
18.783 Elliptic Curves
Lecture #3

Fall 2025
09/11/2025

3 Finite field arithmetic

In order to perform explicit computations with elliptic curves over finite fields, we first
need to understand how to compute in finite fields. In many of the applications we will
consider, the finite fields involved will be quite large, so it is important to understand the
computational complexity of finite field operations. This is a huge topic, one to which an
entire course could be devoted, but we will spend just one or two lectures on this topic,
with the goal of understanding the most commonly used algorithms and analyzing their
asymptotic complexity. This will force us to omit many details, but references to the relevant
literature will be provided for those who want to learn more.

Our first step is to fix an explicit representation of finite field elements. This might seem
like a technical detail, but it is actually quite crucial; questions of computational complexity
are meaningless otherwise.

Example 3.1. By Theorem 3.12 below, the multiplicative group of a finite field Fq is cyclic.
One way to represent the nonzero elements of a finite field is as explicit powers of a fixed
generator, in which case it is enough to know the exponent, an integer in [0, q−2]. With this
representation multiplication and division are easy, solving the discrete logarithm problem
is trivial, but addition is costly (not known to be polynomial-time). We will instead choose
a representation that makes addition (and subtraction) very easy, multiplication slightly
harder but still easy, division slightly harder than multiplication but still easy (all these
operations take quasi-linear time). But solving the discrete logarithm problem will be hard
(no polynomial-time algorithm is known).

For the sake of brevity, we will focus primarily on finite fields of large characteristic, and
prime fields in particular, although the algorithms we describe will work in any finite field
of odd characteristic (most will also work in characteristic 2). Fields of characteristic 2 are
quite important in many applications (coding theory in particular), and there are specialized
algorithms that are optimized for such fields, but we will not address them here.1

3.1 Finite fields

We begin with a quick review of some basic facts about finite fields, all of which are straight-
forward but necessary for us to establish a choice of representation; we will also need them
when we discuss algorithms for factoring polynomials over finite fields. Those already famil-
iar with this material should feel free to skim this section.

Definition 3.2. For each prime p we define Fp to be the quotient ring Z/pZ.

Theorem 3.3. The ring Fp is a field, and every field of characteristic p contains a canonical
subfield isomorphic to Fp. In particular, all fields of cardinality p are isomorphic.

Proof. To show that the ring Fp = Z/pZ is a field we just need to show that every nonzero
element is invertible. If [a] := a+ pZ is a nontrivial coset in Z/pZ then a and p are coprime
and (a, p) = (1) is the unit ideal. Therefore ua+vp = 1 for some u, v ∈ Z with ua ≡ 1 mod p,
so [u][a] = [1] in Z/pZ and [a] is invertible. To justify the second claim, note that in any
field of characteristic p the subring generated by 1 is isomorphic to Z/pZ = Fp, and this
subring is clearly unique (any other must also contain 1), hence canonical.

1The recent breakthrough in computing discrete logarithms in finite fields of small characteristic in quasi-
polynomial time [1] has greatly diminished the enthusiasm for using such fields in cryptographic applications.

Lecture by Andrew Sutherland

The most common way to represent Fp for computational purposes is to pick a set of
unique coset representatives for Z/pZ, such as the integers in the interval [0, p− 1].

Definition 3.4. For each prime power q = pn we define Fq = Fpn to be the field extension
of Fp generated by adjoining all roots of xq − x to Fp (the splitting field of xq − x over Fp).
Equivalently, Fq := Fp

σq is the subfield of the algebraic closure of Fp fixed by the q-power
Frobenius automorphism σq : x 7→ xq.

Remark 3.5. We note that this definition makes sense for n = 1, with q = p: the polynomial
xp − x splits completely over Fp, and Fp is the subfield of Fp fixed by σp.

Theorem 3.6. Let q = pn be a prime power. The field Fq has cardinality q and every field
of cardinality q is (non-canonically) isomorphic to Fq.

Proof. The map x 7→ xq = xp
n is an automorphism σq of Fq, since in characteristic p we

have
(a+ b)p

n
= ap

n
+ bp

n
and (ab)p

n
= ap

n
bp

n
,

where the first identity follows from the binomial theorem:
(
pn

r

)
≡ 0 mod p for 0 < r < pn.

Let k := Fσq
q be the subfield of Fq fixed by σq. We have Fp ⊆ k, since

(1 + · · ·+ 1)q = 1q + · · ·+ 1q = 1 + · · ·+ 1,

and it follows that Fq ⊆ k, since σq fixes Fp and every root of xq − x, and therefore k = Fq.
The polynomial xq−x has no roots in common with its derivative (xq−x)′ = qxq−1−1 = −1,
so it has q distinct roots, which are precisely the elements of Fq (they lie in Fq by definition,
and every element of Fq = Fσq

q is fixed by σq and therefore a root of xq − x).
Now let k be a field of cardinality q = pn. Then k must have characteristic p, since

the set {1, 1 + 1, . . .} is a subgroup of the additive group of k, so the characteristic divides
#k = pn, and in a finite ring with no zero divisors the characteristic must be prime. By
Theorem 3.3, the field k contains Fp. The order of each α ∈ k× divides #k× = q − 1; thus
αq−1 = 1 for all α ∈ k×, so every α ∈ k, including α = 0, is a root of xq − x. It follows
that k is isomorphic to a subfield of Fq, and #k = #Fq, so k ≃ Fq (this isomorphism is not
canonical because when q is not prime there are many ways to embed k in Fq).

Remark 3.7. Now that we know all finite fields of cardinality q are isomorphic, we will feel
free to refer to any and all of them as the finite field Fq, with the understanding that there
are many ways to represent Fq and we will need to choose one of them.

Theorem 3.8. The finite field Fpm is a subfield of Fpn if and only if m divides n.

Proof. If Fpm ⊆ Fpn then Fpn is an Fpm-vector space of (integral) dimension n/m, so m|n.
If m|n then pn − pm = (pm − 1)(pn−m + pn−2m + · · ·+ p2m + pm) is divisible by pm − 1 and

xp
n − x = (xp

m − x)(1 + xp
m−1 + x2(p

m−1) + · · ·+ xp
n−pm)

is divisible by xp
m−x. Thus every root of xpm−x is also a root of xpn−x, so Fpm ⊆ Fpn .

Theorem 3.9. For any irreducible f ∈ Fp[x] of degree n > 0 we have Fp[x]/(f) ≃ Fpn.

Proof. The ring k := Fp[x]/(f) is an Fp-vector space with basis 1, x, . . . , xn−1 and therefore
has dimension n and cardinality pn. The ring Fp[x] is a principal ideal domain and f
is irreducible and not a unit, so (f) is a maximal ideal and Fp[x]/(f) is a field with pn

elements, hence isomorphic to Fpn by Theorem 3.6.

18.783 Fall 2025, Lecture #3, Page 2

Theorem 3.9 allows us to explicitly represent Fpn as Fp[x]/(f) using any irreducible
polynomial f ∈ Fp[x] of degree n, and it does not matter which f we pick; by Theorem 3.6
we always get the same field (up to isomorphism). We also note the following corollary.

Corollary 3.10. Every irreducible f ∈ Fp[x] of degree n splits completely in Fpn.

Proof. We have Fp[x]/(f) ≃ Fpn , so every root of f is a root of xpn − x and lies in Fpn .

Remark 3.11. This corollary implies that xp
n − x is the product over the divisors d|n of

all monic irreducible polynomials of degree d in Fp[x]. This can be used to derive explicit
formulas for the number of irreducible polynomials of degree d in Fp[x] using Möbius inver-
sion. It also implies that, even though we defined Fpn as the splitting field of xpn − x, it is
also the splitting field of every irreducible polynomial of degree n.

Theorem 3.12. Every finite subgroup of the multiplicative group of a field is cyclic.

Proof. Let k be a field, let G be a subgroup of k× of order n, and let m be the exponent
of G (the least common multiple of the orders of its elements), which necessarily divides n.
Every element of G is a root of xm − 1, which has at most m roots, so m = n. Every finite
abelian group contains an element of order equal to its exponent, so G contains an element
of order m = n = #G and is therefore cyclic.

Corollary 3.13. The multiplicative group of a finite field is cyclic.

If α is a generator for the multiplicative group F×
q , then it generates Fq as an extension

of Fp, that is, Fq = Fp(α), and we have Fq ≃ Fp[x]/(f), where f ∈ Fp[x] is the minimal
polynomial of α, but the converse need not hold. This motivates the following definition.

Definition 3.14. A monic irreducible polynomial f ∈ Fp[x] whose roots generate the mul-
tiplicative group of the finite field Fp[x]/(f) is called a primitive polynomial.

Theorem 3.15. For every prime p and positive integer n there exist primitive polynomials
of degree n in Fp[x]. Indeed, the number of such polynomials is ϕ(pn − 1)/n.

Here ϕ(m) is the Euler function that counts the generators of a cyclic group of order m,
equivalently, the number of integers in [1,m− 1] that are relatively prime to m.

Proof. Let α be a generator for F×
pn with minimal polynomial fα ∈ Fp[x]; then fα is primitive.

There are ϕ(pn−1) possible choices for α. Conversely, if f ∈ Fp[x] is a primitive polynomial
of degree n then each of its n roots is a generator for F×

q . We thus have a surjective n-to-1
map α→ fα from the set of generators of F×

pn to the set of primitive polynomials over Fp of
degree n; the theorem follows.

The preceding theorem implies that there are plenty of irreducible (and even primitive)
polynomials f ∈ Fp[x] that we can use to represent Fq = Fp[x]/(f) when q is not prime. The
choice of the polynomial f has some impact on the cost of reducing polynomials in Fp[x]
modulo f ; ideally we would like f to have as few nonzero coefficients as possible. We can
choose f to be a binomial whenever its degree divides p− 1, and we can usually (although
not always) choose f to be a trinomial; see [8]. Finite fields in cryptographic standards are
often specified using an f ∈ Fp[x] that makes reduction modulo f particularly efficient.

For mathematical purposes it is more useful to fix a universal choice of primitive polyno-
mials once and for all; this simplifies the task of migrating data from one computer algebra

18.783 Fall 2025, Lecture #3, Page 3

system to another, as well as the restoration of archived data. One way to do this is to take
the lexicographically minimal primitive polynomial fp,n ∈ Fp[x] of each degree n, where we
represent monic fp,n(x) =

∑
aix

n−i as a sequence of integers (1, a1, . . . , an) with 0 ≤ ai < p.
There are two downsides to this simple-minded approach. First (and most significantly),

we would like to be able to easily embed Fpm in Fpn when m|n, which means that if α is a
root of fp,n(x) then we really want α(pn−1)/(pm−1) to be a root of fp,m(x), including when
m = 1. Secondly (and less significantly), we would like the root r of fp,1 = x− r to be the
least primitive root modulo p, which will not be the case if we use the lexicographic ordering
defined above, but will be the case if we tweak our sign convention and take (1, a1, . . . , an) to
represent the polynomial xn−a1x

n−1+ · · ·+(−1)nan with terms (−1)iaixn−i. This leads to
the following recursive definition due to Richard Parker (named in honor of John Conway).

