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7 Point counting

7.1 Separable and inseparable endomorphisms

Recall that the Frobenius endomorphism πE is inseparable. In order to prove Hasse’s the-
orem we will need to use the fact that πE − 1 is separable. This follows from a much
more general result: adding a separable isogeny to an inseparable isogeny always yields a
separable isogeny. Note that the sum of two separable isogenies need not be separable: in
characteristic p > 0, if we have a+ b = p and both a and b prime to p, then [a] and [b] are
both separable but [a] + [b] = [a+ b] = [p] is inseparable.

Lemma 7.1. Let α and β be isogenies from E1 to E2, with α inseparable. Then α + β is
inseparable if and only if β is inseparable.

Proof. If β is inseparable then by Corollary 5.4 we can write α = αsep◦πm and β = βsep◦πn,
where π is the p-power Frobenius map and m,n > 0. We then have

α+ β = αsep ◦ πm + βsep ◦ πn = (αsep ◦ πm−1 + βsep ◦ πn−1) ◦ π,

which is inseparable (any composition involving an inseparable isogeny is inseparable because
inseparable degrees multiply). If α+β is inseparable, then so is −(α+β), and α−(α+β) = β
is a sum of inseparable isogenies, which we have just shown is inseparable.

Remark 7.2. Since the composition of an inseparable isogeny with any isogeny is always
inseparable, Lemma 7.1 implies that the inseparable endomorphisms in End(E) form an
ideal (provided we view 0 as inseparable, which we do).

7.2 Hasse’s Theorem

We are now ready to prove Hasse’s theorem.

Theorem 7.3 (Hasse). Let E/Fq be an elliptic curve over a finite field. Then

#E(Fq) = q + 1− t,

where t := trπE is the trace of the Frobenius endomorphism πE and |t| ≤ 2
√
q.

Proof. Recall that we defined Fq as the splitting field of xq −x over Fp, where p = char(Fq),
thus Fq = {α ∈ Fp : αq − α = 0} = {α ∈ Fq : αq − α = 0} is precisely the subfield of
Fq fixed by the q-power Frobenius automorphism x 7→ xq. The Frobenius endomorphism
πE : E → E is defined by πE(x : y : z) = (xq : yq : zq), therefore

E(Fq) = {P ∈ E(Fq) : πE(P ) = P} = {P ∈ E(Fq) : πE(P )− P = 0} = ker(πE − 1),

where 1 denotes the multiplication-by-1 map [1] ∈ End(E). The Frobenius endomorphism
πE is inseparable and −1 is separable, so by Lemma 7.1 the endomorphism πE − 1 is
separable, thus the cardinality of its kernel is equal to its degree (by Theorem 5.8). Therefore

#E(Fq) = #ker(πE−1) = deg(πE−1) = ̂(πE − 1)(πE−1) = π̂EπE+1−(π̂E+πE) = q+1−t.

It remains only to show that |t| ≤ 2
√
q.
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Consider the endomorphism rπE − s for r, s ∈ Z with s ̸= 0. We have

deg(rπE − s) = ̂(rπE − s)(rπE − s) = (π̂E r̂ − ŝ)(rπE − s) = (π̂Er − s)(rπE − s)

= π̂Er
2πE − π̂Ers− srπE + s2 = r2π̂EπE − rs(π̂E + πE) + s2

= r2 deg πE − rs trπE + s2

= r2q − rst+ s2,

where we have used Lemmas 6.11 and 6.12, and the fact that Z is in the center of End(E).
Dividing by s2 and noting that deg(rπE − s) ≥ 0 yields the inequality

q (r/s)2 − t (r/s) + 1 ≥ 0,

valid for all rational numbers r/s. Now Q is dense in R, so we must have qx2 − tx+ 1 ≥ 0
for all real numbers x. It follows that the discriminant t2 − 4q cannot be positive, which
yields the desired bound |t| ≤ 2

√
q.

Recall that for an odd prime p the Legendre symbol
(
a
p

)
is defined by

(
a

p

)
=


1 if y2 = a has two solutions mod p

0 if y2 = a has one solution mod p

−1 if y2 = a has no solutions mod p

 = #{α ∈ Fp : α
2 = a} − 1.

