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19 The modular equation

In the previous lecture we defined modular curves as quotients of the extended upper half
plane under the action of a congruence subgroup (a subgroup of SL2(Z) that contains a
principal congruence subgroup Γ(N) := {

(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡N ( 1 0

0 1 )} for some
N ∈ Z>0). Of particular interest is the modular curve X0(N) := H∗/Γ0(N), where

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
.

This modular curve plays a central role in the theory of elliptic curves. One form of the
modularity theorem (a special case of which implies Fermat’s last theorem) is that every
elliptic curve E/Q admits a morphism X0(N) → E for some N ∈ Z≥1. It is also a key
ingredient for algorithms that use isogenies of elliptic curves over finite fields, including the
Schoof-Elkies-Atkin algorithm, an improved version of Schoof’s algorithm that is the method
of choice for counting points on elliptic curves over finite fields of large characteristic. Our
immediate interest in the modular curve X0(N) is that we will use it to prove the first
main theorem of complex multiplication; among other things, this theorem implies that the
j-invariants of elliptic curves E/C with complex multiplication are algebraic integers.

There are two properties of X0(N) that make it so useful. The first, which we will prove
in this lecture, is that it has a canonical model over Q with integer coefficients; this allows
us to interpret X0(N) as a curve over any field, including finite fields. The second is that it
parameterizes isogenies between elliptic curves (in a sense that we will make precise in the
next lecture). In particular, given the j-invariant of an elliptic curve E and an integer N ,
we can use our explicit model of X0(N) to determine the j-invariants of all elliptic curves
that are related to E by an isogeny whose kernel is a cyclic group of order N .

In order to better understand modular curves, we need to introduce modular functions.

19.1 Modular functions

Modular functions are meromorphic functions on a modular curve. To make this statement
precise, we first need to discuss q-expansions. Let D = {z ∈ C : |z| < 1} denote the unit
disk. The map q : H → D defined by

q(τ) = e2πiτ = e−2π im τ (cos(2π re τ) + i sin(2π re τ))

bijectively maps each vertical strip Hn := {τ ∈ H : n ≤ re τ < n+1} (for any n ∈ Z) to the
punctured unit disk D0 := D − {0}. We also note that

lim
im τ→∞

q(τ) = 0.

If f : H → C is a meromorphic function that satisfies f(τ + 1) = f(τ) for all τ ∈ H, then
we can write f in the form f(τ) = f∗(q(τ)), where f∗ : D0 → C is a meromorphic function
that we can define by fixing a vertical strip Hn and putting f∗ := f ◦ (q|Hn

)−1.
The q-expansion (or q-series) of f(τ) is obtained by composing the Laurent-series ex-

pansion of f∗ at 0 with the function q(τ):

f(τ) = f∗(q(τ)) =
+∞∑

n=−∞
anq(τ)

n =
+∞∑

n=−∞
anq

n.
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As on the RHS above, it is customary to simply write q for q(τ) = e2πiτ , as we shall do
henceforth; but keep in mind that the symbol q denotes a function of τ ∈ H.

If f∗ is meromorphic at 0 (meaning that z−kf∗(z) has an analytic continuation to an
open neighborhood of 0 ∈ D for some k ∈ Z≥0) then the q-expansion of f has only finitely
many nonzero an with n < 0 and we can write

f(τ) =

∞∑
n=n0

anq
n,

with an0 ̸= 0, where n0 is the order of f∗ at 0. We then say that f is meromorphic at ∞,
and call n0 the order of f at ∞.

More generally, if f satisfies f(τ +N) = f(τ) for all τ ∈ H, then we can write f as

f(τ) = f∗(q(τ)1/N ) =
∞∑

n=−∞
anq

n/N , (1)

and we say that f is meromorphic at ∞ if f∗ is meromorphic at 0.
If Γ is a congruence subgroup of level N , then for any Γ-invariant function f we have

f(τ +N) = f(τ) (for γ =
(
1 N
0 1

)
∈ Γ we have γτ = τ +N), so f can be written as in (1),

and it makes sense to say that f is (or is not) meromorphic at ∞.

Definition 19.1. Let f : H → C be a meromorphic function that is Γ-invariant for some
congruence subgroup Γ. The function f(τ) is said to be meromorphic at the cusps if for
every γ ∈ SL2(Z) the function f(γτ) is meromorphic at ∞.

