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6 Torsion subgroups and endomorphism rings

6.1 The n-torsion subgroup E[n]

Having determined the degree and separability of the multiplication-by-n map [n] in the
previous lecture, we now want to determine the structure of its kernel, the n-torsion subgroup
E[n], as a finite abelian group. Recall that any finite abelian group G can be written as
a direct sum of cyclic groups of prime power order (unique up to ordering). Since #E[n]
always divides deg[n] = n2, to determine the structure of E[n] it suffices to determine the
structure of E[ℓe] for each prime power ℓe dividing n.

Theorem 6.1. Let E/k be an elliptic curve and let p := char(k). For each prime ℓ:

E[ℓe] ≃

{
Z/ℓeZ⊕ Z/ℓeZ if ℓ ̸= p,

Z/ℓeZ or {0} if ℓ = p.

Proof. We first suppose ℓ ̸= p. The multiplication-by-ℓ map [ℓ] is then separable, and we
may apply Theorem 5.8 to compute #E[ℓ] = #ker[ℓ] = deg[ℓ] = ℓ2. Every nonzero element
of E[ℓ] has order ℓ, so we must have E[ℓ] ≃ Z/ℓZ⊕ Z/ℓZ. If E[ℓe] ≃ ⟨P1⟩ ⊕ · · · ⊕ ⟨Pr⟩ with
each Pi ∈ E(k̄) of order ℓei > 1, then

E[ℓ] ≃ ⟨ℓe1−1P1⟩ ⊕ · · · ⊕ ⟨ℓer−1Pr⟩ ≃ (Z/ℓZ)r,

and we must have r = 2; more generally, for any abelian group G the ℓ-rank r of G[ℓe]
is the same as the ℓ-rank of G[ℓ]. It follows that E[ℓe] ≃ Z/ℓeZ ⊕ Z/ℓeZ, since we have
#E[ℓe] = #ker[ℓe] = deg[ℓe] = ℓ2e and E[ℓe] contains no elements of order greater than ℓe.

We now suppose ℓ = p. We have deg[ℓ] = degs[ℓ] degi[ℓ] = ℓ2 with degi[ℓ] > 1, so degs[ℓ]
is either ℓ or 1, which means that E[ℓ] must be isomorphic to Z/ℓZ or {0}. In the latter case
we clearly have E[ℓe] = {0} and the theorem holds, so we assume E[ℓ] ≃ Z/ℓZ. Then [ℓ] is
an ℓ-to-1 map on E(k̄) and it follows that #E[ℓe] = ℓ ·#E[ℓe−1] = · · · = ℓe−1#E[ℓ] = ℓe for
all e > 1. The group E[ℓe] has the same ℓ-rank as E[ℓ], so E[ℓe] ≃ Z/ℓeZ.

The two possibilities for E[p] admitted by the theorem lead to the following definitions.
We do not need this terminology today, but it will be important in the weeks that follow.

Definition 6.2. Let E be an elliptic curve defined over a field of characteristic p > 0. If
E[p] ≃ Z/pZ then E is said to be ordinary, and if E[p] ≃ {0}, we say that E is supersingular.

Remark 6.3. The term “supersingular” is unrelated to the term “singular” (recall that an
elliptic curve is nonsingular by definition). Supersingular refers to the fact that such elliptic
curves are exceptional.

Corollary 6.4. Let E/k be an elliptic curve. Every finite subgroup of E(k̄) can be written as
the direct sum of two (possibly trivial) cyclic groups, at most one of which has order divisible
by the characteristic of k. If k = Fq is a finite field of characteristic p we have

E(Fq) ≃ Z/mZ⊕ Z/nZ

for some positive integers m,n with m|n and p ∤ m.
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Proof. Let T be a finite subgroup of E(k̄). As a finite abelian group, T is the direct sum of
its ℓ-Sylow subgroups Tℓ, each of which is a subgroup of E[ℓe] for some e, hence a product
of at most two cyclic groups by Theorem 6.1, and we can write Tℓ ≃ Tℓ,1 ⊕ Tℓ,2 with Tℓ,1

and Tℓ,2 groups of ℓ-power order, with Tℓ,2 is trivial if ℓ = p. The groups T1 :=
⊕

ℓ Tℓ,1 and
T2 :=

⊕
ℓ Tℓ,2 are cyclic, with p ∤ #T2, and T ≃ T1 ⊕ T2.