We extend the Legendre symbol to all finite fields Fq of odd characteristic by defining(
a

Fq

)
= #{α ∈ Fq : α

2 = a} − 1 ∈ {−1, 0, 1}.

Thus 1 +
(

a
Fq

)
counts the solutions to y2 = a in Fq. It follows that if E/Fq is given by the

Weierstrass equation y2 = x3 +Ax+B, then

#E(Fq) = 1 +
∑
x0∈Fq

(
1 +

(
x30 +Ax0 +B

Fq

))

= q + 1 +
∑
x0∈Fq

(
x30 +Ax0 +B

Fq

)
. (1)

Hasse’s Theorem is equivalent to the statement that the sum in (1) has absolute value
at most 2√q. This is remarkable for a sum with q terms, almost all of which are ±1. From a
probabilistic point of view, one might expect that on average an O(

√
q) bound should hold,

but Hasse’s theorem guarantees that it always holds.
The bound in Hasse’s theorem is the best possible. Later in the course we will see how

to explicitly construct elliptic curves E/Fq with cardinalities matching every integer value
in the Hasse interval

H(q) := [q + 1− 2
√
q, q + 1 + 2

√
q] = [(

√
q − 1)2, (

√
q + 1)2]

when q is prime, and all but at most two integers when q is not prime.
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7.3 Point counting

We now consider the problem of computing the cardinality of E(Fq), which is crucial to
cryptographic applications; as we shall see, it is quite important to know the cardinality of
the group one is working in. The most naïve approach one might take would be to evaluate
the curve equation y2 = x3 + Ax + B for E at every pair (x0, y0) ∈ F2

q , count the number
of solutions, and add 1 for the point at infinity. This takes O(q2M(log q)) time. Note that
the input to this problem is the pair of coefficients A,B ∈ Fq, which each have O(n) bits,
where n = log q. Thus in terms of the size of its input, this algorithm takes

O
(
exp(2n)M(n)

)
time, which is obviously exponential in n.

A slightly less naïve approach is to precompute a table of quadratic residues in Fq so
that we can very quickly compute the extended Legendre symbol

( ·
Fq

)
. We can construct

such a table in O(qM(log q)) time, and then compute

#E(Fq) = q + 1 +
∑
x∈Fq

(
x3 +Ax+B

Fq

)

in O(qM(log q)) time, yielding a total running time of

O(exp(n)M(n)).

So far we have not taken advantage of Hasse’s theorem which gives us an interval H(q)
of width 4

√
q which we know must contain the integer #E(Fq) we wish to determine.

7.4 Computing the order of a point

Before giving an algorithm to compute #E(Fq) using Hasse’s theorem, let us first consider
an easier problem: computing the order |P | of a single point P ∈ E(Fq). Since the order of
the group E(Fq) lies in H(q), we know that H(q) contains at least one integer M for which
MP = 0, namely M = #E(Fq), and any such M is a multiple of |P |. To find such an M ,
we set M0 = ⌈(√q − 1)2⌉, compute M0P using double-and-add scalar multiplication, and
then generate the sequence of points

M0P, (M0 + 1)P, (M0 + 2)P, . . . , MP = 0,

by adding P repeatedly. Note that M is bounded by M0 + 4
√
q, so 4

√
q additions suffice.

We then compute the prime factorization M = pe11 · · · peww (easy, compared to the time
to find M , we could even use trial division). To compute the exact order of the point P we
use the following generic algorithm.

Algorithm 7.4. Given an element P of an additive group and the prime factorization
M = pe11 · · · perr of an integer M for which MP = 0, compute the order of P as follows:

1. Let m = M = pe11 · · · perr .

2. For each prime pi, while pi|m and (m/pi)P = 0, replace m by m/pi.

3. Output m.
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When this procedure is complete we know that mP = 0 and (m/p)P ̸= 0 for every prime p
dividing m; this implies that m = |P |. You will analyze the efficiency of this algorithm and
develop several improvements to it in Problem Set 4, but the number of group operations is
clearly polynomial in logM , which is all we need for the moment.