It follows immediately from the definition that if f(τ) is meromorphic at the cusps, then
for any γ ∈ SL2(Z) the function f(γτ) is also meromorphic at the cusps. In terms of the
extended upper half-plane H∗, notice that for any γ ∈ SL2(Z),

lim
im τ→∞

γτ ∈ P1(Q),

and recall that P1(Q) is the SL2(Z)-orbit of ∞ ∈ H∗, whose elements are called cusps. To
say that f(γτ) is meromorphic at ∞ is to say that f(τ) is meromorphic at γ∞. To check
whether f is meromorphic at the cusps, it suffices to consider a set of Γ-inequivalent cusp
representatives γ1∞, γ1∞, . . . , γn∞, one for each Γ-orbit of P1(Q); this is a finite set because
the congruence subgroup Γ has finite index in SL2(Z).

If f is a Γ-invariant meromorphic function, then for any γ ∈ Γ we must have

lim
im τ→∞

f(γτ) = lim
im τ→∞

f(τ)

whenever either limit exists, and if f is meromorphic at the cusps it must have the same
order at ∞ and γ∞ (even when the limits do not exist). Thus if f is meromorphic at the
cusps it determines a meromorphic function g : XΓ → C on the modular curve XΓ := H∗/Γ
(as a Riemann surface). Conversely, every meromorphic function g : XΓ → C determines a
Γ-invariant meromorphic function f : H → C that is meromorphic at the cusps via f := g◦π,
where π is the quotient map H → H/Γ.

Definition 19.2. Let Γ be a congruence subgroup. A modular function for Γ is a Γ-
invariant meromorphic function f : H → C that is meromorphic at the cusps; equivalently,
it is a meromorphic function g : XΓ → C (as explained above).
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Sums, products, and quotients of modular functions for Γ are modular functions for Γ,
as are constant functions, thus the set of all modular functions for Γ forms a field C(Γ) that
we view as a transcendental extension of C. As we will shortly prove for X0(N), modular
curves XΓ are not only Riemann surfaces, they are algebraic curves over C; the field C(Γ)
of modular functions for Γ is isomorphic to the function field C(XΓ) of XΓ/C.

Remark 19.3. In fact, every compact Riemann surface corresponds to a smooth projective
(algebraic) curve over C that is uniquely determined up to isomorphism. Conversely, if X/C
is a smooth projective curve then the set X(C) can be given a topology and a complex
structure that makes it a compact Riemann surface S. The function field of X and the
field of meromorphic functions on S are both finite extensions of a purely transcendental
extension of C (of transcendence degree one), and the two fields are isomorphic. We will
make this isomorphism completely explicit for X(1) and X0(N).

Remark 19.4. If f is a modular function for a congruence subgroup Γ, then it is also a
modular function for any congruence subgroup Γ′ ⊆ Γ, since Γ-invariance obviously implies
Γ′-invariance, and the property of being meromorphic at the cusps does not depend on Γ′.
Thus for all congruence subgroups Γ and Γ′ we have

Γ′ ⊆ Γ =⇒ C(Γ) ⊆ C(Γ′),

and the corresponding inclusion of function fields C(XΓ) ⊆ C(XΓ′) induces a morphism
XΓ′ → XΓ of algebraic curves, a fact that has many useful applications.

19.2 Modular Functions for Γ(1)

We first consider the modular functions for Γ(1) = SL2(Z). In Lecture 15 we proved that
the j-function is Γ(1)-invariant and holomorphic (hence meromorphic) on H. To show that
the j(τ) is a modular function for Γ(1) we just need to show that it is meromorphic at the
cusps. The cusps are all Γ(1)-equivalent, so it suffices to show that the j(τ) is meromorphic
at ∞, which we do by computing its q-expansion. We first record the following lemma,
which was used in Problem Set 8.

Lemma 19.5. Let σk(n) =
∑

d|n d
k, and let q = e2πiτ . We have

g2(τ) =
4π4

3

(
1 + 240

∞∑
n=1

σ3(n)q
n

)
,

g3(τ) =
8π6

27

(
1− 504

∞∑
n=1

σ5(n)q
n

)
,

∆(τ) = g2(τ)
3 − 27g3(τ)

2 = (2π)12q
∞∏
n=1

(1− qn)24.

Proof. See Washington [1, pp. 273-274].