Now that we know what the structure of E(Fq) looks like, our next goal is to bound its
cardinality. In the next lecture we will prove Hasse’s Theorem, which states that

#E(Fq) = q + 1− t,

where |t| ≤ 2
√
q, but we first need to study the endomorphism ring of E.

6.2 Groups of homomorphisms

For any pair of elliptic curves E1/k and E2/k, the set Hom(E1, E2) of homomorphisms from
E1 to E2 (defined over k) consists of all morphisms of curves E1 → E2 that are also group
homomorphisms E1(k̄)→ E2(k̄); since a morphism of curves is either surjective or constant,
this is just the set of all isogenies from E1 to E2 plus the zero morphism. For any algebraic
extension L/k, we write HomL(E1, E2) for the homomorphisms from E1 to E2 that are
defined over L.1

The set Hom(E1, E2) forms an abelian group: for α, β ∈ Hom(E1, E2) the sum α+ β is
defined pointwise via

(α+ β)(P ) := α(P ) + β(P ),

and the zero morphism from E1 to E2 is the identity element of Hom(E1, E2). Because
addition is defined pointwise, if α(P ) = β(P ) for all P ∈ E1(k̄) then α = β because α − β
is the zero morphism; we can thus test equality in Hom(E1, E2) pointwise.

Proposition 6.5. Let E1, E2 be elliptic curves over a field k. For all n ∈ Z and all α ∈
Hom(E1, E2) we have

[n] ◦ α = nα = α ◦ [n],

where the map [n] on the LHS is multiplication-by-n on E2 and the map [n] on the RHS is
multiplication-by-n on E1.

Proof. For any P ∈ E1(k̄) and α ∈ Hom(E1, E2) we have

([−1] ◦ α)(P ) = −α(P ) = α(−P ) = (α ◦ [−1])(P ),

since α is a group homomorphism, thus the proposition holds for n = −1 (as noted above,
we can check equality of morphisms pointwise). All sides of the equalities are multiplicative
in n, so it suffices to consider the case n ≥ 0, where we have

([n] ◦ α)(P ) = nα(P ) = α(P ) + · · ·+ α(P ) = α(P + · · ·P ) = α(nP ) = (α ◦ [n])(P ),

since α is a group homomorphism. The proposition follows.
1Technically speaking, these homomorphisms are defined on the base changes E1L and E2L of E1 and

E2 to L, so HomL(E1, E2) is really shorthand for Hom(E1L , E2L).
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Provided α and n are nonzero, both [n] and α are surjective, as is nα, thus nα ̸= 0; recall
that by Theorem 4.17, every morphism of projective curves is either surjective or constant,
and for elliptic curves (whose morphisms must preserve the distinguished point) the only
constant morphism is the zero map. It follows that Hom(E1, E2) is a torsion free abelian
group (but Hom(E1, E2) = {0} is possible).

Composition of homomorphisms distributes with addition: for any δ ∈ Hom(E0, E1),
α, β ∈ Hom(E1, E2) and γ ∈ Hom(E2, E3) we have

(α+ β) ◦ γ = α ◦ γ + β ◦ γ and δ ◦ (α+ β) = δ ◦ α+ δ ◦ β,

since these identities hold pointwise (because α, β, γ, δ are group homomorphisms).

Lemma 6.6. Let δ : E0 → E1, α, β : E1 → E2, and γ : E2 → E3 be isogenies. Then

α ◦ δ = β ◦ δ =⇒ α = β

γ ◦ α = γ ◦ β =⇒ α = β.

Proof. Isogenies are surjective, so in particular, γ, δ are not zero morphisms. We have

α ◦ δ = β ◦ δ ⇒ α ◦ δ − βδ = 0⇒ (α− β) ◦ δ = 0⇒ α− β = 0⇒ α = β

γ ◦ α = γ ◦ β ⇒ γ ◦ α− γ ◦ β = 0⇒ γ ◦ (α− β) = 0⇒ α− β = 0⇒ α = β.

where the third arrow in both lines follows from the fact that a composition of morphisms
is zero if and only if one of the morphisms in the composition is zero (because nonzero
morphisms are surjective, as is their composition).

