
18.783 Elliptic Curves
Lecture #4

Fall 2025
09/16/2025

4 Isogenies

In almost every branch of mathematics, when considering a category of mathematical ob-
jects with a particular structure, the maps between objects that preserve this structure
(morphisms) play a crucial role. For groups and rings we have homomorphisms, for vector
spaces we have linear transformations, and for topological spaces we have continuous func-
tions. For elliptic curves (and more generally, abelian varieties), the structure-preserving
maps are called isogenies.1

Remark 4.1. I have included some general background on field extensions and algebraic
sets at the end of these notes (see §4.6 and §4.7) for those who have not seen this material
before (or would just like a refresher).

4.1 Morphisms of projective curves

As abelian varieties, elliptic curves have both an algebraic structure (as an abelian group),
and a geometric structure (as a smooth projective curve). We are all familiar with morphisms
of groups (these are group homomorphisms), but we have not formally defined a morphism
of projective curves. To do so we need to define a few notions from algebraic geometry.
Since algebraic geometry is not a prerequisite for this course, we will take a brief detour to
define the terms we need.

To keep things as simple and concrete as possible, we will focus on plane projective
curves with a few remarks along the way about how to generalize these definitions for those
who are interested (those who are not can safely ignore the remarks). As usual, we use k̄
to denote a fixed algebraic closure of our base field k that contains any and all algebraic
extensions of k that we may consider (see §4.6 for more on algebraic closures).

Definition 4.2. Let C/k be a plane projective curve f(x, y, z) = 0 with f a nonconstant
homogeneous polynomial in k[x, y, z] that is irreducible in k̄[x, y, z]. The function field k(C)
is the set of equivalence classes of rational functions g/h such that:

(i) g and h are homogeneous polynomials in k[x, y, z] of the same degree;
(ii) h is not divisible by f , equivalently, h is not an element of the ideal (f);
(iii) g1/h1 and g2/h2 are considered equivalent whenever g1h2 − g2h1 ∈ (f).

If L is any algebraic extension of k (including L = k̄), the function field L(C) is similarly
defined with g, h ∈ L[x, y, z].

Remark 4.3. The function field k(X) of an irreducible projective variety X/k given by
homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn] is defined similarly: just replace the
homogeneous ideal (f) with the homogeneous ideal (f1, . . . , fm) (homogeneous ideal means
an ideal of k[x0, . . . , xn] generated by homogeneous polynomials).

Remark 4.4. Be sure not to confuse the notation k(C) with C(k); the latter denotes the
set of k-rational points on C, not its function field.

1The word isogeny literally means “equal origins". It comes from biology, where the terms isogenous,
isogenic, and isogenetic refer to different tissues derived from the same progenitor cell. The prefix “iso”
means equal and the root “gene” means origin (as in the word genesis).
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We claim that k(C) is a ring under addition and multiplication of rational functions.
To see this, first note that if h1, h2 ̸∈ (f) then h1h2 ̸∈ (f) because f is irreducible and
k[x, y, z] is a unique factorization domain (in particular, (f) is a prime ideal). Thus for any
g1/h1, g2/h2 ∈ k(C) we have

g1
h1

+
g2
h2

=
g1h2 + g2h1

h1h2
∈ k(C) and

g1
h1

· g2
h2

=
g1g2
h1h2

∈ k(C).

We can compute the inverse of g/h as h/g except when g ∈ (f), but in this case g/h is
equivalent to 0/1 = 0, since g · 1 − 0 · h = g ∈ (f); thus every nonzero element of k(C) is
invertible, hence the ring k(C) is a field.

Remark 4.5. The field k(C) contains k as a subfield (take g and h with degree 0), but it is
not an algebraic extension of k, it is transcendental. Indeed, it has transcendence degree 1,
consistent with the fact that C is a projective variety of dimension 1 (this is one way to
define the dimension of an algebraic variety). See §4.6 for more on transcendental field
extensions.

The fact that g and h have the same degree allows us to meaningfully assign a value to
the function g/h at a projective point P = (x0 : y0 : z0) on C, so long as h(P ) ̸= 0, since

(a) we get the same result for any projectively equivalent P = (λx0 : λy0 : λz0) with
λ ∈ k×, because g and h are homogeneous of the same degree (say d):

g(λx, λy, λz)

h(λx, λy, λz)
=
λdg(x, y, z)

λdh(x, y, z)
=
g(x, y, z)

h(x, y, z)
.

(b) if g1/h1 and g2/h2 are equivalent and h1(P ), h2(P ) ̸= 0, then g1(P )h2(P )−g2(P )h1(P )
is a multiple of f(P ) = 0, so (g1/h1)(P ) = (g2/h2)(P ).

Thus assuming the denominators involved are all nonzero, for α ∈ k(C) the value of α(P )
does not depend on how we choose to represent either α or P . If α = g1/h1 with h1(P ) = 0,
it may happen that g1/h1 is equivalent to some g2/h2 with h2(P ) ̸= 0. This is a slightly
subtle point. It may not be immediately obvious whether or not such a g2/h2 exists, since it
depends on equivalence modulo f ; in general there may be no canonical way to write g/h in
“lowest terms”, because the ring k[x, y, z]/(f) is typically not a unique factorization domain.

Example 4.6. Suppose C/k is defined by f(x, y, z) = zy2−x3− z2x = 0, and consider the
point P = (0 : 0 : 1) ∈ C(k). We can’t evaluate α = 3xz/y2 ∈ k(C) at P as written since
its denominator vanishes at P , but we can use the equivalence relation in k(C) to write

α =
3xz

y2
=

3xz2

x3 + z2x
=

3z2

x2 + z2
,

and we then see that α(P ) = 3.

Definition 4.7. Let C/k be a projective curve with α ∈ k(C). We say that α is defined (or
regular) at a point P ∈ C(k̄) if α can be represented as g/h for some g, h ∈ k[x, y, z] with
h(P ) ̸= 0.
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Remark 4.8. If C is the projective closure of an affine curve f(x, y) = 0, one can equiv-
alently define k(C) as the fraction field of k[x, y]/(f); this ring is known as the coordinate
ring of C, denoted k[C], and it is an integral domain provided that (f) is a prime ideal
(which holds in our setting because we assume f is irreducible). In this case one needs to
homogenize rational functions r(x, y) = g(x, y)/h(x, y) in order to view them as functions
defined on projective space. This is done by introducing powers of z so that the numera-
tor and denominator are homogeneous polynomials of the same degree. The same remark
applies to (irreducible) varieties of higher dimension.