The time to compute |P | is thus dominated by the time to find a multiple of |P | in H(q).
This involves O(

√
q) operations in E(Fq), yielding a bit complexity of O(

√
q M(log q)) or

O
(
exp(n/2)M(n)

)
,

assuming that we use projective coordinates to avoid field inversions when adding points.
We will shortly see how this can be further improved, but first let us consider how to use

our algorithm for computing |P | to compute #E(Fq). If we are lucky (and if q is large we
almost always will be), the first multiple M of |P | that we find in H(q) will actually be the
only multiple of |P | in H(q). If this happens, then we must have M = #E(Fq). Otherwise,
we might try our luck with a different point P . If we can find a combination of points for
which the least common multiple of their orders has a unique multiple in H(q), then we
can determine the group order. Unfortunately this will not always be possible, but before
addressing that issue, let us consider the question of how long it might take to compute the
least common multiple of the orders of all the points in E(Fq), which is a lot less than one
might expect.

7.5 The group exponent

Definition 7.5. For a finite group G, the exponent of G, denoted λ(G), is defined by

λ(G) = lcm{|α| : α ∈ G}.

Note that λ(G) is a divisor of #G and is divisible by the order of every element of G.
Thus λ(G) is the maximal possible order of an element of G, and when G is abelian this
maximum is achieved: there exists an element α ∈ G with order |α| = λ(G). To see this,
note that the structure theorem for finite abelian groups allows us to decompose G as

G ≃ Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nrZ,

with ni|ni+1 for 1 ≤ i < r. Thus λ(G) = nr, and any α = (α1, . . . , αr) ∈ G for which αr is
a generator for Z/nrZ will necessarily satisfy |α| = λ(G).

Rather than searching for a single α with maximal order, it is enough to find any set of
elements S ⊆ G for which lcm{|α| : α ∈ S} = λ(G). If we choose S randomly, how large
does it need to be to have a good chance of determining λ(G)? The answer is surprisingly
small: for |S| = 2 we already have a better than 50/50 chance.

Theorem 7.6. Let G be a finite abelian group with exponent λ(G). Let α and β be uniformly
distributed random elements of G. Then

Pr[lcm(|α|, |β|) = λ(G)] >
6

π2
.

Proof. We first reduce to the case that G is cyclic. As noted above, G ≃ Z/n1Z⊕· · ·⊕Z/nrZ
with ni|ni+1 and λ(G) = nr. Let αr and βr be the projections of α and β to Z/nrZ. Then
lcm(|αr|, |βr|) = λ(G) certainly implies lcm(|α|, |β|) = λ(G), thus

Pr[lcm(|α|, |β|) = λ(G)] ≥ Pr[lcm(|αr|, |βr|) = λ(G)],

18.783 Fall 2025, Lecture #7, Page 4



and in the worst case G is cyclic and this inequality is an equality, which we now assume.
So let G = ⟨γ⟩ and let pe11 · · · pekk be the prime factorization of |γ| = λ(G) = #G. Then

α = aγ, with 0 ≤ a < |γ|, and unless a is divisible by pi, which occurs with probability 1/pi,
the order of α will be divisible by peii (and similarly for β). The two probabilities for α and
β are independent, thus with probability 1−1/p2i at least one of α and β has order divisible
by peii . Call this event Ei. The events E1, . . . , Ek are independent, since we may write G
as a direct sum of cyclic groups of prime-power orders pe11 , . . . , pekk , and the projections of α
and β to each of these cyclic groups are uniformly and independently distributed. Thus

Pr[lcm(|α|, |β|) = λ(G)] = Pr[E1 ∩ · · · ∩ Ek]

=
∏

p|λ(G)

(1− p−2) >
∏
p

(1− p−2) =

( ∞∑
n=1

1

n2

)−1

=
1

ζ(2)
=

6

π2
,

where ζ(s) =
∑

n−s is the Riemann zeta function.