6.3 The dual isogeny

To further develop our understanding of endomorphism rings (and isogenies in general)
we now introduce the dual isogeny, whose existence is given by the following theorem. In
the proof of the theorem we will appeal repeatedly to Theorem 5.11, which guarantees
the existence of a separable isogeny with any given finite kernel, which is unique up to
isomorphism. This implies that if α : E1 → E2 and α′ : E1 → E3 are separable isogenies
with the same kernel then there is an isomorphism ι : E2 → E3 such that α′ = ι◦α. We will
also make use of the fact that the kernel of an isogeny α : E1 → E2 of degree n is necessarily
a subgroup of E1[n]: by Theorem 5.8, #kerα = degs α is a divisor of n = degα, so every
P ∈ kerα has order dividing n and is therefore an n-torsion point (satisfies nP = 0).

Theorem 6.7. For any isogeny α : E1 → E2 of elliptic curves over a field k there exists a
unique isogeny α̂ : E2 → E1 for which α̂ ◦ α = [n], where n = degα.

Proof. Uniqueness is immediate: if α1 ◦ α = α2 ◦ α then α1 = α2 (by the cancellation law
for composition of isogenies), so the equation α̂ ◦ α = [n] uniquely determines α̂.

To prove existence we proceed by induction on the number of prime factors of n, counted
with multiplicity (recall from Corollary 5.12 that any isogeny can be written as a composition
of isogenies of prime degree). Let p be the characteristic of the field k over which the elliptic
curves E1 and E2 are defined.

If n = 1 has no prime factors then α is separable (otherwise we would have p| degα) and
has trivial kernel, and the same is true of the identity map [1]. It follows from Theorem 5.11
that there is an isomorphism ι : E2 → E1 such that ι ◦ α = [1], and we can take α̂ = ι.
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We now suppose n = ℓ is prime. There are three cases to consider:
Case 1 (ℓ ̸= p): In this case α and [ℓ] are both separable and α(E1[ℓ]) is a subgroup of
E2(k̄) of cardinality deg[ℓ]/ degα = ℓ2/ℓ = ℓ. Let α′ : E2 → E3 be the separable isogeny
with α(E1[ℓ]) as its kernel. The isogenies α′ ◦ α and [ℓ] both have kernel E1[ℓ], so there is
an isomorphism ι : E3 → E1 for which ι ◦ α′ ◦ α = [ℓ], by Theorem 5.11, as shown below.

E1 E2

E3.

←
→

[ℓ]

←→α

←→ α′←

→

ι

We now put α̂ := ι ◦ α′ to obtain α̂ ◦ α = [ℓ] as desired.
Case 2 (ℓ = p and α separable): If α is separable then its kernel has order degα = p and
we must have kerα = E1[p] ≃ Z/pZ, by Theorem 6.1, and degs[p] = p. Now deg[p] = p2, so
by Corollary 5.4 we have [p] = α′ ◦π1 for some separable isogeny α′ : E

(p)
1 → E1 of degree p,

where π1 : E1 → E
(p)
1 is the p-power Frobenius morphism.2 We have π2 ◦ α = α(p) ◦ π1,

where α(p) : E
(p)
1 → E

(p)
2 is obtained by replacing each coefficient of α by its pth power, and

ker(α(p) ◦ π1) = ker(π2 ◦ α) = kerα = ker [p] = ker(α′ ◦ π1),

since the Frobenius morphisms π1 and π2 have trivial kernel, and it follows that α(p) and α′

are separable isogenies with the same kernel. There is thus an isomorphism ι : E
(p)
2 → E1

such that α′ = ι ◦ α(p) (again by Theorem 5.11), as shown in the diagram below:

E1 E2

E
(p)
1 E

(p)
2

←
→

[p]
←→α

←→ π1 ←→ π2

←→α(p)

←→α′

←

→

ι

If we now put α̂ = ι ◦ π2 then

α̂ ◦ α = ι ◦ π2 ◦ α = ι ◦ α(p) ◦ π1 = α′ ◦ π1 = [p].

Case 3 (ℓ = p and α inseparable): In this case α must be purely inseparable, since its
degree is prime, so α = ι ◦ π for some separable isogeny ι of degree degs α = 1, which must
be an isomorphism. If E[p] = {0} then [p] is purely inseparable of degree p2, so [p] = ι′ ◦ π2

for some isomorphism ι′, and we may take α̂ = ι′ ◦ π ◦ ι−1. If E[p] ≃ Z/pZ then [p] = α′ ◦ π
for some separable isogeny α′ of degree p and we may take α̂ = α′ ◦ ι−1. The two cases are
shown in the diagrams below.