Recall that for any field F (including F = k(C)), we use P2(F ) to denote the set of
projective triples (x : y : z), with x, y, z ∈ F not all zero, modulo the equivalence relation
(x : y : z) ∼ (λx : λy : λz) for λ ∈ F×.

Definition 4.9. Let C1 and C2 be plane projective curves defined over k. A rational map
ϕ : C1 → C2 is a projective triple (ϕx : ϕy : ϕz) ∈ P2(k(C1)), such that for every P ∈ C1(k̄)
where ϕx, ϕy, ϕz are defined and not all zero, the projective point (ϕx(P ) : ϕy(P ) : ϕz(P ))
lies in C2(k̄). The map ϕ is defined (or regular) at P if there exists λ ∈ k(C1)

× such that
λϕx, λϕy, λϕz are all defined at P and not all zero at P .

Remark 4.10. This definition generalizes to projective varieties in Pn in the obvious way.

We should note that a rational map is not simply a function from C1(k) to C2(k) defined
by rational functions, for two reasons. First, it might not be defined everywhere (although
for smooth projective curves this does not happen, by Theorem 4.15 below). Second, it is
required to map C1(k̄) to C2(k̄), which does not automatically hold for every rational map
the carries C1(k) to C2(k); indeed, in general C1(k) could be the empty set (if C1 is an
elliptic curve then C1(k) is nonempty, but it could contain just a single point).

Remark 4.11. This is a general feature of classical algebraic geometry. In order for the
definitions to work properly, one must consider the situation over an algebraic closure.
An alternative and much more general approach is to use schemes, but this requires more
material than we have time to develop in this course (take 18.725/6 to learn about schemes).

It is important to remember that a rational map ϕ = (ϕx : ϕy : ϕz) is defined only up
to scalar equivalence by functions in k(C)×. There may be points P ∈ C1(k̄) where one of
ϕx(P ), ϕy(P ), ϕz(P ) is not defined or all three are zero, but it may still possible to evaluate
ϕ(P ) after rescaling by λ ∈ k(C)×; we will see an example of this shortly.

The value of ϕ(P ) is unchanged if we clear denominators in (ϕx : ϕy : ϕz) by multiplying
through by an appropriate homogeneous polynomial (note: this is not the same as rescaling
by an element of λ ∈ k(C)×). This yields a triple (ψx : ψy : ψz) of homogeneous polynomials
of equal degree that we view as a representing any of the three equivalent rational maps

(ψx/ψz : ψy/ψz : 1), (ψx/ψy : 1 : ψz/ψy), (1 : ψy/ψx : ψz/ψx),

all of which are equivalent to ϕ. We then have ϕ(P ) = (ψx(P ) : ψy(P ) : ψz(P )) whenever
any of ψx, ψy, ψz is nonzero at P . Of course it can still happen that ψx, ψy, ψz all vanish at P ,
in which case we might need to look for an equivalent tuple of homogeneous polynomials
that represents ϕ. The tuples (ψx : ψy : ψz) and (ψ′

x : ψ′
y : ψ′

z) represent the same rational
map whenever the polynomials ψxψ

′
y − ψ′

xψy and ψxψ
′
z − ψ′

xψz and ψyψ
′
z − ψ′

yψz all lie in
the ideal (f1) defining C1.
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This defines an equivalence relation on set of triples (ψx : ψy : ψz) of nonzero homoge-
neous polynomials of the same degree that satisfy f2(ψx, ψy, ψ2) ∈ (f1), where (f2) is the
ideal defining C2. Each equivalence class corresponds to a rational map C1 → C2 and every
rational map has a corresponding equivalence class.

Remark 4.12. This set of equivalence classes of tuples defining rational maps ψ : V1 → V2
of projective varieties also generalizes: replace (f1) with the homogeneous ideal I1 defining
V1 and require f2(ψ) ∈ I1 for every generator f2 of the homogeneous ideal I2 defining V2.

This leads to the following equivalent definition of a rational map.

Definition 4.13. Let C1 and C2 be plane projective curves over k defined by f1(x, y, z) = 0
and f2(x, y, z) = 0, respectively. A rational map ψ : C1 → C2 is an equivalence class of
triples (ψx : ψy : ψz) of homogeneous polynomials in k[x, y, z] of the same degree, not all of
which lie in (f1), such that f2(ψx, ψy, ψz) ∈ (f1). Triples (ψx : ψy : ψz) and (ψ′

x : ψ′
y : ψ′

z)
are equivalent whenever ψxψ

′
y − ψ′

xψy and ψxψ
′
z − ψ′

xψz and ψyψ
′
z − ψ′

yψz all lie in (f1).
The rational map ϕ is defined at P ∈ C1(k̄) if any of ψx(P ), ψy(P ), ψz(P ) is nonzero, in

which case (ψx(P ) : ψy(P ) : ψz(P ) ∈ C2(k̄)).

The equivalence of Definitions 4.9 and 4.13 follows from Corollary 4.52 (see §4.7).

Definition 4.14. A rational map that is defined everywhere is called a morphism.

For elliptic curves, distinguishing rational maps from morphisms is unnecessary; every
rational map between elliptic curves is a morphism. More generally, we have the following.

Theorem 4.15. If C1 is a smooth projective curve then every rational map from C1 to a
projective curve C2 is a morphism.

The proof of this theorem is straightforward (see [6, II.2.1]), but requires a bit of com-
mutative algebra that is outside the scope of this course.2

Remark 4.16. Theorem 4.15 is specific to smooth curves; it is not true more generally.

Two projective curves C1 and C2 are isomorphic if they are related by an invertible
morphism ϕ; this means that there is a morphism ϕ−1 such that ϕ−1 ◦ϕ and ϕ ◦ϕ−1 are the
identity maps on C1(k̄) and C2(k̄), respectively. An isomorphism ϕ : C1 → C2 is necessarily
a morphism that defines a bijection from C1(k̄) to C2(k̄), but the converse is not true, in
general, because the inverse map of sets from C2(k̄) to C1(k̄) might not be a morphism
(because it can’t be defined by rational functions); we will see an example of this shortly.

Before leaving the topic of morphisms of curves, we note one more useful fact.

Theorem 4.17. A morphism of projective curves is either surjective or constant.