Definition 3.16. Order polynomials f(x) = xn− a1x
n−1+ · · ·+(−1)nan ∈ (Z/pZ)[x] with

0 ≤ ai < p according to the lexicographic order on integer sequences (1, a1, . . . , an). For
each prime p and n > 0 the Conway polynomial fp,n(x) is defined by:

• For n = 1, let fp,1(x) := x−r, where r is the least positive integer generating (Z/pZ)×;

• For n > 1, let fp,n(x) be the least primitive polynomial of degree n such that for every
0 < m < n dividing n and every root α of fp,m(x) we have fp,n(α

(pn−1)/(pm−1)) = 0.

That fp,n(x) exists is a straightforward proof by induction that we leave as an exercise.

Conway polynomials are now used by most computer algebra systems, including GAP,
Magma, Macaulay2, and SageMath. One downside to their recursive definition is that it is
quite time consuming to compute any particular Conway polynomial on demand; instead,
each of these computer algebra systems includes a list of precomputed Conway polynomials.
The key point is that, even in a post-apocalyptic scenario where all these tables are lost,
they can all be readily reconstructed from the succinct definition above.

Having fixed a representation for Fq, every finite field operation can ultimately be reduced
to integer arithmetic: elements of Fp are represented as integers in [0, p−1], and elements of
Fq = Fp[x]/(f) are represented as polynomials of degree less than deg f whose coefficients
are integers in [0, p− 1].

Before leaving our review of finite fields, we want to recall one other key fact about finite
fields, which is that every finite field Fq is a Galois extension of its prime field Fp, and the
Galois group Gal(Fq/Fp) is cyclic of order [Fq : Fp], generated by the p-power Frobenius
automorphism σp : x 7→ xp. This follows immediately from our definition of Fq as the
splitting field of xq − x over Fp, provided we know that Fq/Fp is Galois. This follows from
the fact that xq − x is a separable polynomial.

Definition 3.17. Let k be a field and let f =
∑

fix
i ∈ k[x] be a polynomial. We say that

f is separable if any of the following equivalent conditions hold:

• f has deg f distinct roots in any algebraic closure k̄ of k;

• f is squarefree over every extension of k;

• gcd(f, f ′) is a unit in k[x], where f ′
i :=

∑
ifix

i−1 denotes the formal derivative of f .

A polynomial that is not separable is said to be inseparable.

Remark 3.18. We will typically write gcd(f, f ′) = 1 to indicate that gcd(f, f ′) is a unit.
The gcd of two elements in a ring is defined only up to units (if a divides b and c then so

18.783 Fall 2025, Lecture #3, Page 4

does ua for any unit u), and in a principal ideal domain it is standard to take gcd(a, b) to
be a unique representative of the ideal (a, b). For the ring Z there is a unique positive repre-
sentative (the only units are ±1), and in the ring k[x] there is a unique monic representative
(units are elements of k×).

Remark 3.19. Some older textbooks (notably including Bourbaki) define a polynomial
to be separable if its irreducible factors are separable, which would make polynomials like
(x − 1)2 separable, but for us this is not a separable polynomial. On the other hand, it is
clear that if a polynomial f is separable under our definition, then all its irreducible factors
are separable, since if f has distinct roots in k̄ then so does every divisor of f .

Lemma 3.20. An irreducible polynomial f ∈ k[x] is inseparable if and only if f ′ = 0.

Proof. Let f ∈ k[x] be irreducible. Then f is nonzero and not a unit. If f ′ = 0 then
gcd(f, f ′) = f is not a unit and f is inseparable. If f is inseparable then g = gcd(f, f ′) is a
nonconstant divisor of f and f ′, and if f ′ is nonzero then deg g ≤ deg f ′ < deg f , which is
impossible because f is irreducible.

The polynomial xq − x is separable because

gcd(xq − x, (xq − x)′) = gcd(xq − x,−1) = 1,

and it follows that its splitting field over Fp is a Galois extension of Fp (this is the basic
tenet of Galois theory: splitting fields of separable polynomials f ∈ k[x] are finite Galois
extensions of k, and every finite Galois extension of k is the splitting field of some separable
polynomial f ∈ k[x]). An important consequence of this fact is that finite fields are perfect.

Definition 3.21. A field k is perfect if every irreducible polynomial in k[x] is separable,
equivalently, has a nonzero derivative.

Fields of characteristic zero are always perfect, since there is no way for the derivative of
a nonconstant polynomial to be zero in such fields. Fields of positive characteristic p need
not be perfect (we will see many examples of this in later lectures), but finite fields are.

Theorem 3.22. Finite fields are perfect.

Proof. Let f =
∑

i fix
i be an irreducible polynomial in Fq[x], and let

g :=
∏

σ∈Gal(Fq/Fp)

fσ,

where fσ :=
∑

i σ(fi)x
i. Let Fp be the prime field of Fq. We have g ∈ Fp[x], since it is

invariant under the action of Gal(Fq/Fp), and it is irreducible in Fp[x] since any non-trivial
factor of g in Fp[x] would also be a non-trivial factor in Fq[x], none of which are invariant
under the action of Gal(Fq/Fp) (note that each fσ is irreducible in Fq[x]). Now f |g, so if g
is separable then f is separable, which means that if Fp is perfect then so is Fq.

Let g =
∑

i gix
i. If g is inseparable then g′ =

∑
i igix

i−1 = 0, which implies that gi = 0
for i not divisible by p, meaning that g = h(xp) for some h ∈ Fp[x]. But this cannot be the
case because h(xp) = h(x)p is not irreducible.

18.783 Fall 2025, Lecture #3, Page 5

3.2 Integer addition

Every nonnegative integer a has a unique binary representation a =
∑n−1

i=0 ai2
i with ai ∈

{0, 1} and an−1 ̸= 0. The binary digits ai are called bits, and we say that a is an n-bit
integer ; we can represent negative integers by including an additional sign bit.

To add two integers in their binary representations we apply the “schoolbook" method,
adding bits and carrying as needed. For example, we can compute 43+37=80 in binary as

101111

101011
+100101
1010000

The carry bits are shown in red. To see how this might implemented in a computer,
consider a 1-bit adder that takes two bits ai and bi to be added, along with a carry bit ci.

1-bit
adder

ai bi

ci ci+1

si

ci+1 = (ai ∧ bi) ∨ (ci ∧ ai) ∨ (ci ∧ bi)

si = ai ⊗ bi ⊗ ci

The symbols ∧, ∨, and ⊗ denote the boolean functions AND, OR, and XOR (exclusive-or)
respectively, which we may regard as primitive components of a boolean circuit. By chaining
n + 1 of these 1-bit adders together, we can add two n-bit numbers using 7n + 7 = O(n)
boolean operations on individual bits.

Remark 3.23. Chaining adders is known as ripple addition and is no longer commonly used,
since it forces a sequential computation. In practice more sophisticated methods such as
carry-lookahead are used to facilitate parallelism. This allows most modern microprocessors
to add two 64 (or even 128) bit integers in a single clock cycle, and with the SIMD (Single
Instruction Multiple Data) instruction sets available on newer AMD and Intel processors,
one may be able to perform four (or even eight) 64 bit additions in a single clock cycle.

We could instead represent the same integer a as a sequence of words rather than bits.
For example, write a =

∑k−1
i=0 ai2

64i, where k =
⌈ n

64

⌉
. We may then add two integers using

a sequence of O(k), equivalently, O(n), operations on 64-bit words. Each word operation
is ultimately implemented as a boolean circuit that involves operations on individual bits,
but since the word-size is fixed, the number of bit operations required to implement any
particular word operation is a constant. So the number of bit operations is again O(n), and
if we ignore constant factors it does not matter whether we count bit or word operations.

Subtraction is analogous to addition (now we need to borrow rather than carry), and
has the same complexity, so we will not distinguish these operations when analyzing the
complexity of algorithms. With addition and subtraction of integers, we have everything we
need to perform addition and subtraction in a finite field. To add two elements of Fp ≃ Z/pZ
that are uniquely represented as integers in the interval [0, p− 1] we simply add the integers
and check whether the result is greater than or equal to p; if so we subtract p to obtain a
value in [0, p− 1]. Similarly, after subtracting two integers we add p if the result is negative.

18.783 Fall 2025, Lecture #3, Page 6

The total work involved is still O(n) bit operations, where n = lg p is the number of bits
needed to represent a finite field element.

To add or subtract two elements of Fq ≃ (Z/pZ)[x]/(f) we simply add or subtract the
corresponding coefficients of the polynomials, for a total cost of O(d lg p) bit operations,
where d = deg f , which is again O(n) bit operations, if we put n = lg q = d lg p.

Theorem 3.24. The time to add or subtract two elements of Fq in our standard represen-
tation is O(n), where n = lg q is the size of a finite field element.

Remark 3.25. We will discuss the problem of reducing an integer modulo a prime p using
fast Euclidean division in the next lecture. But this operation is not needed to reduce the
sum or difference of two integers in [0, p−1] to a representative in [0, p−1]; it is faster (both
in theory and practice) to simply subtract or add p as required (at most once).

3.3 A quick refresher on asymptotic notation

Let f and g be two real-valued functions whose domains include the positive integers. The
big-O notation “f(n) = O(g(n))” is shorthand for the statement:

There exist constants c and N such that for all n ≥ N we have |f(n)| ≤ c|g(n)|.

This is equivalent to

lim sup
n→∞

|f(n)|
|g(n)|

<∞.

Warning 3.26. “f(n) = O(g(n))” is an abuse of notation; in words we would say f(n)
is O(g(n)), where the word “is” does not imply equality (e.g., “Aristotle is a man”), and
it is generally better to write this way. Symbolically, it would make more sense to write
f(n) ∈ O(g(n)), regarding O(g(n)) as a set of functions. Some do, but the notation f(n) =
O(g(n)) is far more common and we will occasionally use it in this course, with one caveat:
we will never write a big-O expression to the left of the equal sign. It may be true that
f(n) = O(n log n) implies f(n) = O(n2), but we avoid writing O(n log n) = O(n2) because
O(n2) ̸= O(n log n).

We also have big-Ω notation “f(n) = Ω(g(n))”, which means g(n) = O(f(n)),2 as well
as little-o notation “f(n) = o(g(n)),” which is shorthand for

lim
n→∞

|f(n)|
|g(n)|

= 0.

An alternative notation that is sometimes used is f ≪ g, but depending on the author this
may mean f(n) = o(g(n)) or f(n) = O(g(n)) (computer scientists tend to mean the former,
while number theorists usually mean the latter, so we will avoid this notation). There is also
a little-omega notation, but the symbol ω already has so many uses in number theory that
we will not burden it further (we can always use little-o notation instead). The notation
f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n)) both hold.

It is easy to see that the complexity of integer addition is Θ(n), since we have shown it is
O(n) and it is clearly Ω(n) because it takes this long to output n bits (in a Turing machine
model one can show that for most inputs the machine will have to write to Ω(n) cells on
the Turing tape, no matter what algorithm it uses).