E1 E2 E1 E2

E
(p)
1 E

(p)
1

E
(p2)
1

←
→

[p]

←→α

←→ π ←

→ ι−1

←
→

[p]

←→ π

←→α

←

→ ι−1

← →ι

←→ π

← →ι←→α′

←

→

ι′

2If E1 : y
2 = x3 +A1x+B1 then E

(p)
1 denotes the elliptic curve E

(p)
1 : y2 = x3 +Ap

1x+Bp
1 .
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This completes the base case of our induction. If n is composite then we may decompose
α into a sequence of isogenies of prime degree via Corollary 5.12. It follows that we can
write α = α1 ◦ α2, where α1, α2 have degrees n1, n2 < n with n1n2 = n. Let α̂ = α̂2 ◦ α̂1,
where the existence of α̂1 and α̂2 is given by the inductive hypothesis. Then

α̂ ◦ α = (α̂2 ◦ α̂1) ◦ α = α̂2 ◦ α̂1 ◦ α1 ◦ α2 = α̂2 ◦ [n1] ◦ α2 = α̂2 ◦ α2 ◦ [n1] = [n2] ◦ [n1] = [n],

where [n1] ◦ α2 = α2 ◦ [n1] by Proposition 6.5.

Definition 6.8. The isogeny α̂ given by Theorem 6.7 is the dual isogeny of α.

Remark 6.9. One can define the dual isogeny for abelian varieties of any dimension, but
in general if we have an isogeny of abelian varieties α : A1 → A2 then the dual isogeny

α̂ : Â2 → Â1,

is actually an isogeny between the dual abelian varieties Â2 and Â1. We won’t give a
definition of the dual abelian variety here, but the key point is that, in general, abelian
varieties are not isomorphic to their duals. But abelian varieties of dimension one (elliptic
curves) always are. This is yet another remarkable feature of elliptic curves.

As a matter of convenience we extend the notion of a dual isogeny to Hom(E1, E2) and
End(E) by defining 0̂ = 0, and we define deg 0 = 0 so that 0̂ ◦ 0 = [0] as in Theorem 6.7.

Lemma 6.10. For an isogeny α of degree n we have α ◦ α̂ = [n], meaning that ˆ̂α = α. For
any n ∈ Z the endomorphism [n] is self-dual, that is, [̂n] = [n].

Proof. We have
(α ◦ α̂) ◦ α = α ◦ (α̂ ◦ α) = α ◦ [n] = [n] ◦ α,

Isogenies are nonzero, so we may cancel α on the right to obtain α ◦ α̂ = [n]. The last
statement follows from the fact that [n] ◦ [n] = [n2] = [deg[n]].

Lemma 6.11. For any α, β ∈ Hom(E1, E2) we have α̂+ β = α̂+ β̂.

Proof. We will defer the proof of this lemma — the nicest proof uses the Weil pairing, which
we will see later in the course.

Lemma 6.12. For any α ∈ Hom(E2, E3) and β ∈ Hom(E1, E2) we have α̂ ◦ β = β̂ ◦ α̂.

Proof. Let m := degα and n := deg β. Then deg(α ◦ β) = mn, by Corollary 5.10, and

(β̂ ◦ α̂) ◦ (α ◦ β) = β̂ ◦ [m] ◦ β = [m] ◦ β̂ ◦ β = [m] ◦ [n] = [mn] = [deg(α ◦ β)].

The lemma then follows from the definition of α̂ ◦ β.

6.4 Endomorphism rings

Definition 6.13. Let E/k be an elliptic curve. The endomorphism ring of E is the additive
group End(E) := Hom(E,E) with multiplication given by composition: αβ := α ◦ β.

Warning 6.14. Many authors use End(E) to mean End(Ek̄).
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To verify that End(E) is in fact a ring, note that it has a multiplicative identity 1 = [1]
(the identity morphism), and for all α, β, γ ∈ End(E) and P ∈ E(k̄) we have

((α+ β)γ)(P ) = (α+ β)(γ(P )) = α(γ(P )) + β(γ(P )) = (αγ + βγ)(P )

(γ(α+ β))(P ) = γ(α(P ) + β(P )) = γ(α(P )) + γ(β(P )) = (γα+ γβ)(P ),

where we used the fact that γ is a group homomorphism to get the second identity.
For every integer n the multiplication-by-n map [n] lies in End(E), and the map n 7→ [n]

defines a ring homomorphism Z → End(E), since [0] = 0, [1] = 1, [m] + [n] = [m + n] and
[m][n] = [mn]. As noted above, Hom(E,E) is torsion free, so the homomorphism n 7→ [n] is
injective and may regard Z as a subring of End(E); we will thus feel free to write n rather
than [n] when it is convenient to do so. Proposition 6.5 implies that Z lies in the center of
End(E), since nα = αn for all α ∈ End(E). As we shall see, the ring End(E) need not be
commutative, in general, which makes the elements that lie in its center of interest.