This theorem is a consequence of the fact that projective varieties are complete (or
proper), which implies that the image of a morphism of projective varieties is itself a projec-
tive variety. This is a standard result that is proved in most introductory algebraic geometry
textbooks, see [2, II.4.9], for example. In the case of projective curves the image of a mor-
phism ϕ : C1 → C2 of curves either has dimension 1, in which case ϕ is surjective (our
curves are irreducible, by definition, and therefore cannot properly contain another curve),
or dimension 0, in which case the image is a single point and ϕ is constant.

2The key point is that the coordinate ring of a smooth curve is a Dedekind domain. Thus its localization
at every point P is a DVR, and after choosing a uniformizer we can rescale any rational map ϕ by a suitable λ
(which will typically vary with P ) so that all the components of ϕ have non-negative valuation at P and at
least one has valuation zero and is therefore nonvanishing at P .
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4.2 Isogenies of elliptic curves

We can now define the structure-preserving maps between elliptic curves that will play a
key role in this course.

Definition 4.18. An isogeny ϕ : E1 → E2 of elliptic curves defined over k is a surjective
morphism of curves that induces a group homomorphism E1(k̄) → E2(k̄). The elliptic curves
E1 and E2 are then said to be isogenous.

Remark 4.19. Unless otherwise stated, we assume that the isogeny ϕ is itself defined
over k (meaning that it can be represented by a rational map whose coefficients lie in k). In
general, if L/k is an algebraic extension, we say that two elliptic curves defined over k are
“isogenous over L” if they are related by an isogeny that is defined over L. Strictly speaking,
in this situation we are really referring to the “base change” of the elliptic curves to L (same
equations, different field of definition), but we won’t be pedantic about this.

This definition is stronger than is actually necessary, for three reasons. First, any mor-
phism of abelian varieties that preserves the identity element (the distinguished point that
is the zero element of the group) induces a group homomorphism; we won’t bother to prove
this (see [6, Theorem III.4.8] for a proof), since for all the isogenies we are interested in
it will be obvious that they are group homomorphisms. Second, by Theorem 4.17, any
non-constant morphism of curves is surjective, and third, by Theorem 4.15, a rational map
whose domain is a smooth projective curve is automatically a morphism. This leads to the
following equivalent definition which is commonly used.

Definition 4.20. An isogeny ϕ : E1 → E2 of elliptic curves defined over k is a non-constant
rational map that sends the distinguished point of E1 to the distinguished point of E2.

Warning 4.21. Under our definitions the zero morphism, which maps every point on E1

to the zero point of E2, is not an isogeny. This follows the standard convention for general
abelian varieties which requires isogenies to preserve dimension (so they must be surjective
and have finite kernel). In the case of elliptic curves this convention is not always followed
(notably, Silverman [6, III.4] includes the zero morphism in his definition of an isogeny), but
it simplifies the statement of many theorems and is consistent with the more general usage
you may see in later courses, so we will use it (we will still have occasion to refer to the zero
morphism, we just won’t call it an isogeny).

Definition 4.22. Elliptic curves E1 and E2 defined over a field k are isomorphic if there
exist isogenies ϕ1 : E1 → E2 and ϕ2 : E2 → E1 whose composition is the identity; the
isogenies ϕ1 and ϕ2 are then isomorphisms.

Definition 4.23. A morphism from an elliptic curve E/k to itself that fixes the distinguished
point is called an endomorphism. An endomorphism that is also an isomorphism is an
automorphism.

Except for the zero morphism, every endomorphism is an isogeny. As we shall see in the
next lecture, the endomorphisms of an elliptic curve have a natural ring structure.

4.3 Examples of isogenies

We now give three examples of isogenies that are endomorphisms of an elliptic curve E/k
defined by a short Weierstrass equation y2 = x3 +Ax+ b (we assume char(k) ̸= 2, 3).
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4.3.1 The negation map

In projective coordinates the map P 7→ −P is given by

(x : y : z) 7→ (x : −y : z),

which is evidently a rational map. It is defined at every projective point, and in particular,
at every P ∈ E(k̄), so it is a morphism (as it must be, since it is a rational map defined
on a smooth curve). It fixes 0 = (0 : 1 : 0) and is not constant, thus it is an isogeny. It is
also an endomorphism, since it is a morphism from E to E that fixes 0, and moreover an
isomorphism (it is its own inverse), and therefore an automorphism.

4.3.2 The multiplication-by-2 map

Let E/k be the elliptic curve defined by y2 = x3+Ax+B, and let ϕ : E → E be defined by
P 7→ 2P . This is obviously a non-trivial group homomorphism (at least over k̄), and we will
now show that it is a morphism of projective curves. Recall that the formula for doubling
an affine point P = (x, y) on E is given by the rational functions

ϕx(x, y) = m(x, y)2 − 2x =
(3x2 +A)2 − 8xy2

4y2
,

ϕy(x, y) = m(x, y)(x− ϕx(x, y))− y =
12xy2(3x2 +A)− (3x2 +A)3 − 8y4

8y3
,

where m(x, y) := (3x2 + A)/(2y) is the slope of the tangent line at P . Homogenizing these
and clearing denominators yields the rational map ϕ := (ψx/ψz : ψy/ψz : 1), where

ψx(x, y, z) = 2yz
(
(3x2 +Az2)2 − 8xy2z

)
,

ψy(x, y, z) = 12xy2z(3x2 +Az2)− (3x2 +Az2)3 − 8y4z2,

ψz(x, y, z) = 8y3z3.

If y = 0 then 3x2+Az2 ̸= 0 (because y2z = x3+Axz2+Bz3 is non-singular), and it follows
that the only point in E(k̄) where ψx, ψy, ψz simultaneously vanish is the point 0 = (0 : 1 : 0).
As a rational map of smooth projective curves, we know that ϕ is a morphism, hence defined
everywhere, so there must be an alternative representation of ϕ that we can evaluate at the
point 0. Now in fact we know a priori that ϕ(0) must be 0, since 2 · 0 = 0 but let’s verify
this explicitly.

In projective coordinates the curve equation is f(x, y, z) := y2z − x3 −Axz2 −Bz3 = 0.
We are free to add any multiple of f in k[x, y, z] of the correct degree (in this case 6) to any
of ψx, ψy, ψz without changing the rational function ϕ they define. Let us replace ψx with
ψx+18xyzf and ψy with ψy +(27f − 18y2z)f , and remove the common factor z2 to obtain

ψx(x, y, z) = 2y
(
xy2 − 9Bxz2 +A2z3 − 3Ax2z

)
,

ψy(x, y, z) = y4 − 12y2z(2Ax+ 3Bz)−A3z4

+ 27Bz(2x3 + 2Axz2 +Bz3) + 9Ax2(3x2 + 2Az2),

ψz(x, y, z) = 8y3z.