2The Ω-notation originally defined by Hardy and Littlewood had a slightly weaker definition, but modern
usage generally follows our convention, which is due to Knuth.

18.783 Fall 2025, Lecture #3, Page 7

Warning 3.27. Don’t confuse a big-O statement with a big-Θ statement; the former implies
only an upper bound. If Alice has an algorithm that is O(2n) this does not mean that Alice’s
algorithm requires exponential time, and it does not mean that Bob’s O(n2) algorithm is
better; Alice’s algorithm could be O(n) for all we know. But if Alice’s algorithm is Ω(2n)
then we would definitely prefer to use Bob’s algorithm for all sufficiently large n.

Big-O notation can also be used for multi-variable functions: “f(m,n) = O(g(m,n))” is
shorthand for the statement:

There exist constants c and N such that for all m,n ≥ N we have |f(m,n)| ≤ c|g(m,n)|.

This statement is weaker than it appears. For example, it says nothing about the relationship
between f(m,n) and g(m,n) if we fix one of the variables. However, in virtually all of
the examples we will see it will actually be true that if we regard f(m,n) = fm(n) and
g(m,n) = gm(n) as functions of n with a fixed parameter m, we have fm(n) = O(gm(n)),
and similarly, fn(m) = O(gn(m)). In this situation one says that f(m,n) = O(g(m,n))
holds uniformly (in m and n).

So far we have spoken only of time complexity, but space complexity plays a crucial
role in many algorithms that we will see in later lectures. Space complexity measures the
amount of memory an algorithm requires; this can never be greater than its time complexity
(it takes time to use space), but it may be smaller. When we speak of “the complexity" of
an algorithm, we should really consider both time and space. An upper bound on the time
complexity is also an upper bound on the space complexity but it is often possible (and
desirable) to obtain a better bound for the space complexity.

For more information on asymptotic notation and algorithmic complexity, see [5].

Warning 3.28. In this class, unless explicitly stated otherwise, our asymptotic bounds
always count bit operations (as opposed to finite field operations, or integer operations).
When comparing complexity bounds found in the literature, one must be sure to understand
exactly what is being counted. For example, a complexity bound that counts operations in
finite fields may need to be converted to a bit complexity to get an accurate comparison,
and this conversion is going to depend on exactly which finite field operations are being used
and how the finite fields are represented. A lack of care in this regard has led to more than
one erroneous claim in the literature.

3.4 Integer multiplication

We now consider the problem of integer multiplication. Unlike addition, this is (still) an
open problem; it is widely believed that O(n log n) is the best possible, and this has even
been proved conditionally under various conjectures, but it is not known unconditionally,
and it is only very recently that O(n log n) was established as an upper bound.

Because we do not know the exact complexity of integer multiplication, it is common
practice to use the notation M(n) to denote the time to multiply two n-bit integers; this
allows us to state bounds for algorithms that depend on the complexity of integer multi-
plication in a way that does not depend on whatever the current state of the art is. This
convention has proved useful over the past two decades during which upper bounds on M(n)
have improved at least four times.

18.783 Fall 2025, Lecture #3, Page 8

3.4.1 Schoolbook method

Let us compute 37×43 = 1591 with the “schoolbook” method, using a binary representation.

101011
× 100101

101011
101011

+101011
11000110111

Multiplying individual bits is easy (just use an AND gate), but we need to do n2 bit mul-
tiplications, followed by n additions of n-bit numbers (suitably shifted). The complexity of
this algorithm is thus Θ(n2). This gives us the upper bound M(n) = O(n2). The only lower
bound known is the trivial one, M(n) = Ω(n), so one might hope to do better than O(n2),
and indeed we can.

3.4.2 Karatsuba’s algorithm

Before presenting Karatsuba’s algorithm, it is worth making a few remarks regarding its
origin. In the first half of the twentieth century it was widely believed that M(n) = Ω(n2);
indeed, no less a mathematician than Kolmogorov formally stated this conjecture in a 1956
meeting of the Moscow Mathematical Society [16, §5]. This conjecture was one of the topics
at a 1960 seminar led by Kolmogorov, with Karatsuba in attendance. Within the first week
of the seminar, Karatsuba was able to disprove the conjecture. Looking back on the event,
Karatsuba writes [16, §6]

After the next seminar I told Kolmogorov about the new algorithm and about
the disproof of the n2 conjecture. Kolmogorov was very agitated because this
contradicted his very plausible conjecture. At the next meeting of the seminar,
Kolmogorov himself told the participants about my method and at this point the
seminar was terminated.

Karatsuba’s algorithm is based on a divide-and-conquer approach. Rather than repre-
senting n-bit integers using n digits in base 2, we may instead write them in base 2n/2 and
may compute their product as follows

a = a0 + 2n/2a1,

b = b0 + 2n/2b1,

ab = a0b0 + 2n/2(a1b0 + b1a0) + 2na1b1,

As written, this reduces an n-bit multiplication to four multiplications of (n/2)-bit integers
and three additions of O(n)-bit integers (multiplying an intermediate result by a power of 2
can be achieved by simply writing the binary output “further to the left” and is effectively
free). However, as observed by Karatsuba one can use the identity

a0b1 + b0a1 = (a0 + a1)(b0 + b1)− a0b0 − a1b1

to compute a0b1 + b0a1 using just one multiplication in addition to computing the products
a0b0 and a1b1. By reusing the common subexpressions a0b0 and a1b1, we can compute ab

18.783 Fall 2025, Lecture #3, Page 9

using three multiplications and six additions (we count subtractions as additions). We can
use the same idea to recursively compute the three products a0b0, a1b1, and (a0+a1)(b0+b1);
this recursive approach yields Karatsuba’s algorithm.

If we let T (n) denote the running time of this algorithm, we have

T (n) = 3T (n/2) +O(n)

= O(nlg 3)

It follows that M(n) = O(nlg 3), where lg 3 := log2 3 ≈ 1.59.3

3.4.3 The Fast Fourier Transform (FFT)

The fast Fourier transform is widely regarded as one of the top ten algorithms of the twen-
tieth century [6, 10], and has applications throughout applied mathematics. Here we focus
on the discrete Fourier transform (DFT), and its application to multiplying integers and
polynomials, following the presentation in [9, §8]. It is actually more natural to address the
problem of polynomial multiplication first.

Let R be a commutative ring containing a primitive nth root of unity ω, by which we
mean that ωn = 1 and ωi − ωj is not a zero divisor for 0 ≤ i < j < n (when R is a field
this coincides with the usual definition). We shall identify the set of polynomials in R[x]
of degree less than n with the set of all n-tuples with entries in R. Thus we represent the
polynomial f(x) =

∑n−1
i=0 fix

i by its coefficient vector (f0, . . . , fn−1) ∈ Rn and may speak
of the polynomial f ∈ R[x] and the vector f ∈ Rn interchangeably.

The discrete Fourier transform DFTω : Rn → Rn is the R-linear map

(f0, . . . , fn−1)
DFTω−−−−→ (f(ω0), . . . , f(ωn−1)).

You should think of this map as a conversion between two types of polynomial representa-
tions: we take a polynomial of degree less than n represented by n coefficients (its coefficient-
representation) and convert it to a representation that gives its values at n known points
(its point-representation).

One can use Lagrange interpolation to recover the coefficient representation from the
point representation, but our decision to use values ω0, . . . , ωn−1 that are nth roots of unity
allows us to do this more efficiently. If we define the Vandermonde matrix

Vω :=



1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2n−2

1 ω3 ω6 · · · ω3n−3

...
...

... · · ·
...

1 ωn−1 ω2n−2 · · · ω(n−1)2


,

then DFTω(f) = Vωf
tr. Our assumption that none of the differences ωi−ωj is a zero divisor

in R ensures that the matrix Vω is invertible, and its inverse is simply 1
nVω−1 . It follows that

DFT−1
ω =

1

n
DFTω−1 .

3In general we shall use lgn to denote log2 n.

18.783 Fall 2025, Lecture #3, Page 10

Thus if we have an algorithm to compute DFTω we can use it to compute DFT−1
ω : just

replace ω by ω−1 = ωn−1 and multiply the result by 1
n .

We now define the cyclic convolution f ∗ g of two polynomials f, g ∈ Rn:

f ∗ g = fg mod (xn − 1).

Reducing the product on the right modulo xn−1 ensures that f ∗g is a polynomial of degree
less than n, thus we may regard the cyclic convolution as a map Rn×Rn → Rn. If h = f ∗g,
then hi =

∑
fjgk, where the sum is over j + k ≡ i mod n. If f and g both have degree less

than n/2, then f ∗ g = fg; thus the cyclic convolution of f and g can be used to compute
their product, provided that we make n big enough.

We also define the pointwise product f · g of two vectors in f, g ∈ Rn:

f · g = (f0g0, f1g1, . . . , fn−1gn−1).

We have now defined three operations on vectors in Rn: the binary operations of convolution
and pointwise product, and the unary operation DFTω. The following theorem relates these
three operations and is the key to the fast Fourier transform.

Theorem 3.29. DFTω(f ∗ g) = DFTω(f) ·DFTω(g).

Proof. Since f ∗ g = fg mod (xn − 1), we have

f ∗ g = fg + q · (xn − 1)

for some polynomial q ∈ R[x]. For every integer i from 0 to n− 1 we then have

(f ∗ g)(ωi) = f(ωi)g(ωi) + q(ωi)(ωin − 1)

= f(ωi)g(ωi),

where we have used (ωin − 1) = 0, since ω is an nth root of unity.

The theorem implies that if f and g are polynomials of degree less then n/2 then

fg = f ∗ g = DFT−1
ω

(
DFTω(f) ·DFTω(g)

)
. (1)

This identity allows us to multiply polynomials using the discrete Fourier transform. In
order to put this into practice, we need an efficient way to compute DFTω. This is achieved
by the following recursive algorithm.

Algorithm: Fast Fourier Transform (FFT)
Input: A positive integer n = 2k, a vector f ∈ Rn, and the vector (ω0, . . . , ωn−1) ∈ Rn.
Output: DFTω(f) ∈ Rn.

1. If n = 1 then return (f0) and terminate.

2. Write the polynomial f(x) in the form f(x) = g(x) + x
n
2 h(x), where g, h ∈ R

n
2 .

3. Compute the vectors r = g + h and s = (g − h) · (ω0, . . . , ω
n
2
−1) in R

n
2 .

4. Recursively compute DFTω2(r) and DFTω2(s) using (ω0, ω2, . . . , ωn−2).

5. Return the vector (r(ω0), s(ω0), r(ω2), s(ω2), . . . , r(ωn−2), s(ωn−2))

18.783 Fall 2025, Lecture #3, Page 11

Let T (n) be the number of operations in R used by the FFT algorithm. Then

T (n) = 2T (n/2) +O(n)

= O(n log n).

This shows that the FFT is fast (justifying its name); let us now prove that it is correct.

Theorem 3.30. The FFT algorithm outputs DFTω(f).