Theorem 7.6 implies that if we generate random points P ∈ E(Fq) and accumulate the
least common multiple N of their orders, we should expect to obtain λ(E(Fq)) within O(1)
iterations. Regardless of when we obtain λ(E(Fq)), at every stage we know that N divides
#E(Fq), and if we ever find that N has a unique multiple M in the Hasse interval H(q),
then we know that #E(Fq) = M .

Unfortunately this might not ever happen; it can happen that λ(E(Fq)) ≤ 4
√
q, in which

case it is possible for λ(E(Fq)) to have more than one multiple in H(q). To deal with this
problem we need to consider the quadratic twist of E, which you saw on Problem Set 1.

7.6 The quadratic twist of an elliptic curve

Suppose s is an element of Fq that is not a square, meaning that
(

s
Fq

)
= −1. If we consider

the elliptic curve Ẽ defined by sy2 = x3 + Ax + B, then the affine point (x, y) will lie on
the curve if and only if x3 +Ax+B is not a square. Thus

#Ẽ(Fq) = q + 1−
∑
x∈Fq

(
x3 +Ax+B

Fq

)
,

and it follows that if #E(Fq) = q+1− t, then #Ẽ(Fq) = q+1+ t. The curve Ẽ is called the
quadratic twist of E (by s). We can put the curve equation for Ẽ in standard Weierstrass
form by substituting x/s for x and y/s2 for y and then clearing denominators, yielding

y2 = x3 + s2Ax+ s3B.

Notice that it does not matter which non-residue s we choose. As you showed in Problem
Set 1, if s and s′ are any two non-squares in Fq, then the corresponding curves Ẽ and Ẽ′

are isomorphic over Fq; thus we refer to Ẽ as “the” quadratic twist of E.1

Our interest in the quadratic twist of E lies in the fact that

#E(Fq) + #Ẽ(Fq) = 2q + 2.

Thus if we can compute either #E(Fq) or #Ẽ(Fq), we can easily determine both values.
1This situation is specific to finite fields. Over Q, for example, every elliptic curve has infinitely many

quadratic twists that are not isomorphic over Q (of course they are all isomorphic over Q).
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7.7 Mestre’s Theorem

As noted above, it is not necessarily the case that the exponent of E(Fp) has a unique
multiple in the Hasse interval. But if we also consider the quadratic twist Ẽ(Fp), then a
theorem of Mestre (published by Schoof in [4]) ensures that for all primes p > 229, either
λ(E(Fp)) or λ(Ẽ(Fp)) has a unique multiple in the Hasse interval H(p). A generalization of
this theorem that works for arbitrary prime powers q can be found in [2], but we will restrict
ourselves to the case of primes p > 229 for the sake of simplicity.

Theorem 7.7 (Mestre). Let p > 229 be prime, and let E/Fp be an elliptic curve with
quadratic twist Ẽ/Fp. At least one of the integers λ(E(Fp)) and λ(Ẽ(Fp)) has a unique
multiple in the Hasse interval H(p) = [(

√
p− 1)2, (

√
p+ 1)2].

Proof. Let E(Fp) ≃ Z/nZ ⊕ Z/NZ and Ẽ(Fp) ≃ Z/mZ ⊕ Z/MZ, where n|N and m|M .
Let t be the trace of the Frobenius endomorphism π of E. We have E[n] = E(Fp)[n], so
π fixes E[n] and the matrix πn corresponding to the restriction of π to E[n] is the identity
matrix. The matrix πn2 then has the form

πn2 =

[
1 + an bn
cn 1 + dn

]
,

for some a, b, c, d ∈ Z/nZ, and we have

p ≡ detπn2 ≡ 1 + (a+ d)n mod n2,

t ≡ trπn2 ≡ 2 + (a+ d)n mod n2.

