18.783 Elliptic Curves Fall 2025
Lecture #8 9/30/2025

8 Schoof’s algorithm

In the early 1980s, René Schoof [3, 4| introduced the first polynomial-time algorithm to
compute #E(F,). Extensions of Schoof’s algorithm remain the point-counting method of
choice when the characteristic of Fy is large (e.g., when ¢ is a cryptographic-size prime).!

Schoof’s basic strategy is simple: compute the trace of Frobenius ¢ modulo many small
primes £ and use the Chinese remainder theorem to uniquely determine ¢, which then deter-
mines #E(F,;) = ¢+ 1 —t. Here is a high-level version of the algorithm.

Algorithm 8.1. Given an elliptic curve E over a finite field F, compute #E(IF,) as follows:

1. Initialize M < 1 and ¢ < 0.
2. While M < 4,/q, for increasing primes £ = 2,3,5, ... that do not divide ¢:

a. Compute t; = trm mod £.
b. Set t « (M(M—1 mod £)t; + £(¢~! mod M)t) mod ¢M and then M « (M.

3. If t > M/2 then set t + t — M.
4. Output ¢+ 1 —t¢.

Step 2b uses an iterative version of the Chinese remainder theorem to ensure that
t = trmg mod M

holds throughout.? This invariant holds trivially after step 1, modulo M = 1, and is
maintained in step 2b: note that the integer M (M ~! mod /) is congruent to 1 mod ¢ and
0 mod M, while the integer £(¢~* mod M) is congruent to 0 mod ¢ and 1 mod M.

Once M exceeds 4,/q, the value of t € Z/MZ uniquely determines tr7g € Z: by Hasse’s
theorem, |[trmg| < 2,/¢ < M/2, and this allows us to determine the sign of tr 7 in step 3.
The key to the algorithm is the implementation of step 2a, which is described in the next
section, but let us first consider the primes ¢ that the algorithm uses. Let £,,x be the largest
prime ¢ for which the algorithm computes ¢,. The Prime Number Theorem implies®

Z log ¢ ~ x,

primes {<x

S0 Umax =~ log(4,/q) ~ $n = O (n), and we need O(%) primes /¢ (as usual, n = logq). The

cost of updating ¢t and M is bounded by O(M(n)logn), thus if we can compute ¢, in time
bounded by a polynomial in n and ¢, then the whole algorithm will run in polynomial time.

8.1 Computing the trace of Frobenius modulo 2.

We first consider the case £ = 2. Assuming ¢ is odd (which we do), t = ¢+ 1 — #E(F,)
is divisible by 2 if and only if #E(F,) is divisible by 2, equivalently, if and only if E(F,)
contains a point of order 2. If E has Weierstrass equation y* = f(z), then the points of

!There are deterministic p-adic algorithms for computing # E(F,) that are faster than Schoof’s algorithm
when the characteristic p of Fy is very small; see [2]. But their running times are exponential in log p.

2There are faster ways to apply the Chinese remainder theorem; see [1, §10.3]. They are not relevant
here because the complexity is overwhelmingly dominated by step 2a.

3In fact we only need Chebyshev’s Theorem to get this.

Lecture by Andrew Sutherland

order 2 in E(F,) are precisely those of the form (z¢, 0), where ¢ € [, is a root of f(x). Recall
from Lecture 4 that the distinct roots of f in F, are precisely the roots of ged(z? — z, f(z)).
We can thus compute ty := tr 7y mod 2 as

e {o if deg(ged(f(x), 27 — 2)) > 0:

1 otherwise.

Note that this is a deterministic computation (we need randomness to efficiently find the
roots of f, but not to count them), and it takes O(n M(n)) time.
Having addressed the case ¢ = 2 we henceforth assume that ¢ is odd.