Proof. We must verify that the kth entry of the output vector is f(ωk), for 0 ≤ k < n. For
even k = 2i we have:

f(ω2i) = g(ω2i) + (ω2i)n/2h(ω2i)

= g(ω2i) + h(ω2i)

= r(ω2i).

For odd k = 2i+ 1 we have:

f(ω2i+1) =
∑

0≤j<n/2

fjω
(2i+1)j +

∑
0≤j<n/2

fn/2+jω
(2i+1)(n/2+j)

=
∑

0≤j<n/2

gjω
2ijωj +

∑
0≤j<n/2

hjω
2ijωinωn/2ωj

=
∑

0≤j<n/2

(gj − hj)ω
jω2ij

=
∑

0≤j<n/2

sjω
2ij

= s(ω2i),

where we have used the fact that ωn/2 = −1.

Corollary 3.31. Let R be a commutative ring containing a primitive nth root of unity, with
n = 2k, and assume 2 ∈ R×. We can multiply two polynomials in R[x] of degree less than
n/2 using O(n log n) operations in R.

Proof. From (1) we have

fg = DFT−1
ω (DFTω(f) ·DFTω(g)) =

1

n
DFTω−1(DFTω(f) ·DFTω(g))

and we note that n = 2k ∈ R× is invertible. We can compute ω0, . . . , ωn−1 using O(n) mul-
tiplications in R (this also gives us (ω−1)0, . . . , (ω−1)n−1). Computing DFTω and DFTω−1

via the FFT algorithm uses O(n log n) operations in R, computing the pointwise product of
DFTω(f) and DFTω(g) uses O(n) operations in R, and computing 1/n and multiplying a
polynomial of degree less than n by this scalar uses O(n) operations in R.

What about rings that do not contain an nth root of unity? By extending R to a new
ring R′ := R[ω]/(ωn − 1) we can obtain a formal nth root of unity ω, and one can then
generalize Corollary 3.31 to multiply polynomials in any ring R in which 2 is invertible using
O(n log n log log n) operations in R; see [9, §8.3] for details.

18.783 Fall 2025, Lecture #3, Page 12

The need for 2 to be invertible can be overcome by considering a 3-adic version of the
FFT algorithm that works in rings R in which 3 is invertible. For rings in which neither 2
nor 3 is invertible we instead compute 2kfg and 3mfg (just leave out the multiplication by
1/n at the end). Once we know both 2kfg and 3mfg we can recover the coefficients of fg by
using the Euclidean algorithm to compute u, v ∈ Z such that u2k + v3m = 1 and applying
u2kfg + v3mfg = fg.

3.5 Integer multiplication

To any positive integer a =
∑n−1

i=0 ai2
i we may associate the polynomial fa(x) =

∑n
i=0 aix

i ∈
Z[x], with ai ∈ {0, 1}, so that a = fa(2). We can then multiply positive integers a and b via

ab = fab(2) = (fafb)(2).

Note that the polynomials fa(x)fb(x) and fab(x) may differ (the former may have coefficients
greater than 1), but they take the same value at x = 2; in practice one typically uses base
264 rather than base 2 (the ai and bi are then integers in [0, 264 − 1]).

Applying the generalization of Corollary 3.31 noted above to the ring Z, Schönhage and
Strassen [19] obtain an algorithm to multiply two n-bit integers in time O(n log n log log n),
which gives us a new upper bound

M(n) = O(n log n log log n).

In 2007 Fürer [7] showed that this bound can been improved to

M(n) = O
(
n log n 2O(log∗n)

)
where log∗n denotes the iterated logarithm, which counts how many times the log function
must be applied to n before the result is less than or equal to 1. In 2016 Harvey, van der
Hoeven and Lecerf [15] proved the sharper bound

M(n) = O
(
n log n 8log

∗n
)
,

and in 2018 Harvey and van der Hoeven [12] further improved this to

M(n) = O
(
n log n 4log

∗n
)
.

In 2019 Harvey and van der Hoeven [14] announced the spectacular and long awaited result

M(n) = O (n log n) ,

which as far as asymptotics go, is almost certainly the final word on the matter.
The algorithms that enabled these improvements and even the original Schönhage–

Strassen algorithm are fairly intricate and purely of theoretical interest: in practice one
uses the “three primes” algorithm sketched below, which for integers with n ≤ 262 bits has a
“practical complexity” of O(n log n); this statement is mathematically meaningless but gives
a rough indication of how the running time increases as n varies in this bounded range. But
it is a great relief and convenience to know that the theoretical complexity now matches
the practical complexity, and that we can dispense with the “log log n” term you will find in
almost any literature that mentions the complexity of integer multiplication prior to 2020.

18.783 Fall 2025, Lecture #3, Page 13

3.5.1 Three primes FFT for integer multiplication

As noted above, the details of the Schoönhage and Strassen algorithm and its subsequent
improvements are rather involved. There is a much simpler approach that is used in practice
to multiply integers less than 22

62 ; this includes integers that would require 500 petabytes
(500,000 terabytes) to write down and is more than enough for any practical application
that is likely to arise in the near future. Let us briefly outline this approach.

Write the positive integers a, b < 22
62 that we wish to multiply in base 264 as a =

∑
ai2

64i

and b =
∑

bi2
64i, with 0 ≤ ai, bi < 264, and define the polynomials fa =

∑
aix

i ∈ Z[x] and
fb =

∑
bix

i ∈ Z[x] as above. Our goal is to compute fab(2
64) = (fafb)(2

64), and we note
that the polynomial fafb ∈ Z[x] has less than 262/64 = 256 coefficients, each of which is
bounded by 256264264 < 2184.

Rather than working over a single ring R we will use three finite fields Fp of odd char-
acteristic, where p is one of the primes

p1 := 71 · 257 + 1, p2 := 75 · 257 + 1, p3 := 95 · 257 + 1.

Note that if p is any of the primes p1, p2, p3, then F×
p is a cyclic group whose order p− 1 is

divisible by 257, which implies that Fp contains a primitive 257th root of unity ω; indeed,
for p = p1, p2, p3 we can use ω = ω1, ω2, ω3, respectively, where ω1 = 287, ω2 = 149, ω3 = 55.

We can thus use the FFT Algorithm above with R = Fp to compute fafb mod p for each
of the primes p ∈ {p1, p2, p3}. This gives us the values of the coefficients of fafb ∈ Z[x]
modulo three primes whose product p1p2p3 > 2189 is more than large enough to uniquely
recover the coefficients via the Chinese Remainder Theorem (CRT); the time to recover the
integer coefficients of fafb from their values modulo p1, p2, p3 is negligible compared to the
time to apply the FFT algorithm over these three fields. If a and b are significantly smaller,
say a, b ≤ 22

44 , a “one prime” approach suffices.

3.6 Kronecker substitution

We now note an important converse to the idea of using polynomial multiplication to multi-
ply integers: we can use integer multiplication to multiply polynomials. This is quite useful
in practice, as it allows us take advantage of very fast implementations of FFT–based integer
multiplication that are now widely available. If f is a polynomial in Fp[x], we can lift f

to f̂ ∈ Z[x] by representing its coefficients as integers in [0, p − 1]. If we then consider the
integer f̂(2m), where m = ⌈2 lg p+ lg(deg f + 1)⌉, the coefficients of f̂ will appear in the
binary representation of f̂(2m) separated by blocks of m−⌈lg p⌉ zeros. If g is a polynomial of
similar degree, we can easily recover the coefficients of ĥ = f̂ ĝ ∈ Z[x] in the integer product
N = f̂(2m)ĝ(2m); we then reduce the coefficients of ĥ modulo p to get h = fg. The key is
to make m large enough so that the kth block of m binary digits in N contains the binary
representation of the kth coefficient of ĥ.

This technique is known as Kronecker substitution, and it allows us to multiply two
polynomials of degree d in Fp[x] in time O(M(d(n + log d))), where n = log p. Typically
we have log d = O(n), in which case this simplifies to O(M(dn)) In particular, we can use
Kronecker substitution to multiply elements of Fq ≃ Fp[x]/(f) in time O(M(n)), where
n = log q, provided log deg f = O(log p).

Remark 3.32. When log d = O(n), if we make the standard assumption that M(n) grows
super-linearly then using Kronecker substitution is strictly faster (by more than any constant

18.783 Fall 2025, Lecture #3, Page 14

factor) than a layered approach that uses the FFT to multiply polynomials and then recur-
sively uses the FFT for the coefficient multiplications; this is because M(dn) = o(M(d)M(n)).

3.7 Euclidean division

Given integers a, b > 0, we wish to compute the unique integers q, r ≥ 0 for which

a = bq + r (0 ≤ r < b).

We have q = ⌊a/b⌋ and r = a mod b. It is enough to compute q, since we can then compute
r = a − bq. To compute q, we determine a sufficiently precise approximation c ≈ 1/b and
obtain q by computing ca and rounding down to the nearest integer.

We recall Newton’s method for finding the root of a real-valued function f(x). We
start with an initial approximation x0, and at each step, we refine the approximation xi
by computing the x-coordinate xi+1 of the point where the tangent line through (xi, f(xi))
intersects the x-axis, via

xi+1 := xi −
f(xi)

f ′(xi)
.

To compute c ≈ 1/b, we apply this to f(x) = 1/x− b, using the Newton iteration

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

1
xi
− b

− 1
x2
i

= 2xi − bx2i .

As an example, let us approximate 1/b = 1/123456789. For the sake of illustration we
work in base 10, but in an actual implementation would use base 2, or base 2w, where w is
the word size.

x0 = 1× 10−8

x1 = 2(1× 10−8)− (1.2× 108)(1× 10−8)2

= 0.80× 10−8

x2 = 2(0.80× 10−8)− (1.234× 108)(0.80× 10−8)2

= 0.8102× 10−8

x3 = 2(0.8102× 10−8)− (1.2345678× 108)(0.8102× 10−8)2

= 0.81000002× 10−8.

Note that we double the precision we are using at each step, and each xi is correct up to an
error in its last decimal place. The value x3 suffices to correctly compute ⌊a/b⌋ for a ≤ 1015.

To analyze the complexity of this approach, let us assume that b has n bits and a has
at most 2n bits; this is precisely the situation we will encounter when we wish to reduce
the product of two integers in [0, p− 1] modulo p. During the Newton iteration to compute
c ≈ 1/b, the size of the integers involved doubles with each step, and the cost of the arithmetic
operations grows at least linearly. The total cost is thus at most twice the cost of the last
step, which is M(n) + O(n); note that all operations can be performed using integers by
shifting the operands appropriately. Thus we can compute c ≈ 1/b in time 2M(n) + O(n).
We can then compute ca ≈ a/b, round to the nearest integer, and compute r = a− bq using
at most 4M(n) +O(n) bit operations.