Corollary 19.6. With q = e2πiτ we have

j(τ) =
1

q
+ 744 +

∞∑
n=1

anq
n,

where the an are integers.
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Proof. Applying Lemma 19.5 yields

g2(τ)
3 =

64

27
π12(1 + 240q + 2160q2 + · · · )3 = 64

27
π12(1 + 720q + 179280q2 + · · · ),

27g3(τ)
2 =

64

27
π12(1− 504q − 16632q2 − · · · )2 = 64

27
π12(1− 1008q + 220752q2 + · · · ),

∆(τ) =
64

27
π12(1728q − 41472q2 + · · · ) = 64

27
π121728q(1− 24q + 252q2 + · · · ),

and we then have

j(τ) =
1728g2(τ)

3

∆(τ)
=

1

q
+ 744 +

∞∑
n=1

anq
n,

with an ∈ Z, since 1− 24q + 252q2 + · · · is an element of 1 + Z[[x]], hence invertible.

Remark 19.7. The proof of Corollary 19.6 explains the factor 1728 that appears in the
definition of the j-function: it is the least positive integer that ensures that the q-expansion
of j(τ) has integral coefficients.

The corollary implies that the j-function is a modular function for Γ(1), with a simple
pole at ∞. We proved in Theorem 18.5 that the j-function defines a holomorphic bijection
from Y (1) = H/Γ(1) to C. If we extend the domain of j to H∗ by defining j(∞) = ∞,
then the j-function defines an isomorphism from X(1) to the Riemann sphere S := P1(C)
that is holomorphic everywhere except for a simple pole at ∞. In fact, if we fix j(ρ) = 0,
j(i) = 1728, and j(∞) = ∞, then the j-function is uniquely determined by this property
(as noted above, we put j(i) = 1728 to obtain an integral q-expansion). It is for this reason
that the j-function is sometimes referred to as the modular function. Indeed, every modular
function for Γ(1) = SL2(Z) can be written in terms of the j-function.

Theorem 19.8. Every modular function for Γ(1) is a rational function of j(τ); in other
words C(Γ(1)) = C(j).

Proof. As noted above, the j-function is a modular function for Γ(1), so C(j) ⊆ C(Γ(1)). If
g : X(1) → C is a modular function for Γ(1) then f := g ◦ j−1 : S → C is meromorphic, and
Lemma 19.9 below implies that f is a rational function. Thus g = f ◦ j ∈ C(j).

Lemma 19.9. Every meromorphic function f : S → C on the Riemann sphere S := P1(C)
is a rational function.

Proof. Let f : S → C be a nonzero meromorphic function. We may assume without loss of
generality that f has no zeros or poles at ∞ := (1 : 0), since we can always apply a linear
fractional transformation γ ∈ SL2(C) to move a point where f does not have a pole or a
zero to ∞ and replace f by f ◦ γ (note that γ and γ−1 are rational functions, and if f ◦ γ
is a rational function, so is f = f ◦ γ ◦ γ−1).

Let {pi} be the set of poles of f(z), with orders mi := −ordpi(f), and let {qj} be the
set of zeros of f , with orders nj := ordqj (f). We claim that∑

i

mi =
∑
j

nj .
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To see this, triangulate S so that all the poles and zeros of f(z) lie in the interior of a
triangle. It follows from Cauchy’s argument principle (Theorem 14.17) that the contour
integral ∫

∆

f ′(z)

f(z)
dz

about each triangle (oriented counter clockwise) is the difference between the number of
zeros and poles that f(z) has in its interior. The sum of these integrals must be zero, since
each edge in the triangulation is traversed twice, once in each direction.

The function h : S → C defined by

h(z) = f(z) ·
∏

i(z − pi)
mi∏

j(z − qj)nj

has no zeros or poles on S. It follows from Liouville’s theorem (Theorem 14.30) that h is a
constant function, and therefore f(z) is a rational function of z.

Corollary 19.10. Every modular function f(τ) for Γ(1) that is holomorphic on H is a
polynomial in j(τ).

Proof. Theorem 19.8 implies that f can be written as a rational function of j, so

f(τ) = c

∏
i(j(τ)− αi)∏
k(j(τ)− βk)

,

for some c, αi, βk ∈ C. Now the restriction of j to any fundamental region for Γ(1) is a
bijection, so f(τ) must have a pole at j−1(βk) for each βk. But f(τ) is holomorphic and
therefore has no poles, so the set {βj} is empty and f(τ) is a polynomial in j(τ).