8.2 The characteristic equation of Frobenius modulo £

Recall that for E/F,, the Frobenius endomorphism 7 € End(F) is defined by the rational
map (z:y:z)— (x2:y?: 29). By Theorem 6.18, it satisfies the characteristic equation

T —trp +q =0,
with ¢t = trmg and g = deg mg. Restricting to the ¢-torsion subgroup F [¢] yields
72— tem+ q = 0, (1)

which we view as an identity in End(E[¢]). Here ¢, = t mod ¢ and ¢ = g mod ¢ can
be viewed either as restrictions of the scalar multiplication maps [¢] and [g], or simply as
scalars in Z/¢Z multiplied by [1],, the restriction of [1] € End(E) to E[{] (equivalently the
multiplicative identity in the ring End(E[¢])). We shall take the latter view, regarding

qe=qe [e=[e+---+[1s

as the sum of gy copies of [1]y, and similarly for ¢,. We can efficiently compute g, using our
usual double-and-add method to perform scalar multiplication by gy, provided that we know
how to explicitly represent and perform ring operations on elements of End(FE[/]); this is
the topic of the next section.

Our strategy for determining ¢y is simple: for ¢ = 0,1,...,¢ — 1 compute ﬂ'? — ¢y + qp
and check whether it is equal to 0.

The following lemma shows that whenever this occurs (which it must, since (1) guarantees
this for ¢ = t;) we must have ¢ =ty € Z/{Z. In fact we will prove something stronger.

Lemma 8.2. Let E/F, be an elliptic curve with Frobenius endomorphism , let £ be a prime
not dividing q, and let P € E[{] be nonzero. Suppose that for some integer c the equation

7} (P) = cme(P) + qe(P) = 0
holds. Then ¢ =ty = trm mod £.
Proof. From equation (1) we have

7} (P) = tyme(P) + g P = 0,

and we are assuming that
73 (P) — emy(P) + qoP = 0.

Subtracting these equations yields (¢ —tg)my(P) = 0. Since m¢P is a nonzero element of E[(
and ¢ is prime, the point 7y(P) has order ¢, which must divide ¢ — t;. So ¢ =ty mod ¢. [

18.783 Fall 2025, Lecture #8, Page 2

https://math.mit.edu/classes/18.783/2025/LectureNotes6.pdf#theorem.2.18

8.3 Arithmetic in End(E[¢])

Let h = v¢y(x,y) be the £th division polynomial of E. We have assumed that ¢ is odd, so by
Lemma 5.20, we in fact have h € Fy[z] (no dependence on y). As we proved in Lecture 5, a
nonzero point P = (zg,y0) € E(F,) lies in E[{] if and only if h(xg) = 0; this follows from
Corollary 4.28 and Theorem 5.21. To represent elements of End(E[/]) as rational maps, we

can thus treat the polynomials appearing in these maps as elements of the ring

Fqlz,y] /(h(z),y* — f(2)),

where y? = f(x) = 2% + Az + B is the Weierstrass equation for E.
In the case of the Frobenius endomorphism, we have

7 = (29 mod h(z), y? mod (h(z), y? — f(®)))
Yy

= (7 mod h(z), (@) mod h(z))). (2)

and we also note that
[1]¢ = (z mod h(z), (1 mod h(z))y).

We can thus represent all of the nonzero endomorphisms that appear in equation (1) in the
form (a(z), b(z) y), where a and b are elements of the polynomial ring R = F,[z]/(h(x)) that
we may uniquely represent as polynomials in Fy[z] of degree less than degh = (¢ —1)/2 by
taking their remainders modulo h.

8.3.1 Multiplication in End(E[£]).

If a1 = (a1(x), b1(2)y) and ag = (aa(z), bao(x)y) are two elements of End(E[(]), the product
ajag in End(E[(]) is defined by the composition

a1 0 ag = (ai(az(w)), bi(az(x))b(z)y),

where we may reduce az(x) = aj(az(z)) and bg(z) = by (az(x))ba(z) modulo h(x).