With a slightly more sophisticated version of this approach it is possible to compute r
in time 3M(n) +O(n), and if we expect to repeatedly perform Euclidean division with the

18.783 Fall 2025, Lecture #3, Page 15

same denominator we can further reduce this to 2M(n) + O(n) by precomputing c ≈ 1/b.
This approach is exploited by two widely used approaches to modular arithmetic, Barrett
reduction (see [4, Alg. 10.17]) and Montgomery reduction (see Problem Set 1). Regardless
of the approach taken, we obtain the following bound for multiplication in Fp using our
standard representation as integers in [0, p− 1].

Theorem 3.33. The time to multiply two elements of Fp is O(M(n)), where n = lg p.

There is an analogous version of this algorithm above for polynomials that uses the exact
same Newton iteration xi+1 = 2xi − bx2i , where b and the xi are now polynomials. Rather
than working with Laurent polynomials (the polynomial version of approximating a rational
number with a truncated decimal expansion), it is simpler to reverse the polynomials and
work modulo a sufficiently large power of x, doubling the power of x with each Newton
iteration. More precisely, we have the following algorithm, which combines Algorithms 9.3
and 9.5 from [9]. For any polynomial f(x) we write rev f for the polynomial xdeg ff(1x); this
simply reverses the coefficients of f .

Algorithm 3.34 (Fast Euclidean division of polynomials). Given a, b ∈ Fp[x] with b monic,
compute q, r ∈ Fp[x] such that a = qb+ r with deg r < deg b as follows:

1. If deg a < deg b then return q = 0 and r = a.

2. Let m = deg a− deg b and k = ⌈lgm+ 1⌉.
3. Let f = rev(b) (reverse the coefficients of b).

4. Compute g0 = 1, gi = (2gi−1 − fg2i−1) mod x2
i for i from 1 to k.

(this yields fgk ≡ 1 mod xm+1).

5. Set s = rev(a)gk mod xm+1 (now rev(b)s ≡ rev(a) mod xm+1).

6. Return q = xm−deg s rev(s) and r = a− bq.

As in the integer case, the work is dominated by the last iteration in step 4, which involves
multiplying polynomials in Fp[x]. To multiply elements of Fq ≃ Fp[x]/(f) represented as
polynomials of degree less than d = deg f , we compute the product a in F[x] and then reduce
modulo b = f , and the degree of the polynomials involved are all O(d). With Kronecker
substitution, we can reduce these polynomial multiplications to integer multiplications, and
obtain the following result.

Theorem 3.35. Let q = pe be a prime power, and assume that log e = O(log p). The time
to multiply two elements of Fq is O(M(n)) = O(n log n), where n = lg q.

Remark 3.36. The constraints on the relative growth rates of p and e in the theorem
above are present only so that we can conveniently use Kronecker substitution to bound
the complexity in terms of the bound M(n) for multiplying integers. In fact we fully expect
that the O(n log n) bound implied by Theorem 3.35 holds uniformly. This is known under
a widely believed conjecture about the least prime in arithmetic progressions, namely that
the least prime in every arithmetic progression mZ+ a with a coprime to m is bounded by
O(m1+ϵ) for any ϵ > 0 (in fact any ϵ < 2−1162 would do); see [13].

Before leaving the topic of Euclidean division, we should also mention the standard
“schoolbook” algorithm of long division. The classical algorithm works with decimal digits
(base 10), but for the sake of simplicity let us work in base 2; in practice one works in base
2w for some fixed w.

18.783 Fall 2025, Lecture #3, Page 16

Algorithm 3.37 (Long division). Given positive integers a =
∑m

i=0 ai2
i and b =

∑n
i=0 bi2

i,
compute q, r ∈ Z such that a = qb+ r with 0 ≤ r < b as follows:

1. If b > a return q = 0 and r = a, and if b = 1 return q = a and r = 0.

2. Set q ← 0, r ← 0, and k ← m.

3. While k ≥ 0 and r < b set q ← 2q, r ← 2r + ak, and k ← k − 1.

4. If r < b then return q and r.

5. Set q ← q + 1, r ← r − b, and return to Step 3.

The net effect of all the executions of Step 3 is is to add a to qb+r using double-and-add
bitwise addition. The quantity qb + r is initially set to 0 in Step 2 and is unchanged by
Step 5, so when the algorithm terminates in Step 4 we have a = qb + r and 0 ≤ r < b as
desired. If we are only interested in the remainder r we can omit all operations involving q.

For the complexity analysis we can assume that multiplication by 2 is achieved by bit-
shifting and costs O(1) (consider a multi-tape Turing machine, or a bit-addressable RAM).
Step 2 costs O(1), the total cost of Step 3 over all iterations is O(nm), as is the total cost
of Step 5 (note that q is a multiple of 2 at the start of Step 5, so computing q ← q + 1 is
achieved by setting the least significant bit). This yields the following result.

Theorem 3.38. The long division algorithm uses O(mn) bit operations to perform Eu-
clidean division of an m-bit integer by an n-bit integer.

Remark 3.39. For m = O(n) the O(n2) complexity of long division is worse than the
O(M(n)) cost of Euclidean division using Newton iteration. But when m is much larger
than n, say n = O(logm) or n = O(1), long division is a better choice. In particular, for
any fixed prime p (so O(1) bits) we can reduce n-bit integers modulo p in linear time.

3.8 Extended Euclidean algorithm

We recall the Euclidean algorithm for computing the greatest common divisor of positive
integers a and b. For a > b we repeatedly apply

gcd(a, b) = gcd(b, a mod b),

where we take a mod b to be the unique integer r ∈ [0, b− 1] congruent to a modulo b.
To compute the multiplicative inverse of an integer modulo a prime, we use the extended

Euclidean algorithm, which expresses gcd(a, b) as a linear combination

gcd(a, b) = as+ bt,

with |s| ≤ b/ gcd(a, b) and |t| ≤ a/ gcd(a, b). If a is prime, we obtain as + bt = 1, and t is
the inverse of b modulo a. To compute the integers s and t we use the following algorithm.
First, let

R1 =

[
a
b

]
, S1 =

[
1
0

]
, T1 =

[
0
1

]
,

and note that R1 = aS1 + bT1. We then compute

Qi =

[
0 1
1 −qi

]
, Ri+1 = QiRi, Si+1 = QiSi, Ti+1 = QiTi,

18.783 Fall 2025, Lecture #3, Page 17

where qi is the quotient ⌊Ri,1/Ri,2⌋ obtained via Euclidean division. Note that applying the
linear transformation Qi to both sides of Ri = aSi+ bTi ensures Ri+1 = aSi+1+ bTi+1. The
algorithm terminates in the kth step where Rk,2 becomes zero, at which point we have

Rk =

[
d
0

]
, Sk =

[
s
±b

]
, Tk =

[
t
∓a

]
,

with gcd(a, b) = d = sa+ tb. As an example, with a = 1009 and b = 789 we have

r q s t

1009 1 0
789 1 0 1
220 3 1 −1
129 1 −3 4
91 1 4 −5
38 2 −7 9
15 2 18 −23
8 1 −43 55
7 1 61 −78
1 7 −104 133
0 789 −1009

From the second-to-last line with s = −104 and t = 133 we see that

1 = −104 · 1009 + 133 · 789,

and therefore 133 is the inverse of 789 modulo 1009 (and −104 ≡ 685 is the inverse of 1009
modulo 789).

It is clear that r is reduced by a factor of at least 2 every two steps, thus the total number
of iterations is O(n), and each step involves Euclidean division, whose cost is bounded by
O(M(n)). This yields a complexity of O(nM(n)), but a more careful analysis shows that it
is actually O(n2), even if schoolbook multiplication is used (the key point is that the total
size of all the qi is O(n) bits).

This can be further improved using the fast Euclidean algorithm, which uses a divide-
and-conquer approach to compute the product Q = Qk−1 · · ·Q1 by splitting the product in
half and recursively computing each half using what is known as a half-gcd algorithm. One
can then compute Rk = QR1, Sk = QS1, and Tk = QT1. The details are somewhat involved
(care must be taken when determining how to split the product in a way that balances the
work evenly), but this yields a recursive running time of

T (n) = 2T (n/2) +O(M(n)) = O(M(n) log n);

see [9, §11] for details.

Theorem 3.40. Let p be a prime. The time to invert an element of F×
p is O(M(n) log n),

where n = lg p.

The extended Euclidean algorithm works in any Euclidean ring, that is, a ring with a
norm function that allows us to use Euclidean division to write a = qb + r with r of norm
strictly less than b (for any nonzero b). This includes polynomial rings, in which the norm of

18.783 Fall 2025, Lecture #3, Page 18

a polynomial is simply its degree. Thus we can compute the inverse of a polynomial modulo
another polynomial, provided the two polynomials are relatively prime.

One issue that arises when working in Euclidean rings other than Z is that there may
be units (invertible elements) other than ±1, and the gcd is only defined up to a unit.
In the case of the polynomial ring Fp[x], every element of F×

p is a unit, and with the fast
Euclidean algorithm in Fp[x] one typically normalizes the intermediate results by making the
polynomials monic at each step; this involves computing the inverse of the leading coefficient
in Fp. If Fq = Fp[x]/(f) with deg f = d, one can then bound the time to compute an inverse
in Fq by O(M(d) log d), operations in Fp, of which O(d) are inversions; see [9, Thm. 11.10(i)].
This gives a bit complexity of

O(M(d)M(log p) log d+ dM(log p) log log p),

but with Kronecker substitution we can sharpen this to

O(M(d(log p+ log d)) log d+ dM(log p) log log p).

We will typically assume that either log d = O(log p) (large characteristic) or log p = O(1)
(small characteristic); in both cases we can simplify this bound to O(M(n) log n), where
n = lg q = d lg p is the number of bits in q, the same result we obtained for the case where
q = p is prime.

Theorem 3.41. Let q = pe be a prime power and assume log e = O(log p). The time to
invert an element of F×

q is O(M(n) log n) = O(n log2n), where n = lg q.

Remark 3.42. As with Theorem 3.35, the assumption log e = O(log p) can be removed if
one assumes the least prime in every arithmetic progression mZ+ a with a coprime to m is
bounded by O(m1+ϵ) for any ϵ > 0.

3.9 Exponentiation (scalar multiplication)

Let a be a positive integer. In a multiplicative group, the computation

ga = gg · · · g︸ ︷︷ ︸
a

is known as exponentiation. In an additive group, this is equivalent to

ag = g + g + · · ·+ g︸ ︷︷ ︸
a

,

and is called scalar multiplication. The same algorithms are used in both cases, and most
of these algorithms were first developed in a multiplicative setting (the multiplicative group
of a finite field) and are called exponentiation algorithms. It is actually more convenient to
describe the algorithms using additive notation (fewer superscripts), so we will do so.