This is another representation of the rational map ϕ, and we can use this representation of
ϕ to evaluate ϕ(0) = (ψx(0, 1, 0) : ψy(0, 1, 0) : ψz(0, 1, 0)) = (0 : 1 : 0) = 0, as expected.
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Having seen how messy things can get even with the relatively simple isogeny P 7→ 2P ,
in the future we will be happy to omit such verifications and rely on the fact that if we have
a rational map that we know represents an isogeny ϕ, then ϕ(0) = 0 must hold. For elliptic
curves in Weierstrass form, this means we only have to worry about evaluating isogenies at
affine points, which allows us to simplify the equations by fixing z = 1.

4.3.3 The Frobenius endomorphism

Let Fp be a finite field of prime order p. The Frobenius automorphism π : Fp → Fp is the map
x 7→ xp. It is easy to check that π is a field automorphism: 0p = 0, 1p = 1, (−a)p = −ap,
(a−1)p = (ap)−1, (ab)p = apbp, and (a + b)p =

∑(
p
k

)
akbp−k = ap + bp. If f(x1, . . . , xk) is

any rational function with coefficients in Fp, then

f(x1, . . . , xk)
p = f(xp1, . . . , x

p
k),

since the coefficients of f are all fixed by π, which acts trivially on Fp.
Every power πn of π is also an automorphism of Fp; the fixed field of πn is the finite

field Fpn with pn elements. For a finite field Fq = Fpn the map x 7→ xq is called the q-power
Frobenius map, which we may denote by πq.

Definition 4.24. Let E be an elliptic curve over a finite field Fq. The Frobenius endomor-
phism of E is the map πE : (x : y : z) 7→ (xq : yq : zq).

To see that this defines a morphism from E to E, for any point P = (x, y, z) ∈ E(Fq),
if we raise both sides of the curve equation

y2z = x3 +Axz2 +Bz3

to the qth power, we get

(y2z)q = (x3 +Axz2 +Bz3)q

(yq)2zq = (xq)3 +Axq(zq)2 +B(zq)3,

thus (xq : yq : zq) ∈ E(Fq); we have Aq = A and Bq = B because A,B ∈ Fq. Note that when
q ̸= p applying the p-power Frobenius yields a point on the elliptic curve y2 = x3+Apx+Bp,
and unless A,B ∈ Fp this won’t be the same curve as E (or even isomorphic to E, in general).

To see that πE is also a group homomorphism, note that the group law on E is defined
by rational functions whose coefficients lie in Fq; these coefficients are invariant under the
q-power map, so πE(P +Q) = πE(P ) + πE(Q) for all P,Q ∈ E(Fq).

These facts hold regardless of the equation used to define E and the formulas for the
group law, including curves defined by a general Weierstrass equation (which is needed in
characteristic 2 and 3).

Remark 4.25. The Frobenius endomorphism induces a group isomorphism from E(Fq)
to E(Fq), since over the algebraic closure we can take qth roots of coordinates of points,
and doing so still fixes elements of Fq (in other words, the inverse of πq in Gal(Fq/Fq) also
commutes with the group operation). But as an isogeny the Frobenius endomorphism is not
an isomorphism because there is no rational map from E → E that acts as its inverse (why
this is so will become obvious in later lectures).
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4.4 A standard form for isogenies

To facilitate our work with isogenies, it will be convenient to put them in a standard form.
In order to do so we will assume throughout that we are working with elliptic curves of the
form y2 = f(x), and when it is convenient we will further assume f(x) = x3 + Ax + B
so that our curves are in short Weierstrass form. Implicit in this assumption is that our
elliptic curves are defined over a field k whose characteristic is not 2, and when we assume
f(x) = x3 +Ax+B we eliminate some elliptic curves in characteristic 3.

Lemma 4.26. Let E1 : y
2 = f1(x) and E2 : y

2 = f2(x) be elliptic curves over k, and let
α : E1 → E2 be an isogeny. Then α can be defined by an affine rational map of the form

α(x, y) =

(
u(x)

v(x)
,
s(x)

t(x)
y

)
,

where u, v, s, t ∈ k[x] are polynomials in x with u ⊥ v and s ⊥ t.

The notation u ⊥ v indicates that the polynomials u and v are coprime (gcd(u, v) = 1).

Proof. Suppose α is defined by the rational map (αx : αy : αz). Then for any affine point
(x : y : 1) ∈ E1(k̄) we can write

α(x, y) =
(
r1(x, y), r2(x, y)

)
,

with r1(x, y) := αx(x, y, 1)/αz(x, y, 1) and r2(x, y) := αy(x, y, 1)/αz(x, y, 1). By repeatedly
using the curve equation y2 = f1(x) for E1 to replace y2 with f1(x), we can assume that
both r1 and r2 have degree at most 1 in y. We then have

r1(x, y) =
p1(x) + p2(x)y

p3(x) + p4(x)y
,

for some p1, p2, p3, p4 ∈ k[x]. We now multiply the numerator and denominator of r1(x, y)
by p3(x)− p4(x)y, and use the curve equation for E1 to replace the y2 in the denominator
with f1(x), putting r1 in the form

r1(x, y) =
q1(x) + q2(x)y

q3(x)
,

for some q1, q2, q3 ∈ k[x].
We now use the fact that α is a group homomorphism and must therefore satisfy α(−P ) =

−α(P ) for any P ∈ E1(k̄). Recall that the inverse of an affine point (x, y) on a curve in
short Weierstrass form is (x,−y). Thus α(x,−y) = −α(x, y) and we have(

r1(x,−y), r2(x,−y)
)
=

(
r1(x, y),−r2(x, y)

)
Thus r1(x, y) = r1(x,−y), and this implies that q2 is the zero polynomial. After eliminating
any common factors from q1 and q3, we obtain r1(x, y) =

u(x)
v(x) for some u, v ∈ k[x] with u ⊥ v,

as desired. The argument for r2(x, y) is similar, except now we use r2(x,−y) = −r2(x, y) to
show that q1 must be zero, yielding r2(x, y) =

s(x)
t(x) y for some s, t ∈ k[x] with s ⊥ t.
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We shall refer to the expression α(x, y) =
(u(x)
v(x) ,

s(x)
t(x) y

)
given by Lemma 4.26 as the

standard form of an isogeny α : E1 → E2. This expression represents the isogeny α : E1 → E2

as an affine point in P2(k(E1)) whose z-coordinate αz is the constant function 1, which
means that αx and αy are uniquely determined as elements of k(E1). The rational functions
representing αx and αy as elements of k(E1) are uniquely determined if we also require that

• the numerator and denominator of αx should be homogeneous coprime polynomials in
k[x, z] of the same degree.