8.3.2 Addition in End(E[f]).

Addition of endomorphisms is defined pointwise in terms of addition on the elliptic curve.
Given a1 = (a1(z),b1(z)y) and as = (az(z), ba(x)y), to compute ag = oy + ag, we simply
apply the formulas for point addition to the coordinate functions of a; and ao. Recall that
the general formula for addition of non-opposite affine points (x3,ys3) = (x1,y1) + (22,y2)
on the elliptic curve E: y? = 23 + Az + B is given by the formulas

$3=m2—$1—$2, y3:m(x1—333)_yb
where 2, 4
— 3
m = Y17 92 (if z1 # x9), = o + (if z1 = x9).
1 — To 2y1

Using the coordinate functions x; = aj(x), x2 = az(x), y1 = bi(x)y, y2 = ba(z)y, in the
case 1 7 xo we have
bi(z) — ba(z)

@) — @)~ r(z)y,

m(:z:,y) =

18.783 Fall 2025, Lecture #8, Page 3

https://math.mit.edu/classes/18.783/2025/LectureNotes5.pdf#theorem.2.20
https://math.mit.edu/classes/18.783/2025/LectureNotes4.pdf#theorem.2.28
https://math.mit.edu/classes/18.783/2025/LectureNotes5.pdf#theorem.2.21

where r = (by — b2)/(a1 — a2), and when 1 = x5 we have

~Bai(x)P4+ A Bai(x)*+A
m(z,y) = ;bl(x)y = @)@ Y @

where now r = (3a? + A)/(2b1 f). Noting that m(z,y)? = (r(z)y)? = r(z)?f(x), the sum
a1 + ag = as = (ag(x), bs(x)y) is defined by

2
a3 =r"f — a1 — as,

by = r(a; — az) — by.

In both cases, provided that the polynomial v in the denominator of the rational function
r = u/v is invertible in the ring F,[x]/(h(z)), we can express r as a polynomial uv~! mod h
and write ag = (a;;(a:),bg(x)y) in our desired form, with as,bs € Fy[z]/(h(z)) uniquely
represented by polynomials in Fy[z] of degree less than the degree of h.

But this may not always be possible, because the ¢-division polynomial h(x) need not be
irreducible. Indeed, if ¢ divides #E(F,) it certainly will not be irreducible, since h(x) will
then have rational roots corresponding to the z-coordinates of rational points of order ¢,
and even when ¢} #E(F,), if E admits a rational isogeny « of degree ¢ then h(z) will be
divisible by the polynomial of degree (¢ — 1)/2 whose roots are the z-coordinates of the
nonzero points in the kernel of a. Thus the ring Fy[x]/(h(x)) is not necessarily a field; it
may contain zero divisors, and these elements are not invertible.

At first glance this might appear to be a problem, but in fact it can only help us. If we
encounter a rational function r = u/v whose denominator v is not invertible in F,[z]/(h(x))
then we can obtain a non-trivial factor of h by computing ged(v, h): if v = a; — ag then v is
nonzero and has degree less than deg h, since in this case a; # ag and deg(a; —ag) < deg(h),
and if v = 2by f then ged(v, h) must divide by, because h and f cannot share a common
factor (the roots of f(x) in F, are z-coordinates of 2-torsion points, the roots of h(x) in F,
are x-coordinates of /-torsion points, and ¢ # 2), and by # 0 has degree less than deg h.

Our strategy in this situation is to simply replace h by g = ged(v, h) and compute ¢, by
working in the smaller quotient ring F,[z]/(g(z)), which will be faster because deg g < deg h;
in fact in this situation we will always have degg < (¢ — 1)/2, which is much smaller than
degh = (/2 —1)/2. Lemma 8.2 implies that we can restrict our attention to the action of
e on points P € E[{] whose x-coordinates are roots of g(x), even if degg = 1.

8.4 Algorithm to compute the trace of Frobenius modulo ¢

We now give an algorithm to compute t,, the trace of Frobenius modulo .