The oldest and most commonly used exponentiation algorithm is the “double-and-add"
method, also known as left-to-right binary exponentiation. Given an element P of an additive
group and a positive integer a with binary representation a =

∑
2iai, we compute the scalar

multiple Q = aP as follows:

18.783 Fall 2025, Lecture #3, Page 19

def DoubleAndAdd (P,a):
a=a.digits(2); n=len(a) # represent a in binary using n bits
Q=P; # start 1 bit below the high bit
for i in range(n-2,-1,-1): # for i from n-2 down to 0

Q += Q # double
if a[i]==1: Q += P # add

return Q

Alternatively, we may use the “add-and-double" method, also known as right-to-left
binary exponentiation.

def AddAndDouble (P,a):
a=a.digits(2); n=len(a) # represent a in binary using n bits
Q=0; R=P; # start with the low bit
for i in range(n-1):

if a[i]==1: Q += R # add
R += R # double

Q += R # last add
return Q

The number of group operations required is effectively the same for both algorithms. If
we ignore the first addition in the add_and_double algorithm (which could be replaced
by an assignment, since initially Q = 0), both algorithms use precisely

n+wt(a)− 2 ≤ 2n− 2 = O(n)

group operations, where wt(a) = #{ai : ai = 1} is the Hamming weight of a, the number of
1’s in its binary representation. Up to the constant factor 2, this is asymptotically optimal,
and it implies that exponentiation in a finite field Fq has complexity O(nM(n)) with n = lg q;
this assumes the exponent is less than q, but note that we can always reduce the exponent
modulo q − 1, the order of the cyclic group F×

q . Provided the bit-size of the exponent
is O(n2), the O(M(n2)) time to reduce the exponent modulo q− 1 will be majorized by the
O(nM(n)) time to perform the exponentiation.

Notwithstanding the fact that the simple double-and-add algorithm is within a factor
of 2 of the best possible, researchers have gone to great lengths to eliminate this factor of 2,
and to take advantage of situations where either the base or the exponent is fixed, and there
are a wide variety of optimizations that are used in practice; see [4, Ch. 9] and [11]. Here
we give just one example, windowed exponentiation, which is able to reduce the constant
factor from 2 to an essentially optimal 1 + o(1).

3.9.1 Fixed-window exponentiation

Let the positive integer s be a window size and write a as

a =
∑

ai2
si, (0 ≤ ai < 2s).

This is equivalent to writing a in base 2s. With fixed-window exponentiation, one first
precomputes multiples dP for each of the “digits" d ∈ [0, 2s − 1] that may appear in the
base-2s expansion of a. One then uses a left-to-right approach as in the double-and-add
algorithm, except now we double s times and add the appropriate multiple aiP .

def FixedWindow (P,a,s):
a=a.digits(2^s); n=len(a) # write a in base 2^s

18.783 Fall 2025, Lecture #3, Page 20

R = [0*P,P]
for i in range(2,2^s): R.append(R[-1]+P) # precompute digits
Q = R[a[-1]] # copy the top digit
for i in range(n-2,-1,-1):

for j in range(0,s): Q += Q # double s times
Q += R[a[i]] # add the next digit

return Q

In the algorithm above we precompute multiples of P for every possible digit that might
occur. As an optimization one could examine the base-2s representation of a and only
precompute the multiples of P that are actually needed.

Let n be the number of bits in a and let m = ⌈n/s⌉ be the number of base-2s digits ai.
The precomputation step uses 2s− 2 additions (we get 0P and 1P for free), there are m− 1
additions of multiples of P corresponding to digits ai (when ai = 0 these cost nothing), and
there are a total of (m− 1)s doublings. This yields an upper bound of

2s − 2 +m− 1 + (m− 1)s ≈ 2s + n/s+ n

group operations. If we choose s = lg n− lg lgn, we obtain the bound

n/ lg n+ n/(lg n− lg lgn) + n = n+O(n/ log n),

which is (1 + o(1))n group operations.

3.9.2 Sliding-window exponentiation

The sliding-window algorithm modifies the fixed-window algorithm by “sliding" over blocks
of 0s in the binary representation of a. There is still a window size s, but a is no longer
treated as an integer written in a fixed base 2s. Instead, the algorithm scans the bits of the
exponent from left to right, assembling “digits" of at most s bits with both high and low
bits set: with a sliding window of size 3 the bit-string 110011010101100 could be broken
up as 11|00|11|0|101|0|11|00 with 4 nonzero digits, whereas a fixed window approach would
use 110|011|010|101|100 with 5 nonzero digits. This improves the fixed-window approach
in two ways: first, it is only necessarily to precompute odd digits, and second, depending
on the pattern of bits in a, sliding over the zeros may reduce the number of digits used, as
in the example above. In any case, the sliding-window approach is never worse than the
fixed-window approach, and for s > 2 it is always better.

Example 3.43. Let a = 26284 corresponding to the bit-string 110011010101100 above. To
compute aP using a sliding window approach with s = 3 one would first compute 2P, 3P, 5P
using 3 additions and then

aP = 22 · (23 · (24 · (24 · (3P) + 3P)) + 5P) + 3P)

using 3 additions and 13 doublings, for a total cost of 19 group operations. A fixed window
approach with s = 3 would instead compute 2P, 3P, 4P, 5P, 6P using 5 additions and

aP = 23 · (23 · (23 · (23 · 6P + 3P) + 2P) + 5P) + 4P

using 4 additions and 12 doublings for a total cost of 21 group operations. Note that in
both cases we avoided computing 7P since it was not needed.

18.783 Fall 2025, Lecture #3, Page 21

3.10 Root-finding in finite fields

Let f(x) be a polynomial in Fq[x] of degree d. We wish to find a solution to f(x) = 0 that
lies in Fq. As an important special case, this will allow us to compute square roots using
f(x) = x2 − a, and, more generally, rth roots.4

The algorithm we give here was originally proposed by Berlekamp for prime fields [2], and
then refined and extended by Rabin [18], whose presentation we follow here. The algorithm
is probabilistic, and is one of the best examples of how randomness can be exploited in a
number-theoretic setting. As we will see, it is quite efficient, with an expected running time
that is quasi-quadratic in the size of the input. By contrast, no deterministic polynomial-
time algorithm for root-finding is known, not even for computing square roots.5

3.10.1 Randomized algorithms

Probabilistic algorithms are typically classified as one of two types: Monte Carlo or Las
Vegas. Monte Carlo algorithms are randomized algorithms whose output may be incorrect,
depending on random choices that are made, but whose running time is bounded by a
function of its input size, independent of any random choices. The probability of error is
required to be less than 1/2−ϵ, for some ϵ > 0, and can be made arbitrarily small by running
the algorithm repeatedly and using the output that occurs most often. In contrast, a Las
Vegas algorithm always produces a correct output, but its running time may depend on
random choices; we do require that its expected running time is finite. As a trivial example,
consider an algorithm to compute a+ b that first flips a coin repeatedly until it gets a head
and then computes a + b and outputs the result. The running time of this algorithm may
be arbitrarily long, even when computing 1 + 1 = 2, but its expected running time is O(n),
where n is the size of the inputs.

Las Vegas algorithms are generally preferred, particularly in mathematical applications.
Note that any Monte Carlo algorithm whose output can be verified can always be converted
to a Las Vegas algorithm (just run the algorithm repeatedly until you get an answer that is
verifiably correct). The root-finding algorithm we present here is a Las Vegas algorithm.

3.10.2 Using GCDs to find roots

Recall from the previous lecture that we defined the finite field Fq to be the splitting field
of xq − x over its prime field Fp; this definition also applies when q = p is prime (since
xp− x splits completely in Fp), and in every case, the elements of Fq are precisely the roots
of xq − x. The roots of f that lie in Fq are the roots it has in common with the polynomial
xq − x. We thus have

g(x) := gcd(f(x), xq − x) =
∏
i

(x− αi),

where the αi range over all the distinct roots of f that lie in Fq. If f has no roots in Fq then
g will have degree 0 (in which case g = 1). We have thus reduced our problem to finding a
root of g, where g has distinct roots that are known to lie in Fq.

4An entirely different approach to computing rth roots using discrete logarithms is explored in Problem
Set 2. It has better constant factors when the r-power torsion subgroup of F∗

q is small (which is usually the
case), but is asymptotically slower than the algorithm presented here in the worst case.

5Deterministic polynomial-time bounds for root-finding can be proved in various special cases, including
the computation of square-roots, if one assumes a generalization of the Riemann hypothesis.

18.783 Fall 2025, Lecture #3, Page 22

In order to compute g = gcd(f, xq − x) efficiently, we generally do not compute xq − x
and then take the gcd with f ; this would take time exponential in n = log q.6 Instead, we
compute xq mod f by exponentiating the polynomial x to the qth power in the ring Fq[x]/(f),
whose elements are uniquely represented by polynomials of degree less than d = deg f . Each
multiplication in this ring involves the computation of a product in Fq[x] followed by a
reduction modulo f ; note that we do not assume Fq[x]/(f) is a field (indeed for deg f > 1,
if f has a root in Fq then Fq[x]/(f) is definitely not a field). This reduction is achieved
using Euclidean division, and can be accomplished using two polynomial multiplications
once an approximation to 1/f has been precomputed, see §3.7, and is within a constant
factor of the time to multiply two polynomials of degree d in any case. The total cost of
each multiplication in Fq[x]/(f) is thus O(M(d(n+log d))), assuming that we use Kronecker
substitution to multiply polynomials. The time to compute xq mod f using any of the
exponentiation algorithms described in §3.9 is then O(nM(d(n+ log d))).

Once we have computed xq mod f , we subtract x and compute g = gcd(f, xq−x). Using
the fast Euclidean algorithm, this takes O(M(d(n+ log d)) log d) time. Thus the total time
to compute g is O(M(d(n + log d))(n + log d)); and in the typical case where log d = O(n)
(e.g. d is fixed and only n is growing) this simplifies to O(nM(dn)).

So far we have not used randomness; we have a deterministic algorithm to compute the
polynomial g = (x− r1) · · · (x− rk), where r1, . . . , rk are the distinct Fq-rational roots of f .
We can thus determine the number of distinct roots f has (this is just the degree of g), and
in particular, whether it has any roots, deterministically, but knowledge of g does not imply
knowledge of the roots r1, . . . , rk when k > 1; for example, if f(x) = x2 − a has a nonzero
square root r ∈ Fq, then g(x) = (x− r)(x+ r) = f(x) tells us nothing beyond the fact that
f(x) has a root.

3.11 Randomized GCD splitting

Having computed g, we seek to factor it into two polynomials of lower degree by again
applying a gcd, with the goal of eventually obtaining a linear factor, which will yield a root.

Assuming that q is odd (which we do), we may factor the polynomial xq − x as

xq − x = x(xs − 1)(xs + 1),

where s = (q − 1)/2. Ignoring the root 0 (which we can easily check separately), this
factorization splits F×

q precisely in half: the roots of xs − 1 are the elements of F×
q that are

squares in F×
q , and the roots of xs+1 are the elements of F×

q that are not. Recall that F×
q is

a cyclic group of order q − 1, and for α ∈ F×
q we have αs = ±1 with αs = 1 precisely when

α is a square in F×
q . If we compute

h(x) = gcd(g(x), xs − 1),

we obtain a divisor of g whose roots are precisely the roots of g that are squares in F×
q . If we

suppose that the roots of g are as likely to be squares as not, we should expect the degree
of h to be approximately half the degree of g. And so long as the degree of h is strictly
between 0 and deg g, one of h or g/h is a polynomial of degree at most half the degree of g,
whose roots are all roots of our original polynomial f .