It follows that 4p− t2 ≡ 0 mod n2. The trace of Frobenius for Ẽ is −t, and we similarly
obtain 4p− t2 ≡ 0 mod m2. Thus lcm(m2, n2) divides 4p− t2. We also have t = un+2 and
t = vm− 2, for some integers u and v, and subtracting these equations yields vm− un = 4.
This implies gcd(m,n) ≤ 4, and therefore gcd(m2, n2) ≤ 16. Thus

m2n2

16
≤ lcm(m2, n2) ≤ 4p− t2 ≤ 4p. (2)

Suppose for the sake of contradiction that N = λ(E(Fp)) and M = λ(Ẽ(Fp)) both have
more than one multiple in H(p). Then M and N are both less than 4

√
p and MN < 16p.

Since mM and nN lie in H(p), both are greater than (
√
p− 1)2, and mnMN > (

√
p− 1)4.

It follows that mn > (
√
p− 1)4/(16p). Dividing by 4 and squaring both sides yields

m2n2

16
>

(
√
p− 1)8

4096p2
. (3)

Combining (2) and (3), we have

16384p3 > (
√
p− 1)8. (4)

This implies that if neither M nor N has a unique multiple in H(p), then p < 17413. An
exhaustive computer search for p < 17413 finds that in fact we must have p ≤ 229.
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7.8 Computing the group order with Mestre’s Theorem

We now give a complete algorithm to compute #E(Fp) using Mestre’s theorem, assuming
that p is a prime greater than 229 (if p is smaller than this we can easily count points using
one of our naïve algorithms); see [2] for an analogous algorithm that works for all prime
powers q > 49. As usual, H(p) := [(

√
p− 1)2, (

√
p+ 1)2] denotes the Hasse interval.

Algorithm 7.8. Given E/Fp with p > 229 prime, compute #E(Fp) as follows:

1. Compute a quadratic twist Ẽ of E using a randomly chosen non-square s ∈ Fp.

2. Let E0 = E and E1 = Ẽ, let N0 = N1 = 1, and let i = 0.

3. While neither N0 nor N1 has a unique multiple in H(p):

a. Generate a random point P ∈ Ei(Fp).
b. Find an integer M ∈ H(p) such that MP = 0.
c. Factor M and compute |P | via Algorithm 7.4.
d. Replace Ni by lcm(Ni, |P |) and replace i by 1− i.

4. If N0 has a unique multiple M0 in H(p) return M0, otherwise return 2p + 2 − M1,
where M1 is the unique multiple of N1 in H(p) guaranteed by Mestre’s theorem.

It is clear that the output of the algorithm is correct, and it follows from Theorems 7.6
and 7.7 that the expected number of iterations of step 3 is O(1). We thus have a Las Vegas
algorithm to compute #E(Fp). Its running time is dominated by the time to find M in
step 3b, and we obtain a total expected running time of O(

√
p M(log p)), or

O
(
exp(n/2)M(n)

)
.

We now show how this complexity can be improved using the baby-steps giant-steps method
to find a suitable M in step 3b.

7.9 Baby-steps giant-steps

The baby-steps giant-steps method is a generic group algorithm that was first introduced
by Daniel Shanks in [5] and subsequently generalized by many authors. In the context of
searching H(q) for an integer M such that MP = 0, it works as follows.

Algorithm 7.9. Given P ∈ E(Fq) compute M ∈ H(q) such that MP = 0:

1. Pick integers r and s such that rs ≥ 4
√
q and let a := ⌈(√q − 1)2⌉ = min(H(q) ∩ Z).

2. Compute the set Sbaby := {0, P, 2P, . . . , (r − 1)P} of baby steps.

3. Compute the set Sgiant := {aP, (a+ r)P, (a+2r)P, . . . , (a+(s− 1)r)P} of giant steps.

4. For each giant step Pgiant = (a + ir)P ∈ Sgiant, check whether Pgiant + Pbaby = 0 for
some baby step Pbaby = jP ∈ Sbaby. If so, output M = a+ ri+ j.

Note that every integer in H(q) can be written in the form a+ ir+ j with 0 ≤ i < s and
0 ≤ j < r, and for at least one such M we must have

MP = (a+ ri)P + jP = Pgiant + Pbaby = 0

for some Pgiant ∈ Sgiant and Pbaby ∈ Sbaby; this shows that the algorithm is correct.
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To implement this algorithm efficiently, we typically store the baby steps Sbaby in a
lookup table (such as a hash table or binary tree) and as each giant step Pgiant is computed,
we look up −Pgiant in this table. Alternatively, one may compute the sets Sbaby and Sgiant

in their entirety, sort both sets, and then efficiently search for a match. In both cases, we
need the points in Sbaby and Sgiant to be uniquely represented.