• the numerator and denominator of αy should be homogeneous coprime polynomials in
k[x, y, z] of the same degree, such that the numerator has the form g(x, z)y.

If we additionally require that u and s be monic, the polynomials u, v, s, t ∈ k[x] that appear
in the standard form of α(x, y) are uniquely determined by α.

Lemma 4.27. Let E1 : y
2 = f1(x) and E2 : y

2 = f2(x) be elliptic curves over k and let
α(x, y) =

(u(x)
v(x) ,

s(x)
t(x) y

)
be an isogeny from E1 to E2 in standard form. Then v3 divides t2

and t2 divides v3f1. Moreover, v(x) and t(x) have the same set of roots in k̄.

Proof. Substituting
(
u
v ,

s
t y
)

for (x, y) in the equation for E2 gives ((s/t)y)2 = f2(u/v), and
using the equation for E1 to replace y2 with f1(x) yields

(s/t)2f1 = f2(u/v)

as an identity involving polynomials f1, f2, s, t, u, v ∈ k[x]. If we put w = v3f2(u/v) ∈ k[x]
and clear denominators we obtain

v3s2f1 = t2w. (1)

Note that u ⊥ v implies v ⊥ w, since any common factor of v and w must divide u. It
follows that v3|t2 and t2|v3f1. This implies that v and t have the same roots in k̄: every
root of v is clearly a root of t (since v3|t2), and every root x0 of t is a double root of t2|v3f1,
and since f1 has no double roots (because E1 is not singular), x0 must be a root of v (and
possibly also a root of f1).

Corollary 4.28. Let α(x, y) =
(u(x)
v(x) ,

s(x)
t(x) y

)
be an isogeny E1 → E2 in standard form. The

affine points (x0 : y0 : 1) ∈ E1(k̄) in the kernel of α are precisely those for which v(x0) = 0.

Proof. If v(x0) ̸= 0, then t(x0) ̸= 0, and α(x0, y0) =
(u(x0)
v(x0)

, s(x0)
t(x0)

y
)

is an affine point and
therefore not 0 (the point at infinity), hence not in the kernel of α.

By homogenizing and putting α into projective form, we can write α as

α = (ut : vsy : vt),

where ut, vsy, and vt are now homogeneous polynomials of equal degree (s, t, u, v ∈ k[x, z]).
Suppose y0 ̸= 0. By the previous lemma, if v(x0, 1) = 0, then t(x0, 1) = 0, and since

v3|t2, the multiplicity of (x0, 1) as a root of t is strictly greater than its multiplicity as a
root of v. This implies that, working over k̄, we can renormalize α by dividing by a suitable
power of x − x0z so that αy does not vanish at (x0 : y0 : 1) but αx and αz both do. Then
α(x0 : y0 : 1) = (0 : 1 : 0) = 0, and (x0 : y0 : 1) lies in the kernel of α as claimed.

If y0 = 0, then x0 is a root of the cubic f(x) in the equation y2 = f1(x) for E1, and it
is not a double root, since E1 is not singular. In this case we renormalize α by multiplying
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by yz and then replacing y2z with f1(x, z). Because (x0, 1) only has multiplicity 1 as a root
of f1(x, z), its multiplicity as a root of vf1 is no greater than its multiplicity as a root of t
(here again we use v3|t2), and we can again renormalize α by dividing by a suitable power
of x− x0z so that αy does not vanish at (x0 : y0 : 1), but αx and αz do (since they are now
both divisible by y0 = 0). Thus (x0 : y0 : 1) is again in the kernel of α.

The corollary implies that if we have an isogeny α : E1 → E2 in standard form, we know
exactly what to do whenever we get a zero in the denominator when we try to compute
α(P ): we must have α(P ) = 0. This allows us to avoid in all cases the messy process that
we went through earlier with the multiplication-by-2 map. We also obtain the following.

Corollary 4.29. Let α : E1 → E2 be an isogeny of elliptic curves defined over a field k.
The kernel of α is a finite subgroup of E1(k̄)

This corollary is true in general, but we will prove it under the assumption that we can
put the isogeny α in our standard form (so char(k) ̸= 2).

Proof. If we put α in standard form
(
u
v ,

s
t y
)

then the polynomial v(x) has at most deg v
distinct roots in k̄, each of which can occur as the x-coordinate of at most two points on the
elliptic curve E1.

Remark 4.30. Note that this corollary would not be true if we included the zero morphism
in our definition of an isogeny.

One can also use the standard form of an isogeny α : E1 → E2 to show that α is surjective
as a map from E1(k̄) to E2(k̄); see [7, Thm. 2.22].3 But we already know that this applies
to any non-constant morphism of curves (and even included surjectivity in our original
definition of an isogeny), so we won’t bother to prove this.

4.5 Degree and separability

We now define two important invariants of an isogeny that can be easily determined when
it is in standard form.

Definition 4.31. Let α(x, y) =
(u(x)
v(x) ,

s(x)
t(x) y

)
be an isogeny in standard form. The degree of

α is degα := max{deg u,deg v}, and we say that α is separable if the derivative of u(x)
v(x) is

nonzero; otherwise we say that α is inseparable.

As noted earlier, the polynomials u, v, s, t are uniquely determined up to a scalar factor, so
the degree and separability of α are intrinsic properties that do not depend on its represen-
tation as a rational map.

Remark 4.32. The degree and separability of an isogeny can be defined in a way that is
more obviously intrinsic using function fields. If α : E1 → E2 is an isogeny of elliptic curves
defined over k then it induces an injection of function fields

α∗ : k(E2) → k(E1)

that sends f to f ◦ α (notice the direction of this map; the categorical equivalence between
smooth projective curves and their function fields is contravariant). The degree of α is then

3The theorem in [7] assumes that α is an endomorphism but the proof works for any isogeny.
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the degree of k(E1) as an extension of the subfield α∗(k(E2)); this degree is finite because
both are finite extensions of a purely transcendental extension of k. The isogeny α is then
said to be separable if this field extension is separable (and is inseparable otherwise). This
approach has the virtue of generality, but it is not as easy to apply explicitly. Our definition
is equivalent, but we won’t prove this.