6The exception is when d > q, but in this case computing gcd(f(x), xq −x) takes O(M(d(n+log d) log d))
time, which turns out to be the same bound that we get for computing xq mod f(x) in any case.

18.783 Fall 2025, Lecture #3, Page 23

To make further progress, and to obtain an algorithm that is guaranteed to work no
matter how the roots of g are distributed in Fq, we take a probabilistic approach. Rather
than using the fixed polynomial xs − 1, we consider random polynomials of the form

(x+ δ)s − 1,

where δ is uniformly distributed over Fq.
We claim that if α and β are any two nonzero roots of g, then with probability 1/2, exactly

one of these is a root (x+ δ)s − 1. It follows from this claim that so long as g has at least 2
distinct nonzero roots, the probability that the polynomial h(x) = gcd(g(x), (x+ δ)s− 1) is
a proper divisor of g is at least 1/2.

Let us say that two elements α, β ∈ Fq are of different type if they are both nonzero and
αs ̸= βs (in which case αs = ±1 and βs = ∓1). Our claim is an immediate consequence of
the following theorem from [18].

Theorem 3.44 (Rabin 1980). For every pair of distinct α, β ∈ Fq we have

#{δ ∈ Fq : α+ δ and β + δ are of different type} = q − 1

2
.

Proof. Consider the map ϕ(δ) = α+δ
β+δ , defined for δ ̸= −β. We claim that ϕ is a bijection

from the set Fq − {−β} to the set Fq − {1}. The sets are the same size, so we just need to
show surjectivity. Let γ ∈ Fq − {1}, then we wish to find a solution σ ̸= −β to γ = α+σ

β+σ .
We have γ(β + σ) = α + σ which means σ − γσ = γβ − α. This yields σ = γβ−α

1−γ ; we have
γ ̸= 1, and σ ̸= −β, because α ̸= β. Thus ϕ is surjective.

We now note that
ϕ(δ)s =

(α+ δ)s

(β + δ)s

is −1 if and only if α+ δ and β + δ are of different type. The elements γ = ϕ(δ) for which
γs = −1 are precisely the non-residues in Fq\{1}, of which there are exactly (q − 1)/2.

We now give the algorithm, which assumes that its input f ∈ Fq[x] is monic (has leading
coefficient 1). If f is not monic we can make it so by dividing f by its leading coeffi-
cient, which does not change its roots or the complexity of finding them. You can find an
implementation of the algorithm below in this Jupyter notebook.

Algorithm 3.45. Given a monic polynomial f ∈ Fq[x], output an element r ∈ Fq such that
f(r) = 0, or null if no such r exists.

1. If f(0) = 0 then return 0.
2. Compute g = gcd(f, xq − x).
3. If deg g = 0 then return null.
4. While deg g > 1:

a. Pick a random δ ∈ Fq.
b. Compute h = gcd(g, (x+ δ)s − 1).
c. If 0 < deg h < deg g then replace g by h or g/h, whichever has lower degree.

5. Return r, where g(x) = x− r.

It is clear that the output of the algorithm is always correct: either it outputs a root
of f in step 1, proves that f has no roots in Fq and outputs null in step 3, or outputs a
root of g that is also a root of f in step 5 (note that whenever g is updated it replaced with
a proper divisor). We now consider its complexity.

18.783 Fall 2025, Lecture #3, Page 24

https://cocalc.com/AndrewVSutherland/18.783Fall2025/RootFindingInFiniteFields

3.11.1 Complexity analysis

It follows from Theorem 3.44 that the polynomial h computed in step 4b is a proper divisor
of g with probability at least 1/2, since g has at least two distinct nonzero roots α, β ∈ Fq.
Thus the expected number of iterations needed to obtain a proper factor h of g is bounded
by 2, and the expected cost of obtaining such an h is O(M(e(n + log e))(n + log e)), where
n = log q and e = deg g, and this dominates the cost of the division in step 4c.

Each time g is updated in step 4c its degree is reduced by at least a factor of 2. It follows
that the expected total cost of step 4 is within a constant factor of the expected time to
compute the initial value of g = gcd(f, xq−x), which is O(M(d(n+log d))(n+log d)), where
d = deg f ; this simplifies to O(nM(dn)) in the typical case that log d = O(n), which holds
in all the applications we shall be interested in.

3.11.2 Finding all roots

We modify our algorithm to find all the distinct roots of f , by modifying step 4c to recursively
find the roots of both h and g/h. In this case the amount of work done at each level of
the recursion tree is bounded by O(M(d(n+ log d))(n+ log d)). Bounding the depth of the
recursion is somewhat more involved, but one can show that with very high probability the
degrees of h and g/h are approximately equal and that the expected depth of the recursion
is O(log d). Thus we can find all the distinct roots of f in

O(M(d(n+ log d))(n+ log d) log d) (2)

expected time. When log d = O(n) this simplifies to O(nM(dn) log d).
Once we know the distinct roots of f we can determine their multiplicity by repeated

division, but this is not the most efficient approach. By taking GCDs with derivatives one can
first compute the squarefree factorization of f , which for a monic nonconstant polynomial f
is defined as the unique sequence g1, . . . , gm ∈ Fq[x] of monic squarefree coprime polynomials
with gm ̸= 1 such that

f = g1g
2
2 · · · gmm.

When the degree of f is less than the characteristic p of Fq, this can be done directly via
Yun’s algorithm [21]; see Exercise 14.30 in [9] for the necessary modifications to handle
deg f ≥ p, which simply involves taking pth roots of known pth powers at suitable points
and does not change the complexity.

Algorithm 3.46. Given a monic polynomial f ∈ Fq[x] with deg f < char(Fq), compute
squarefree coprime polynomials g1, . . . , gm ∈ Fq[x] with gm ̸= 1 such that f = g1g

2
2 · · · gmm.

1. Compute u = gcd(f, f ′), v1 = f/u, w1 = f ′/u, and set i = 1.
2. Compute g1 = gcd(v1, w1 − v′1)

3. While vi ̸= gi:

a. Compute vi+1 with vi/gi and wi+1 = (wi − v′i)/gi.
b. Increment i and compute gi = gcd(vi, wi − v′i)

4. Set m = i and return g1, . . . , gm.

The key fact that Yun’s algorithm exploits is that if g ∈ Fq[x] is irreducible then g2|f
if and only if g| gcd(f, f ′). This is true because Fq is a perfect field, (by Theorem 3.22): if

18.783 Fall 2025, Lecture #3, Page 25

f = gh then f ′ = g′h+ gh′ is divisible by g if and only if g′h is divisible by g, which occurs
if and only if g|h (in which case g2|f), since g′ ̸= 0 for any irreducible g in a perfect field.

Yun’s algorithm begins with u = gcd(f, f ′) = f/(g1 · · · gm) = g2g
2
3 · · · gm−1

m , which
yields v1 = g1 · · · gm and w1 =

∑
j jg

′
jv1/gj , since f ′ = u

∑m
j=1 jg

′
jv1/gj . One can show by

induction that we always have

vi = gi · · · gm and wi =

m∑
j=i

(j − i+ 1)g′jvi/gj ,

which implies gcd(vi, wi−v′i) = gi, since wi−v′i =
∑m

j=i+1(j− i)g′jvi/gj ; see [9, Thm. 14.23].
Yun’s algorithm uses O(M(d) log d) ring operations in Fq, which is O(M(n)M(d) log d)

bit operations and strictly dominated by the complexity bound (2) for finding the distinct
roots of f . The cost of finding the distinct roots of each gi separately is no greater than the
cost of finding the distinct roots of f , since the complexity of root-finding is superlinear in
the degree, and with this approach we know a priori the multiplicity of each root of f .

It follows that we can determine all the roots of f and their multiplicities, with the
same time complexity as finding the distinct roots of f (with the same leading constant, the
extra time to determine the multiplicities is not only asymptotically negligible, when f is
not squarefree it is actually faster to compute the squarefree factorization first).

3.12 Computing a complete factorization

Factoring a polynomial f ∈ Fq[x] into irreducibles can effectively be reduced to finding roots
of f in extensions of Fq. Linear factors of f correspond to the roots of f in Fq, irreducible
quadratic factors of f correspond to roots of f that lie in Fq2 but do not lie in Fq; recall
from Corollary 3.10 that every quadratic polynomial Fq[x] splits completely in Fq2 [x]. More
generally, each irreducible degree d-factor g of f is the minimal polynomial of a root α of f
that lies in Fqd but none of its proper subfields; note that if α is a root of f ∈ Fq[x], then so
are all of its Galois conjugates, and these are precisely the roots of its minimal polynomial.

One can thus compute the complete factorization of f by applying the root-finding
algorithm of the previous section over extensions of Fq. But note that this involves picking
random δ ∈ Fqn and performing polynomial arithmetic in Fqn [x]. As observed by Cantor
and Zassenhaus shortly after Rabin’s probabilistic root-finding algorithm appeared, rather
than using random linear polynomials x + δ ∈ Fqn [x], it is better to use random degree n
polynomials in Fq[x], and one can show that this works just as well.

To state this more precisely, let us first note that by computing the squarefree factor-
ization of f and successively computing gcds with xq

j −x we can deterministically compute
a factorization of f into squarefree polynomials each of which is a product of irreducible
polynomials of the same known degree; this is called the distinct-degree factorization of f .
It then only remains to consider the case where f is a product of distinct irreducible polyno-
mials f1, . . . , fr of degree j. If r = 1 then f is irreducible and we are done, so let us assume
r > 1. By the Chinese Remainder Theorem (CRT) we have a ring isomorphism

Fq[x]

(f)
≃ Fq[x]

(f1)
× · · · × Fq[x]

(fr)
≃ Fr

qj

that sends h mod f to (h mod f1, . . . , h mod fr). We can represent Fq[x]/(f) as the set of
all polynomials u ∈ Fq[x] of degree strictly less than deg f = rj. If we pick u uniformly at
random, the polynomials u mod fi will also be uniformly random, and independent, by the

18.783 Fall 2025, Lecture #3, Page 26

CRT (because the fi are coprime). In other words, picking u at random amounts to picking
an element (u1, . . . , ur) of Fr

qj
at random. Moreover, if we pick a random u coprime to f we

get a random (u1, . . . , ur) ∈ (F×
qj
)r.

Now let s = (qj − 1)/2. The ring isomorphism u 7→ (u1, . . . , ur) ∈ Fr
qj

sends us

to (us1, . . . , u
s
r) ∈ {0,±1}r, and if we restrict to u that are coprime to f we will have

(us1, . . . , u
s
r) ∈ {±1}r and gcd(f, us − 1) will be non-trivial whenever we have usi = 1 for at

least one but not all of the ui. Exactly half the elements of F×
qj

are roots of xs − 1 and half
are not, so this probability is

1− 2−r − 2−r = 1− 21−r ≥ 1/2.

We thus have at least a fifty-fifty chance of splitting f with each random u coprime to f .
We now give the complete Cantor-Zassenhaus algorithm, as described in [9, §14]; you can
find a basic implementation of the algorithm below in this Jupyter notebook.