We proved in the previous lecture that the j-function j : X(1)
∼−→ S determines an

isomorphism of Riemann surfaces. As an algebraic curve over C, the function field of X(1) ≃
S = P1(C) is the rational function field C(t), and we have just shown that the field of modular
functions for Γ(1) is the field C(j) of rational functions of j. Thus, as claimed in Remark 19.3,
the function field C(X(1)) = C(t) and the field of modular functions C(Γ(1)) = C(j) are
isomorphic, with the isomorphism given by t 7→ j. More generally, for every congruence
subgroup Γ, the field C(XΓ) ≃ C(Γ) is a finite extension of C(t) ≃ C(j).

Theorem 19.11. Let Γ be a congruence subgroup. The field C(Γ) of modular functions
for Γ is a finite extension of C(j) of degree at most n := [Γ(1) : Γ].

Proof. Let γ1 be the identity in Γ(1) and let {γ1, · · · , γn} ⊆ Γ(1) be a set of right coset
representatives for Γ as a subgroup of Γ(1) (so Γ(1) = Γγ1 ⊔ · · · ⊔ Γγn).

Let f ∈ C(Γ) and for 1 ≤ i ≤ n define fi(τ) := f(γiτ). For any γ′i ∈ Γγi the functions
f(γ′iτ) and f(γiτ) are the same, since f is Γ-invariant. For any γ ∈ Γ(1), the set of functions
{f(γiγτ)} is therefore equal to the set of functions {f(γiτ)}, since multiplication on the right
by γ permutes the cosets {Γγi}. Any symmetric polynomial in the functions fi is thus Γ(1)-
invariant, and meromorphic at the cusps (since f , and therefore each fi, is), hence an element
of C(j), by Theorem 19.8. Now let

P (Y ) =
∏

1≤i≤n

(Y − fi).
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Then f = f1 is a root of P (since γ1 is the identity), and the coefficients of P (Y ) lie in C(j),
since they are all symmetric polynomials in the fi.

It follows that every f ∈ C(Γ) is the root of a monic polynomial in C(j)[Y ] of degree n;
this implies that C(Γ)/C(j) is an algebraic extension, and it is separable, since we are in
characteristic zero. We now claim that C(Γ) is finitely generated: if not we could pick
functions g1, . . . , gn+1 ∈ C(Γ) such that

C(j) ⊊ C(j)(g1) ⊊ C(j)(g1, g2) ⊊ · · · ⊊ C(j)(g1, . . . , gn+1).

But then C(j)(g1, . . . , gn+1) is a finite separable extension of C(j) of degree at least n+ 1,
and the primitive element theorem implies it is generated by some g ∈ C(Γ) whose minimal
polynomial must have degree greater than n, which is a contradiction. The same argument
then shows that [C(Γ) : C(j)] ≤ n.

Remark 19.12. If −I ∈ Γ then in fact [C(Γ) : C(Γ(1))] = [Γ(1) : Γ]; we will prove this for
Γ = Γ0(N) in the next section. In general [C(Γ) : C(Γ(1))] = [Γ(1) : Γ], where Γ denotes
the image of Γ in PSL2(Z) := SL2(Z)/{±I}.

19.2.1 Modular functions for Γ0(N)

We now consider modular functions for the congruence subgroup Γ0(N).

Theorem 19.13. The function jN (τ) := j(Nτ) is a modular function for Γ0(N).

Proof. The function jN (τ) is obviously meromorphic (in fact holomorphic) on H, since j(τ)
is, and it is meromorphic at the cusps for the same reason (note that τ is a cusp if and only
if Nτ is). We just need to show that jN (τ) is Γ0(N)-invariant.

Let γ =
(
a b
c d

)
∈ Γ0(N). Then c ≡ 0 mod N and

jN (γτ) = j(Nγτ) = j

(
N(aτ + b)

cτ + d

)
= j

(
aNτ + bN
c
NNτ + d

)
= j(γ′Nτ) = j(Nτ) = jN (τ),

where

γ′ =

(
a bN

c/N d

)
∈ SL2(Z),

since c/N is an integer and det(γ′) = det(γ) = 1. Thus jN (τ) is Γ0(N)-invariant.

Theorem 19.14. The field of modular functions for Γ0(N) is an extension of C(j) of degree
n := [Γ(1) : Γ0(N)] generated by jN (τ).

Proof. By the previous theorem, we have jN ∈ C(Γ0(N)), and from Theorem 19.11 we know
that C(Γ0(N)) is a finite extension of C(j) of degree at most n, so it suffices to show that
the minimal polynomial of jN over C(j) has degree at least n.

