sends bP to Alice and Carol,
Carol chooses a random c and sends cP to Alice and Bob.

2. Alice computes ε(bP, cP )a = ε(P, P )bca = S,
Bob computes ε(aP, cP )b = ε(P, P )acb = S,
Carol computes ε(aP, bP )c = ε(P, P )abc = S.

An eavesdropper may know E, P , aP , bP , cP , but not a, b, c or S.



Pairing-based cryptography
Now the security of the system depends both on the difficulty of the discrete log
problem in E(Fp), and the discrete log problem in Fpk .

The complexity of the discrete log problem in E(Fp) is believed to be Ω(√p), whereas
the fastest known algorithm for computing
discrete logarithms in Fpk has complexity

L[1/3, c] = exp
(
(c + o(1))(log n)1/3(log log n)2/3)

,

where n = pk and c is a constant that may be as small as about 1.4 (for binary fields).

If p ≈ 2256 and k = 12, then pk ≈ 23072 and the complexities are roughly equal.

Pairings make it possible to implement a wide variety of cryptographic protocols,
including identity based cryptography and zero knowledge proofs, both of which are
important to many cryptocurrency applications.



Isogeny-based cryptography
SIDH is a variant of the Diffie Hellman protocol that replaces scalar multiplication with
a walk on a supersingular isogeny graph:

Alice and Bob, who both know a public supersingular elliptic curve E/Fp2 , establish a
secret S as follows:

1. Alice chooses a random a encoded in base-2 and computes Ea by taking an
a-walk in the 2-isogeny graph; she sends Ea to Bob.3

2. Bob chooses a random b encoded in base-3 and computes Eb by taking a b-walk
in the 3-isogeny graph; he sends Eb to Alice.4

3. Alice computes (Eb)a and Bob computes (Ea)b.
The j-invariant j((Eb)a) = j((Ea)b) ∈ Fp2 is their shared secret S.

No efficient algorithm is known for computing j((Eb)a) = j((Ea)b) given E, Ea, Eb,
not even on an quantum computer.

3Alice/Bob also sends the images of two points on E under the isogeny.



The breaking of SIKE

On July 30, 2022, Wouter Castryck and Thomas Decru announced An efficient key
recovery attack on SIDH, which gives a (classical) attack on the SIDH protocol used in
the SIKE – Supersingular Isogeny Key Encapsulation proposal, a fourth round
candidate in NIST’s post-quantum cryptography standardization process.

Their preprint included code that breaks all SIKE challenge instances in under a minute,
and the highest security level in the SIKE proposal (751-bit prime) in about 3 hours
(those times were later reduced and there is now a provably polynomial-time variant)

Their attack exploits isogeny images of torsion points that Alice and Bob exchange in
the SIKE protocol to orient their isogeny graphs compatibly, it does not solve the
path-finding problem, which is still believed to be hard.

The key theoretical ingredient is a 1997 paper The number of curves of genus two with
elliptic differentials, by Ernst Kani.

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://sike.org/
https://doi.org/doi:10.1515/crll.1997.485.93
https://doi.org/doi:10.1515/crll.1997.485.93
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