Algorithm 8.3. Given E : y> = f(x) over F, and an odd prime ¢, compute ¢, as follows:

1. Compute the fth division polynomial h = v, € F4[z] for E.
2. Compute 7¢ = (29 mod h, (f9~1/2 mod h)y) and 72 = 7y o m,.

3. Use scalar multiplication to compute g = ¢¢[1]¢, and then compute 77? + qq.
(If a non-invertible denominator arises, update h and return to step 2).

4. Compute 0, 7y, 274, 37y, . . ., cmy, until cmy = W? + qs.
(If a non-invertible denominator arises, update h and return to step 2).

5. Output t, = c.

18.783 Fall 2025, Lecture #8, Page 4

Throughout the algorithm, elements of End(E[¢]) are represented in the form (a(z), b(x)y),
with a,b € R = Fy[z]/(h(z)), and all polynomial operations take place in the ring R. If a
non-invertible denominator v is found in either steps 3 or 4 we replace h with whichever of
ged(h,v) and h/ ged(h,v) has lower degree; this guarantees that the degree of h is reduced
by at least a factor of 2 (but see the next section for a further discussion).

The correctness of the algorithm follows from equation (1) and Lemma 8.2. The algo-
rithm is guaranteed to find some cm; = 7r12 + ¢ in step 4 with ¢ < ¢, since we know that
¢ = ty works. Although we may be working modulo a proper factor g of h, every root xg of
g is a root of h and therefore corresponds to a pair of nonzero points P = (g, +yo) € E[(]
for which 77(P) — cme(P) 4+ qP = 0 holds (there is at least one such root, since deg g > 0),
and Lemma 8.2 implies that we must have ¢ = t,.

The computation of the division polynomial in step 1 of the algorithm can be efficiently
accomplished using the double-and-add approach described in Problem Set 3. You will have
the opportunity to do a careful complexity analysis of Algorithm 8.3 in the next problem
set, but it is easy to see that its running time is polynomial in n = logq and ¢: every
operation involves polynomials over [, of degree less than £?, in step 4 we can have at most
¢ iterations, and we can return to step 2 at most 2log ¢ times (in fact this can happen only
once). A simple implementation of the algorithm can be found in this Sage notebook.

8.5 Factors of the division polynomial

As we saw when running our implementation of Schoof’s algorithm in Sage, we do occa-
sionally encounter non-invertible denominators and thereby obtain a proper factor g of the
{-division polynomial h =),. This is not too surprising, since there is no reason why h
should necessarily be irreducible, but it is worth noting that whenever this occurs the degree
of g is always exactly (¢ — 1)/2. Why is this the case?

Any point P = (z9,y0) € E(F,) for which g(z¢) = 0 lies both in E[¢] and in the kernel of
an endomorphism « (since zg is a root of the denominator of a rational function defining «).
The point P is nonzero, so it generates a cyclic group C' of order £ which must be a subgroup
of ker av. It follows that over F, the polynomial g has at least (¢ — 1)/2 roots, one for each
pair of nonzero points (z;, +y;) in C (note that ¢ is odd). If g has any other roots, then
there is a point @) that lies in the intersection of E[¢] Nker & but not in C, in which case we
must have ker a = E[{], since F[{] has ¢-rank 2; but this is impossible because ¢ is a proper
factor of the ¢-division polynomial h (whose roots are distinct because ¢ 1 ¢). So g must
have exactly (¢ —1)/2 roots in F,. Reducing the polynomials that define our endomorphism
modulo g corresponds to working in the subring End(C) of End(E[/]).

If we are lucky enough to find such a proper factor g of h, our algorithm then speeds
up by at least a factor of ¢, since we are working modulo a polynomial of degree (¢ —1)/2
rather than (¢2 —1)/2. While we are fairly unlikely to stumble across such a g by chance, it
turns out that in fact such a g exists for half of the primes ¢ (asymptotically speaking). Not
long after Schoof published his result, Noam Elkies found a way to directly compute these
polynomials, whose roots are the x-coordinates of points P = (z9,yo) that lie in the kernel
of a rational isogeny of degree ¢. We will learn about Elkies’ technique later in the course
when we discuss modular polynomials. There is another optimization due to A.O.L. Atkin
that applies to primes ¢ for which Elkies’ optimization does not; together these yield what
is known as the Schoof-Elkies-Atkin (SEA) algorithm.