Algorithm 3.47. Given a monic polynomial f ∈ Fq[x], compute its irreducible factorization
as follows:

1. Compute the squarefree factorization of f = g1g
2
2 · · · gmm using Yun’s algorithm.

2. By successively computing gij = gcd(gi, x
qj − x) and replacing gi with gi/gij for

j = 1, 2, 3, . . . ,deg gi, factor each gi into polynomials gij that are each (possibly trivial)
products of distinct irreducible polynomials of degree j; note that once j > (deg gi)/2
we know gi must be irreducible and can immediately determine all the remaining gij .

3. Factor each nontrivial gij into irreducible polynomials gijk of degree j as follows: while
deg gij > j generate random polynomials u ∈ Fq[x] with deg u < deg gij until either
h = gcd(gij , u) or h := gcd(gij , u

(qj−1)/2 − 1) properly divides gij , then recursively
factor h and gij/h (note that j| deg h and j| deg(gij/h)).

4. Output each gijk with multiplicity i.

In step 3, for j > 1 one computes hj := xq
j
mod gij via hj = hqj−1 mod gij . The expected

cost of computing the gij for a given gi of degree d is then bounded by

O(M(d(n+ log d))d(n+ log d)),

which simplifies to O(dnM(dn)) when log d = O(n) and is in any case quasi-quadratic in
both d and n. The cost of factoring a particular gij satisfies the same bound with d replaced
by j; the fact that this bound is superlinear and deg gi =

∑
j deg gij implies that the cost

of factoring all the gij for a particular gi is bounded by the cost of computing them, and
superlinearity also implies that simply putting d = deg f gives us a bound on the cost of
computing the gij for all the gi, and this bound also dominates the O(M(d)(log d)M(n))
complexity of step 1.

Notice that the first three steps of Algorithm 3.47, which compute the squarefree and
distinct degree factorizations of f without making any random choices, yield a deterministic
algorithm for computing the factorization pattern of f (the degrees and multiplicities of its
irreducible factors), and in particular, can function as an irreducibility test.

There are faster algorithms for polynomial factorization that use linear algebra in Fq;
see [9, 14.8]. These are of interest primarily when the degree d is large relative to n = log q.

18.783 Fall 2025, Lecture #3, Page 27

https://cocalc.com/AndrewVSutherland/18.783Fall2025/RootFindingInFiniteFields

The asymptotically fastest algorithm due to Kedlaya and Umans [17] uses recursive modular
composition to obtain an expected running time of

O(d1.5+o(1)n1+o(1) + d1+o(1)n2+o(1)),

but this algorithm is primarily of theoretical interest.
There are also algorithms for d = 2, 3, 4 that use specialized methods for computing

square-roots and cube-roots and then solve by radicals; these achieve a significant constant
factor improvement for for most values of q, but will be slower in the rare worst case (the
worst-case is slower by a log n/ log logn factor [20], but one can easily detect this and switch
algorithms if the slowdown outweighs the constant factor improvement).

For general purpose factoring of polynomials over finite fields, the Cantor-Zassenhaus
algorithm is the algorithm of choice; it is implemented in virtually every computer algebra
system that supports finite fields.

Remark 3.48. We should emphasize that all provably efficient algorithms known for root-
finding and factoring polynomials over finite fields are probabilistic algorithms (of Las Vegas
type). Even for the simplest non-trivial case, computing square roots, no deterministic
polynomial-time algorithm is known. There are deterministic algorithms that can be shown
to run in polynomial-time under the generalized Riemann hypothesis, but even these have
worst-case running times that are asymptotically worse than the expected running time of
the fastest probabilistic algorithms by at least a linear factor in n = log q.

3.13 Summary

The table below summarizes the bit-complexity of the various arithmetic operations we have
considered, both in the integer ring Z and in a finite field Fq of characteristic p with q = pe;
in both cases n denotes the bit-size of elements of the base ring (so n = log q for Fq). Here
we use Mq(n) to denote the time to multiply elements of Fq. As noted in Remarks 3.36
and 3.42, if one is willing to assume a widely believed conjecture about the least prime
in arithmetic progressions, we can take Mq(n) = O(n log n) in the bounds below, and for
log e = O(log p) then this applies unconditionally.

integers Z finite field Fq

addition/subtraction O(n) O(n)
multiplication O(n log n) Mq(n)
Euclidean division (reduction) O(n log n) O(Mq(n))
extended gcd (inversion) O(n log2 n) O(Mq(n) log n)
exponentiation O(nMq(n))
square-roots (probabilistic) O(nMq(n))
root-finding (probabilistic) O(Mq(d(n+ log d))(n+ log d))
factoring (probabilistic) O(Mq(d(n+ log d))d(n+ log d))
irreducibility testing O(Mq(d(n+ log d))d(n+ log d))

In the case of root-finding, factorization, and irreducibility testing, d is the degree of
the polynomial, and for probabilistic algorithms these are bounds on the expected running
time of a Las Vegas algorithm. The bound for exponentiation assumes that the bit-length
of the exponent is O(n2). Unless d is very large (super-exponential in n) one can ignore the
log d terms in the last three complexity bounds, and we note that for large d there are faster
approaches to factoring and irreducibility testing that are sub-quadratic in d.

18.783 Fall 2025, Lecture #3, Page 28

References

[1] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, Emmanuel Thomé, A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic,
in Advances in Cryptology — EUROCRYPT 2014, LNCS 8441 (2014), 1–16.

[2] Elwyn R. Berlekamp, Factoring polynomials over large finite fields, Mathematics of Com-
putation 24 (1970), 713–735.

[3] David G. Cantor and Hans Zassenhaus, A new algorithm for factoring polynomials over
finite fields, Math. Comp. 36 (1981), 587–592.

[4] Henri Cohen et al., Handbook of elliptic and hyperelliptic curve cryptography , CRC Press,
2006.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Intro-
duction to algorithms, third edition, MIT Press, 2009.

[6] Jack Dongarra, Francis Sullivan,Top ten algorithms of the century , Computing in Science
and Engineering 2 (2000), 22–23.

[7] Martin Fürer, Faster integer multiplication, Proceedings of the thirty-ninth annual ACM
Symposium on the Theory of Computing (STOC), 2007.

[8] Joachim von zur Gathen, Irreducible trinomials over finite fields, Mathematics of Com-
putation 72 (2003), 1787–2000.

[9] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, third edition,
Cambridge University Press, 2013.

[10] Dan Givoli, The top 10 computational methods of the 20th century , IACM Expres-
sions 11 (2001), 5–9.

[11] Daniel M. Gordon, A survey of fast exponentiation methods, Journal of Algorithms 27
(1998), 129–146.

[12] David Harvey and Joris van der Hoeven, Faster integer multiplication using short lattice
vectors, Thirteenth Algorithmic Number Theory Symposium (ANTS XIII), Open Book
Series 2 (2018), 293–310.

[13] David Harvey and Joris van der Hoeven, Polynomial multiplication over finite fields in
time O(n log n), J. ACM 69 (2022), 1–40.

[14] David Harvey and Joris van der Hoeven, Integer multiplication in time O(n log n),
Annals of Math. 193 (2021), 563–617.

[15] David Harvey, Joris van der Hoeven, and Grégoire Lecerf, Even faster integer multipli-
cation, J. Complexity 36 (2016), 1–30.

[16] A. A. Karatsuba, The complexity of computations, Proceedings of the Steklov Institute
of Mathematics 211 (1995), 169–193 (English translation of Russian article).

[17] Kiran S. Kedlaya and Christopher Umans, Fast polynomial factorization and modular
composition, SIAM J. Comput. 40 (2011), 1767–1802.

18.783 Fall 2025, Lecture #3, Page 29

http://link.springer.com/chapter/10.1007/978-3-642-55220-5_1
http://link.springer.com/chapter/10.1007/978-3-642-55220-5_1
http://www.ams.org/journals/mcom/1970-24-111/S0025-5718-1970-0276200-X/home.html
https://doi.org/10.1090/S0025-5718-1981-0606517-5
https://doi.org/10.1090/S0025-5718-1981-0606517-5
http://www.crcnetbase.com/isbn/9781584885184
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814652
http://web.archive.org/web/20130425232048/http://www.cse.psu.edu/~furer/Papers/mult.pdf
http://www.ams.org/journals/mcom/2003-72-244/S0025-5718-03-01515-1/
https://www.cambridge.org/core/books/modern-computer-algebra/DB3563D4013401734851CF683D2F03F0
http://msvlab.hre.ntou.edu.tw/article/iacm.pdf
http://www.sciencedirect.com/science/article/pii/S0196677497909135
https://msp.org/obs/2019/2-1/p18.xhtml
https://msp.org/obs/2019/2-1/p18.xhtml
https://dl.acm.org/doi/10.1145/3505584
https://dl.acm.org/doi/10.1145/3505584
https://doi.org/10.4007/annals.2021.193.2.4
http://www.sciencedirect.com/science/article/pii/S0885064X16000182
http://www.sciencedirect.com/science/article/pii/S0885064X16000182
http://www.ccas.ru/personal/karatsuba/divcen.pdf
http://hdl.handle.net/1721.1/71792
http://hdl.handle.net/1721.1/71792

[18] Michael O. Rabin, Probabilistic algorithms in finite fields, SIAM Journal of Comput-
ing 9 (1980), 273–280.

[19] Arnold Schönhage and Volker Strassen, Schnelle Multiplikation großer Zahlen, Com-
puting, 7 (1971), 281–292.

[20] Andrew V. Sutherland, Structure computation and discrete logarithms in finite abelian
p-groups, Math. Comp. 80 (2011), 815–831.

[21] David Y.Y. Yun, On square-free decomposition algorithms, in Proceedings of the third
ACM symposium on symbolic and algebraic computation (SYMSAC ‘76), R.D. Jenks
(ed.), ACM Press, 1976, 26–35.

18.783 Fall 2025, Lecture #3, Page 30

http://epubs.siam.org/doi/abs/10.1137/0209024
https://doi.org/10.1007/BF022423
https://www.ams.org/journals/mcom/2011-80-273/S0025-5718-10-02356-2/
https://www.ams.org/journals/mcom/2011-80-273/S0025-5718-10-02356-2/
http://dl.acm.org/citation.cfm?doid=800205.806320

	
	Finite field arithmetic
	Finite fields
	Integer addition
	A quick refresher on asymptotic notation
	Integer multiplication
	Schoolbook method
	Karatsuba's algorithm
	The Fast Fourier Transform (FFT)

	Integer multiplication
	Three primes FFT for integer multiplication

	Kronecker substitution
	Euclidean division
	Extended Euclidean algorithm
	Exponentiation (scalar multiplication)
	Fixed-window exponentiation
	Sliding-window exponentiation

	Root-finding in finite fields
	Randomized algorithms
	Using GCDs to find roots

	Randomized GCD splitting
	Complexity analysis
	Finding all roots

	Computing a complete factorization
	Summary