Let us now return to the three examples that we saw earlier.

• The standard form of the negation map is α(x, y) = (x,−y). It is separable and has
degree 1.

• The standard form of the multiplication-by-2 isogeny on y2 = x3 +Ax+B is

α(x, y) =

(
x4−2Ax2− 8Bx+A2

4(x3 +Ax+B)
,
x6+5Ax4+20Bx3−5A2x2−4ABx−A3−8B2

8(x3 +Ax+B)2
y

)
.

It is separable and has degree 4.

• The standard form of the Frobenius endomorphism of E : y2 = f(x) over Fq is

πE(x, y) =
(
xq, f(x)(q−1)/2y

)
.

We have used the curve equation to replace yq with f(x)(q−1)/2y; note that q is odd
because we are not in characteristic 2. The Frobenius endomorphism is inseparable,
because (xq)′ = qxq−1 = 0 in Fq (since q is a multiple of the characteristic p), and it
has degree q.

4.6 Field extensions

Most of the material in this section can be found in any standard introductory algebra text,
such as [1, 3]. We will occasionally need results in slightly greater generality than you may
have seen before, and here we may reference [4, 5].

We start in the general setting of an arbitrary field extension L/k with no restrictions
on k or L. The fields k and L necessarily have the same prime field (the subfield of k
generated by the multiplicative identity), and therefore the same characteristic. The degree
of the extension L/k, denoted [L : k], is the dimension of L as a k-vector space; this is a
cardinal number, which need not be finite. If we have a tower of fields k ⊆ L ⊆M , then

[M : k] = [M : L][L : k],

where the RHS is a product of cardinals.4 When [L : k] is finite we say that L/k is a finite
extension.

An element α ∈ L is said to be algebraic over k if it is the root of a polynomial in k[x],
and otherwise it is transcendental over k. The extension L/k is algebraic if every element
of L is algebraic over k, and otherwise it is transcendental. If M/L and L/k are both
algebraic extensions, so is M/k. A necessary and sufficient condition for L/k to be algebraic
is that L be equal to the union of all finite extensions of k contained in L; in particular,
every finite extension is algebraic.

4Recall that a cardinal number is an equivalence class of equipotent sets (sets that can be put in bijection).
The product of n1 = #S1 and n2 = #S2 is n1n2 = #(S1 ×S2) and the sum is the cardinality of the disjoint
union: n1 + n2 = #(S1 ⊔ S2). But we shall be primarily interested in finite cardinals (natural numbers).
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The subset of L consisting of the elements that are algebraic over k forms a field called the
algebraic closure of k in L. A field k is algebraically closed if every non-constant polynomial
in k[x] has a root in k; equivalently, k has no non-trivial algebraic extensions. For every field
k there exists an extension k̄/k with k̄ algebraically closed; such a k̄ is called an algebraic
closure of k, and all such k̄ are isomorphic (but this isomorphism is not unique in general).
Any algebraic extension L/k can be embedded into any algebraic closure of k, since every
algebraic closure of L is also an algebraic closure of k.

Remark 4.33. When working with algebraic extensions of k it is convenient to view them
all as subfields of some fixed algebraic closure k̄ (there is in general no canonical choice). The
key point is that we can always (not necessarily uniquely) embed any algebraic extension of
L/k in our chosen k̄, and if we have another extension M/L, our embedding of L into k̄ can
always be extended to an embedding of M into k̄.

A set S ⊆ L is said to be algebraically independent (over k) if for every finite subset
{s1, . . . , sn} of S and every nonzero polynomial f ∈ k[x1, . . . , xn] we have

f(s1, . . . , sn) ̸= 0.

Note that this means the empty set is algebraically independent (just as the empty set is
linearly independent in any vector space). An algebraically independent set S ⊆ L for which
L/k(S) is algebraic is called a transcendence basis for the extension L/k.

Theorem 4.34. Every transcendence basis for L/k has the same cardinality.

Proof. We will only prove this in the case that L/k has a finite transcendence basis (which
includes all extensions of interest to us); see [4, Theorem 7.9] for the general case. Let
S = {s1, . . . , sm} be a smallest transcendence basis and let T = {t1, . . . , tn} be any other
transcendence basis, with n ≥ m. The set {t1, s1, . . . , sm} must then algebraically depen-
dent, since t1 ∈ L is algebraic over k(S), and since t1 is transcendental over k, some si, say s1,
must be algebraic over k(t1, s2, . . . , sm). It follows that L is algebraic over k(t1, s2, . . . , sm),
and the set T1 = {t1, s2, . . . , sm} must be algebraically independent, otherwise it would
contain a transcendence basis for L/k smaller than S. So T1 is a transcendence basis for
L/k of cardinality m that contains t1.

Continuing in this fashion, for i = 2, . . . ,m we can iteratively construct transcendence
bases Ti of cardinality m that contain {t1, . . . , ti}, until Tm ⊆ T is a transcendence basis of
cardinality m; but then we must have Tm = T , so n = m.

Definition 4.35. The transcendence degree of a field extension L/K is the cardinality of
any (hence every) transcendence basis for L/k.

Unlike extension degrees, which multiply in towers, transcendence degrees add in towers:
for any fields k ⊆ L ⊆M , the transcendence degree of M/k is the sum (as cardinals) of the
transcendence degrees of M/L and L/k.

We say that the extension L/k is purely transcendental if L = k(S) for some transcen-
dence basis S for L/k. All purely transcendental extensions of k with the same transcendence
degree are isomorphic. Every field extension L/k can be viewed as an algebraic extension
of a purely transcendental extension: if S is a transcendence basis of L/k then L/k(S) is an
algebraic extension of the purely transcendental extension k(S)/k.

Remark 4.36. It is not the case that every field extension is a purely transcendental
extension of an algebraic extension; indeed, most function fields are counterexamples.
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The field extension L/k is said to be simple if L = k(x) for some x ∈ L. A purely
transcendental extension of transcendence degree 1 is obviously simple, but, less trivially, so
is any finite separable extension (see below for the definition of separable); this is known as
the primitive element theorem.