When k = Fq is a finite field, the q-power Frobenius endomorphism πE also lies in the
center of End(E). This follows from the fact that for any rational function r ∈ Fq(x1, . . . , xn)
we have r(x1, . . . , xn)

q = r(xq1, . . . , x
q
n), and we can apply this to the rational maps defining

any α ∈ End(E). Thus the subring Z[πE ] generated by πE lies in the center of End(E).

Remark 6.15. It can happen that Z[πE ] = Z. For example, when E[p] = {0} and q = p2

the multiplication-by-p map [p] is purely inseparable and [p] is necessarily the composition
of π2 = πE with an isomorphism. This isomorphism is typically [±1], in which case πE ∈ Z.

For any nonzero α, β ∈ End(E), the product αβ = α ◦ β is surjective, since α and β are
both surjective; in particular, αβ is not the zero morphism. It follows that End(E) has no
zero divisors, so the cancellation law holds (on both the left and the right).

We now return to the setting of the endomorphism ring End(E) of an elliptic curve E/k.

Lemma 6.16. For any endomorphism α we have α+ α̂ = 1 + degα− deg(1− α).

Note that in the statement of this lemma, 1− α denotes the endomorphism [1]− α and
the integers degα and deg(1 − α) are viewed as elements of End(E) via the embedding
Z ↪→ End(E) defined by n 7→ [n].

Proof. For any α ∈ End(E) (including α = 0) we have

deg(1− α) = (1̂− α)(1− α) = (1̂− α̂)(1− α) = (1− α̂)(1− α) = 1− (α+ α̂) + deg(α),

and therefore α+ α̂ = 1 + degα− deg(1− α).

A key consequence of the lemma is that α + α̂ is always a multiplication-by-t map for
some integer t ∈ Z.

Definition 6.17. The trace of an endomorphism α is the integer trα := α+ α̂.

Note that for any α ∈ End(E) we have tr α̂ = trα, and deg α̂ = degα. This implies that
α and α̂ have the same characteristic polynomial.

Theorem 6.18. Let α be an endomorphism of an elliptic curve. Both α and its dual α̂ are
solutions to

λ2 − (trα)λ+ degα = 0.

Proof. α2 − (trα)α+ degα = α2 − (α+ α̂)α+ α̂α = 0, and similarly for α̂.
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6.5 Endomorphism restrictions to E[n]

Let E/k be an elliptic curve with char(k) = p (possibly p = 0). For any α ∈ End(E), we
may consider the restriction αn of α to the n-torsion subgroup E[n]. Since α is a group
homomorphism, it maps n-torsion points to n-torsion points, so αn is an endomorphism of
the abelian group E[n].

Provided n is not divisible by p, we have E[n] ≃ Z/nZ ⊕ Z/nZ with rank 2, and we
can pick a basis ⟨P1, P2⟩ for E[n] as a (Z/nZ)-module, so that every element of E[n] can
be written uniquely as a (Z/nZ)-linear combination of P1 and P2 — it suffices to pick any
P1, P2 ∈ E[n] that generate E[n] as an abelian group. Having fixed a basis for E[n], we may
represent αn as a 2× 2 matrix

[
a b
c d

]
, where a, b, c, d ∈ Z/nZ are determined by

α(P1) = aP1 + bP2,

α(P2) = cP1 + dP2.

This matrix representation depends on our choice of basis but its conjugacy class does not;
in particular the trace trαn and determinant detαn are independent of our choice of basis.

A standard technique for proving that two endomorphisms α and β are equal is to prove
that αn = βn for some sufficiently large n. If n2 is larger than the degree of α − β, then
αn = βn implies ker(α − β) > deg(α − β), which is impossible unless α − β = 0, in which
case α = β. To handle situations where we don’t know the degree of α − β, or don’t even
know exactly what β is (maybe we just know βn), we need a more refined result.