18.783 Fall 2025, Lecture #8, Page 5

https://cocalc.com/AndrewVSutherland/18.783Fall2025/SchoofsAlgorithm

8.6 Some historical remarks

When Schoof originally developed this algorithm, it was not clear to him that it had any
practical use. This is in part because he (and others) were unduly pessimistic about its
practical efficiency, in part because robust implementations of fast integer and polynomial
arithmetic were not as widely available then as they are now. Even the simple Sage imple-
mentation given in the worksheet is already noticeably faster than the baby-steps giant-steps
algorithm for ¢ ~ 289 and can readily handle computations over fields of cryptographic size
(it might take a day or two for ¢ ~ 2256, but this could be improved by at least an order of
magnitude using a lower-level implementation in C or C++).

To better motivate his algorithm, Schoof gave an application that is of purely theoretical
interest: he showed that it could be used to deterministically compute the square root of an
integer a modulo a prime p in time that grows polynomially in logp when a is held fixed;
we will see exactly how this works when we cover the theory of complex multiplication.
Previously, no deterministic polynomial-time algorithm was known for this problem, unless
one assumes the extended Riemann hypothesis. But Schoof’s square-root application is
really of no practical use; as we have seen, there are fast probabilistic algorithms to compute
square roots modulo a prime, and unless the extended Riemann hypothesis is false, there
are even deterministic algorithms that are much faster than Schoof’s approach.

By contrast, in showing how to compute #E(F,) in polynomial time, Schoof solved a
practically important problem for which the best previously known algorithms were fully
exponential (including randomized algorithms), despite the efforts of many experts working
in the field. While perhaps not fully appreciated at the time, this has to be regarded as a
major breakthrough, both from a theoretical and practical perspective. Improved versions
of Schoof’s algorithm (the SEA algorithm) are now the method of choice for computing
#E(F,) in fields of large characteristic. In particular, the PARI/GP library that is used by
Sage includes an implementation of the SEA algorithm, and over 256-bit fields it takes only
a few seconds to compute #E(F,;). Today it is feasible to compute #FE(F;) even when ¢ is
a prime with 5,000 decimal digits (over 16,000 bits), which represents the current record [5].

References

[1] Joachim von zur Gathen and Jirgen Gerhard, Modern computer algebra, third edition,
Cambridge University Press, 2013.

[2] Takakazu Satoh, On p-adic point counting algorithms for elliptic curves over finite fields,
ANTS V, LNCS 2369 (2002), 43—66.

[3] René Schoof, Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation 44 (1985), 483-495.

[4] René Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie des
Nombres de Bordeaux 7 (1995), 219-254.

[5] Andrew V. Sutherland, On the evaluation of modular polynomials, in Proceedings of
the Tenth Algorithmic Number Theory Symposium (ANTS X), Open Book Series 1,
Mathematical Science Publishers, 2013, 531-555.

18.783 Fall 2025, Lecture #8, Page 6

https://pari.math.u-bordeaux.fr/
https://www.cambridge.org/core/books/modern-computer-algebra/DB3563D4013401734851CF683D2F03F0
http://link.springer.com/chapter/10.1007/3-540-45455-1_5
https://doi.org/10.1090/S0025-5718-1985-0777280-6
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://msp.org/obs/2013/1-1/p26.xhtml

	
	Schoof's algorithm
	Computing the trace of Frobenius modulo 2.
	The characteristic equation of Frobenius modulo l
	Arithmetic in End[l]
	Multiplication in End(E[l].
	Addition in End(E[l].

	Algorithm to compute the trace of Frobenius modulo l
	Factors of the division polynomial
	Some historical remarks