Remark 4.37. The notation k(x) can be slightly confusing. If x ∈ L is transcendental
over k then k(x) is isomorphic to the field of rational functions over k, in which case we may
as well regard x as a variable. But if x ∈ L is algebraic over k, then every rational expression
r(x) with nonzero denominator can be simplified to a polynomial in x of degree less than
n = [k(x) : k] by reducing modulo the minimal polynomial f of x (note that we can invert
nonzero denominators modulo f); indeed, this follows from the fact that {1, x, . . . , xn−1} is
a basis for the n-dimensional k-vector space k(x).

4.6.1 Algebraic extensions

We now assume that L/k is algebraic and fix k̄ so that L ∈ k̄. The extension L/k is normal
if it satisfies either of the equivalent conditions:

• every irreducible polynomial in k[x] with a root in L splits completely in L;
• σ(L) = L for all σ ∈ Aut(k/k) (every automorphism of k that fixes k also fixes L).5

Even if L/k is not normal, there is always an algebraic extension M/L for which M/k is
normal. The minimal such extension is called the normal closure of L/k; it exists because
intersections of normal extensions are normal. It is not true in general that if L/k and M/L
are normal extensions then so is M/k, but if k ⊆ L ⊆ M is a tower of fields with M/k
normal, then M/L is normal (but L/k need not be).
A polynomial f ∈ k[x] is separable if any of the following equivalent conditions hold:

• the factors of f in k̄[x] are all distinct;
• f and f ′ have no common root in k̄;
• gcd(f, f ′) = 1 in k[x].

An element α ∈ L is separable over k if any of the following equivalent conditions hold:

• α is a root of a separable polynomial f ∈ k[x];
• the minimal polynomial of α is separable;
• char(k) = 0 or char(k) = p > 0 and the minimal polynomial of α is not of the form
g(xp) for some g ∈ k[x].

The elements of L that are separable over k form a field called the separable closure of k
in L. The separable closure of k in its algebraic closure k̄ is denoted ksep and is simply called
the separable closure of k. If k ⊆ L ⊆ M then M/k is separable if and only if both M/L
and L/k are separable.

Definition 4.38. A field k is perfect if any of the following equivalent conditions hold:

• char(k) = 0 or char(k) = p > 0 and k = {xp : x ∈ k} (k is fixed by Frobenius);
• every finite extension of k is separable over k;
• every algebraic extension of k is separable over k.

5Some authors write Gal(L/k) for Aut(L/k), others only use Gal(L/k) when L/k is known to be Galois;
we will use the latter convention.
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It is clear from the definition that finite fields and all fields of characteristic 0 are perfect,
which includes most of the fields of interest to us in this course.

Example 4.39. The rational function field k = Fp(t) is not perfect. If we consider the finite
extension L = k(t1/p) obtained by adjoining a pth root of t to k, the minimal polynomial of
t1/p is xp − t, which is irreducible over k but not separable (its derivative is 0).

Definition 4.40. An algebraic extension L/k is Galois if it is both normal and separable,
in which case we call Gal(L/k) = Aut(L/k) the Galois group of L/k.

The extension ksep/k is always normal: if an irreducible polynomial f ∈ k[x] has a root
α in ksep, then (up to scalars) f is the minimal polynomial of α over k, hence separable
over k, so all its roots lie in ksep. Thus ksep/k is a Galois extension and its Galois group

Gk := Gal(ksep/k)

is the absolute Galois group of k (we could also define Gk as Aut(k̄/k), since the restriction
map from Aut(k̄/k) to Gal(ksep/k) is an isomorphism).

The splitting field of a polynomial f ∈ k[x] is the extension of k obtained by adjoining
all the roots of f (which lie in k̄). Every splitting field is normal, and every finite normal
extension of k is the splitting field of some polynomial over k; when k is a perfect field we
can go further and say that L/k is a finite Galois extension if and only if it is the splitting
field of some polynomial over k.

For finite Galois extensions M/k we always have #Gal(M/k) = [M : k], and the fun-
damental theorem of Galois theory gives an inclusion-reversing bijection between subgroups
H ⊆ Gal(M/k) and intermediate fields k ⊆ L ⊆M in which L =MH and H = Gal(M/L)
(note that M/L is necessarily Galois). Beware that none of the statements in this paragraph
necessarily apply to infinite Galois extensions; modifications are required.6

4.7 Algebraic sets

Let k be a perfect field and fix an algebraic closure k̄.

Definition 4.41. The n-dimensional affine space An = An
k over k is the set

An := {(x1, . . . , xn) ∈ k̄n},

equivalently, An is the vector space k̄n regarded as a set. When k is clear from context we
may just write An. If k ⊆ L ⊆ k̄, the set of L-rational points (or just L-points) in An is

An(L) = {(x1, . . . , xn) ∈ Ln} = An(k̄)GL ,

where An(k̄)GL denotes the set of points in An(k̄) fixed by GL := Gal(Lsep/L). In particular,
An(k) = An(k̄)Gk .

Definition 4.42. If S is a set of polynomials in k̄[x1, . . . , xn], the set of points

ZS := {P ∈ An : f(P ) = 0 for all f ∈ S},

is called an (affine) algebraic set. If k ⊆ L ⊆ k̄, the set of L-rational points in ZS is

ZS(L) = ZS ∩ An(L).

When S is a singleton {f} we may write Zf in place of Z{f}.
6See Section 26.3 in the 18.785 Lecture notes for more details on infinite Galois extensions.
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Note that if I is the k̄[x1, . . . , xn]-ideal generated by S, then ZI = ZS , since f(P ) =
g(P ) = 0 implies (f + g)(P ) = 0 and f(P ) = 0 implies (fg)(P ) = 0. Thus we can always
replace S by the ideal (S) that it generates, or by any set of generators for (S).

Example 4.43. We have Z∅ = Z(0) = An and Z{1} = Z(1) = ∅.

For any S, T ⊆ A we have

S ⊆ T =⇒ ZT ⊆ ZS ,

but the converse need not hold, even if S and T are ideals: consider T = (x1) and S = (x21).
We now recall the notion of a noetherian ring and the Hilbert basis theorem.

Definition 4.44. A commutative ring R is noetherian if every R-ideal is finitely generated.7

Equivalently, every infinite ascending chain of R-ideals

I1 ⊆ I2 ⊆ · · ·

eventually stabilizes, that is, In+1 = In for all sufficiently large n.