If we are using projective coordinates this means we must convert each point to affine
form: the point (x : y : z) is put in the form (x/z : y/z : 1) by computing the inverse of z
in Fq. Done naïvely, this requires r + s field inversions, which costs O((r + s)M(n) log n),
but by using the method described in the next section, it is possible to perform r + s field
inversions in O((r + s)M(n)) time. Assuming this is done, if we choose r ≈ s ≈ 2q1/4, then
the running time of the algorithm above is O(q1/4M(log q)).

Using the baby-steps giant-steps method to implement step 3b of Algorithm 7.8 thus
allows us to compute #E(Fq) in expected time

O
(
exp(n/4)M(n)

)
.

7.10 Batching field inversions

Suppose we are given a list of elements α1, . . . , αm ∈ Fq whose inverses we wish to compute.
The following algorithm accomplishes this using just one field inversion.

Algorithm 7.10. Given α1, . . . , αm ∈ Fq compute α−1
1 , . . . , α−1

m as follows:

1. Set β0 = 1 and βi = βi−1αi for i from 1 to m. [βi = (α1 · · ·αi)]

2. Compute γm = β−1
m . [γm = (α1 · · ·αm)−1]

3. For i from m down to 1:

a. Compute α−1
i = βi−1γi. [α−1

i = (α1 · · ·αi−1)(α1 · · ·αi)
−1]

b. Compute γi−1 = γiαi. [γi−1 = (α1 · · ·αi−1)
−1]

The algorithm performs less than 3m multiplications in Fq and just one inversion in Fq.
Provided that m = Ω(log n), its running time is O(mM(n)).

In the context of Algorithm 7.9, if we are using a table of baby steps, we can compute
all of the baby steps using projective coordinates, convert them to affine form using just one
field inversion, and then construct the lookup table. For the giant steps we work in batches
of size m > log n, converting an entire batch to affine form using one field inversion and
then performing table lookups.

7.11 Optimizations

There are a wide range of optimizations to the baby-steps giant-steps method that have
been developed over the years. Here we mention just a few.

1. Optimize expected time: If we suppose that M is uniformly distributed over an
interval of width N , then we should use r ≈

√
N/2 baby steps so that the average

number of giant steps is s/2 ≈
√
2N/2 =

√
N/2.
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2. Optimize for known distribution: In the case of elliptic curves we know that M is
not uniformly distributed – it has a semi-circular distribution.2 This means we should
search from the middle outwards by taking our first giant step in the middle of the
interval (at q+1), and then alternating steps on either side. We should also choose the
number of baby steps to optimize the expected time, using the fact that the expected
distance between M and the middle of the interval is 8

3π

√
q.

3. Fast inverses: In groups such as E(Fq) where we can compute inverses very quickly
(the inverse of the point (x, y) is just (x,−y)), it makes sense to compute −Pgiant at the
same time we compute Pgiant and see whether either matches a baby step; equivalently,
whether Pgiant±Pbaby = 0 holds. This allows us to double the width of the giant steps
and use half as many, or (better), reduce both the number of baby steps and giant
steps by a factor of

√
2.

4. Parity: We can easily determine the parity of #E(Fq) by checking whether it has a
point of order 2. If the curve equation is y2 = f(x) = x3 + Ax + B, then #E(Fq)
has even parity if and only if f(x) has a root in Fq (recall that points of order 2
have y-coordinate 0), which we can determine using a root-finding algorithm.3 Once
we know the parity of M we can modify Algorithm 8.1 to only use baby steps that
correspond to multiples of P with the same parity (so if M is odd we compute baby
steps P, 3P, 5P, . . . , adding 2P to each previous step), and use giant steps with even
parity. We should then reduce the number of baby steps by a factor of

√
2.
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