Lemma 6.19. Let α and β be endomorphisms of an elliptic curve E/k and let m be the
maximum of degα and deg β. Let n ≥ 2

√
m+1 be an integer prime to the characteristic of

k, and also relatively prime to the integers degα and deg β. If αn = βn then α = β.

Proof. We shall make use of the following fact. Let r(x) = u(x)/v(x) be a rational function
in k(x) with u ⊥ v and v monic. Suppose that we know the value of r(xi) for N distinct
values x1, . . . , xN for which v(xi) ̸= 0. Provided that N > 2max{deg u,deg v} + 1, the
polynomials u, v ∈ [x] can be uniquely determined using Cauchy interpolation; see [1, §5.8]
for an efficient algorithm and a proof of its correctness. In particular, two rational functions
with degrees bounded by N as above that agree on N distinct points must coincide.

Now let α(x, y) =
(
u(x)
v(x) ,

s(x)
t(x) y

)
be in standard form, with u ⊥ v, and v monic. If we

know the value of α(P ) at 2 degα + 2 affine points P ̸∈ kerα with distinct x-coordinates,
then we can uniquely determine u and v. For each x0 ∈ k̄ at most 2 points P ∈ E(k̄) have
x-coordinate x0, so it suffices to know α(P ) at 4 degα+ 4 affine points not in kerα.

For n ≥ 2
√
m+ 1 we have n2 ≥ 4m+ 4

√
m+ 1, and E[n] contains n2 − 1 ≥ 4 degα+ 4

affine points, none of which lie in kerα, since #kerα divides degα which is coprime to n.
Thus αn uniquely determines the x-coordinate of α(P ) for all P ∈ E(k̄). The same argument
applies to βn and β, hence α(P ) = ±β(P ) for all P ∈ E(k̄). The kernel of at least one of
α+ β and α− β is therefore infinite, and it follows that α = ±β.

We have n2 > 4 degα ≥ 4, which implies that α(P ) cannot lie in E[2] for all P ∈ E[n]
(since #E[2] = 4). Therefore α(P ) ̸= −α(P ) for some P ∈ E[n], and for this P we have
α(P ) ̸= −α(P ) and αn(P ) ̸= −αn(P ) = −βn(P ), so α ̸= −β and we must have α = β.

The following theorem provides the key connection between endomorphisms and their
restrictions to E[n].
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Theorem 6.20. Let α be an endomorphism of an elliptic curve E/k and let n be a positive
integer prime to the characteristic of k. Then

trα ≡ trαn mod n and degα ≡ detαn mod n.

Proof. We will just prove the theorem for odd n prime to degα such that n ≥ 2
√
degα+1.

The general proof relies on properties of the Weil pairing that we will see later in the course.

We note that the theorem holds for α = 0, so we assume α ̸= 0. Let n be as above and let
tn = trα mod n and dn = degα mod n. Since α and α̂ both satisfy λ2− (trα)λ+degα = 0,
both αn and α̂n must satisfy λ2 − tnλ+ dn = 0. It follows that αn + α̂n and αnα̂n are the
scalar matrices tnI and dnI, respectively. Let αn =

[
a b
c d

]
, and let δn = detαn. The fact

that α̂nαn = dnI ̸= 0 with dn prime to n implies that αn is invertible, and we have

α̂n = dnα
−1
n =

dn
detαn

[
d −b
−c a

]
If we put ϵ := dn/ detαn and plug the expression for α̂n into αn + α̂n = tnI we get[

a b
c d

]
+ ϵ

[
d −b
−c a

]
=

[
tn 0
0 tn

]
.

Thus a+ ϵd = tn, b− ϵb = 0, c− ϵc = 0, and d+ ϵa = tn. Unless a = d and b = c = 0, we
must have ϵ = 1, in which case dn = detαn and tn = a+ d = trαn as desired.

If a = d and b = c = 0 then αn is a scalar matrix. Let m be the unique integer
with absolute value less than n/2 such that αn = mn, where mn is the restriction of the
multiplication-by-m map to E[n]. We then have degm = m2 and n ≥ 2

√
degm+1. Since we

also have n ≥ 2
√
degα+1 we must have α = m, by Lemma 6.19. But then α̂ = m̂ = m = α,

so trα = 2m ≡ trmI ≡ trαn mod n and degα = m2 ≡ detmI ≡ detαn mod n.
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