Theorem 4.45 (Hilbert basis theorem). If R is a noetherian ring, then so is R[x].

Proof. See [1, Theorem 14.6.7] or [3, Theorem 8.32].

Note that we can apply the Hilbert basis theorem repeatedly: if R is noetherian then
so is R[x1], and so is (R[x1])[x2] = R[x1, x2], . . . , and so is R[x1, . . . , xn]. Like every field,
k̄ is a noetherian ring (it has just two ideals, so it certainly satisfies the ascending chain
condition). Thus A = k̄[x1, . . . , xn] is noetherian, so every A-ideal is finitely generated. It
follows that every algebraic set can be written in the form ZS with S finite.

Definition 4.46. For an algebraic set Z ⊆ An, the ideal of Z is the set

I(Z) = {f ∈ k̄[x1, . . . , xn] : f(P ) = 0 for all P ∈ Z}.

The set I(Z) is clearly an ideal, since it is closed under addition and under multiplication
by elements of k̄[x1, . . . , xn], and we note that

Y ⊆ Z =⇒ I(Z) ⊆ I(Y )

and
I(Y ∪ Z) = I(Y ) ∩ I(Z)

(both statements are immediate from the definition).
We have Z = ZI(Z) for every algebraic set Z, but it is not true that I = I(ZI) for every

ideal I. As a counterexample, consider I = (f2) for some polynomial f ∈ A. In this case

I(Z(f2)) = (f) ̸= (f2).

In order to avoid this situation, we want to restrict our attention to radical ideals.

Definition 4.47. Let R be a commutative ring. For any R-ideal I we define
√
I = {x ∈ R : xr ∈ I for some integer r > 0},

and say that I is a radical ideal if I =
√
I.

7The term “noetherian” refers to the German mathematician Emmy Noether.
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Lemma 4.48. For any ideal I in a commutative ring R, the set
√
I is an ideal.

Proof. Let x ∈
√
I with xr ∈ I. For any y ∈ R we have yrxr = (xy)r ∈ I, so xy ∈

√
I. If

y ∈
√
I with ys ∈ I, then every term in the sum

(x+ y)r+s =
∑
i

(
r + s

i

)
xiyr+s−i

is a multiple of either xr ∈ I or ys ∈ I, hence lies in I, so (x+y)r+s ∈ I and (x+y) ∈
√
I.

Theorem 4.49 (Hilbert’s Nullstellensatz ). For every ideal I ⊆ k̄[x1, . . . , xn] we have

I(ZI) =
√
I.

Proof. See [4, Theorem 7.1].

Nullstellensatz literally means “zero locus theorem”. Theorem 4.49 is the strong form of
the Nullstellensatz ; it implies the weak Nullstellensatz.

Theorem 4.50 (weak Nullstellensatz ). For any ideal I ⊊ k̄[x1, . . . , xn], the variety ZI is
nonempty.

Proof. Suppose I is an ideal for which ZI is the empty set. Then I(ZI) = (1), and by the
strong Nullstellensatz,

√
I = (1). But then 1r = 1 ∈ I, so I = k̄[x1, . . . , xn].

Note the importance of working over the algebraic closure k̄. It is easy to find proper
ideals I for which ZI(k) = ∅ when k is not algebraically closed; consider Z(x2+y2+1)(Q) in
A2. A useful corollary of the weak Nullstellensatz is the following.

Corollary 4.51. The maximal ideals of the ring k̄[x1, . . . , xn] are all of the form

mP = (x1 − P1, . . . , xn − Pn)

for some point P = (P1, . . . , Pn) in An(k̄).

Proof. The evaluation map that sends f ∈ k̄[x1, . . . , xn] to f(P ) ∈ k̄ is a surjective ring
homomorphism with kernel mP . Thus k̄[x1, . . . , xn]/mP ≃ k̄ is a field, hence mP is a
maximal ideal. If m is any maximal ideal in k̄[x1, . . . , xn], then it is a proper ideal, and by
the weak Nullstellensatz the algebraic set Zm is nonempty and contains a point P ∈ An. So
I(Zm) ⊆ mP , but m ⊆ I(Zm) ⊆ mP is maximal, so m = mP .

We also have the following corollary of Hilbert’s Nullstellensatz.

Corollary 4.52. There is a one-to-one inclusion-reversing correspondence between radical
ideals I ⊆ k̄[x1, . . . , xn] and algebraic sets Z ⊆ An(k̄) in which I = I(Z) and Z = ZI .

Remark 4.53. It is hard to overstate the importance of Corollary 4.52; it is the basic fact
that underlies nearly all of algebraic geometry. It tells us that the study of algebraic sets
(geometric objects) is the same thing as the study of radical ideals (algebraic objects). It
also suggests ways in which we might generalize our notion of an algebraic set: there is no
reason to restrict ourselves to radical ideals in the ring k̄[x1, . . . , xn], there are many other
rings we might consider. This approach eventually leads to the more general notion of a
scheme, which is the fundamental object in modern algebraic geometry.
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Definition 4.54. An algebraic set is irreducible if it is nonempty and not the union of two
smaller algebraic sets.

Theorem 4.55. An algebraic set is irreducible if and only if its ideal is prime.

Proof. (⇒) Let Y be an irreducible algebraic set and suppose fg ∈ I(Y ) for some f, g ∈ A.
We will show that either f ∈ I(Y ) or g ∈ I(Y ) (and therefore I(Y ) is prime).

Y ⊆ Zfg = Zf ∪ Zg

= (Y ∩ Zf ) ∪ (Y ∩ Zg),

and since Y is irreducible we must have either Y = (Y ∩ Zf ) = Zf or Y = (Y ∩ Zg) = Zg,
hence either f ∈ I(Y ) or g ∈ I(Y ). Therefore I(Y ) is a prime ideal.

(⇐) Now suppose I(Y ) is prime and that Y = Y1 ∪Y2. We will show that either Y = Y1
or Y = Y2. This will show that Y is irreducible, since Y must be nonempty (I(Y ) ̸= A
because I(Y ) is prime). We have

I(Y ) = I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2) ⊇ I(Y1)I(Y2),

and therefore I(Y ) divides/contains either I(Y1) or I(Y2), since I(Y ) is a prime ideal, but
it is also contained in both I(Y1) and I(Y2), so either I(Y ) = I(Y1) or I(Y ) = I(Y2). Thus
either Y = Y1 or Y = Y2, since algebraic sets with the same ideal must be equal.
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