As in the proof of Theorem 19.11, let us fix right coset representatives {γ1, · · · , γn} for
Γ0(N) ⊆ Γ(1), and let P ∈ C(j)[Y ] be the minimal polynomial of jN over C(j). We may
view P (j(τ), jN (τ)) as a function of τ , which must be the zero function. If we replace τ by
γiτ then for each γi we have

0 = P (j(γiτ), jN (γiτ)) = P (j(τ), jN (γiτ)),

so the function jN (γiτ) is also a root of P (Y ).
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To prove that degP ≥ n it suffices to show that the n functions jN (γiτ) are distinct.
Suppose not. Then j(Nγiτ) = j(Nγkτ) for some i ̸= k and τ ∈ H that we can choose to
have stabilizer ±I. Fix a fundamental region F for H/Γ(1) and pick α, β ∈ Γ(1) so that
αNγiτ and βNγkτ lie in F . The j-function is injective on F , so

j(αNγiτ) = j(βNγkτ) ⇐⇒ αNγiτ = ±βNγkτ ⇐⇒ αNγi = ±βNγk,

where we may view N as the matrix
(
N 0
0 1

)
, since Nτ = Nτ+0

0τ+1 .
Now let γ = α−1β =

(
a b
c d

)
. We have(

N 0
0 1

)
γi = ±

(
a b
c d

)(
N 0
0 1

)
γk,

and therefore

γiγ
−1
k = ±

(
1/N 0
0 1

)(
a b
c d

)(
N 0
0 1

)
= ±

(
a b/N
cN d

)
.

We have γiγ
−1
k ∈ SL2(Z), so b/N is an integer, and cN ≡ 0 mod N , so γiγ

−1
k ∈ Γ0(N).

But then γi and γk lie in the same right coset of Γ0(N), which is a contradiction.

19.3 The modular polynomial

Definition 19.15. The modular polynomial ΦN is the minimal polynomial of jN over C(j).

It follows from the proof of Theorem 19.14 that we may write ΦN ∈ C(j)[Y ] as

ΦN (Y ) =

n∏
i=1

(Y − jN (γiτ)),

where {γ1, . . . γn} is a set of right coset representatives for Γ0(N). The coefficients of ΦN (Y )
are symmetric polynomials in jN (γiτ), so as in the proof of Theorem 19.11 they are Γ(1)-
invariant. They are holomorphic on H, so they are polynomials in j, by Corollary 19.10.
Thus ΦN ∈ C[j, Y ]. If we replace every occurrence of j in ΦN with a new variable X we
obtain a polynomial in C[X,Y ] that we write as ΦN (X,Y ).

Our next task is to prove that the coefficients of ΦN (X,Y ) are actually integers, not just
complex numbers. To simplify the presentation, we will only prove for prime N , which is all
that is needed in most practical applications (such as the SEA algorithm), and suffices to
prove the main theorem of complex multiplication. The proof for composite N is essentially
the same, but explicitly writing down a set of right coset representatives γi and computing
the q-expansions of the functions jN (γiτ) is more complicated.

We begin by fixing a specific set of right coset representatives for Γ0(N).

Lemma 19.16. For prime N we can write the right cosets of Γ0(N) in Γ(1) as{
Γ0(N)

}
∪
{
Γ0(N)ST k : 0 ≤ k < N

}
,

where S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.
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Proof. We first show that these cosets cover Γ(1). Let γ =
(
a b
c d

)
∈ Γ(1). If c ≡ 0 mod N ,

then γ ∈ Γ0(N) lies in the first coset. Otherwise, pick k ∈ [0, N − 1] so that kc ≡ d mod N
(c is nonzero modulo the prime N , so this is possible), and let

γ0 :=

(
ka− b a
kc− d c

)
∈ Γ0(N).

Then

γ0ST
k =

(
ka− b a
kc− d c

)(
0 −1
1 k

)
=

(
a b
c d

)
= γ,

lies in Γ0(N)ST k.
We now show the cosets are distinct. Suppose not. Then there must exist γ1, γ2 ∈ Γ0(N)

such that either (a) γ1 = γ2ST
k for some 0 ≤ k < N , or (b) γ1ST

j = γ2ST
k with

0 ≤ j < k < N . Let γ2 =
(
a b
c d

)
. In case (a) we have

γ1 =

(
a b
c d

)(
0 −1
1 k

)
=

(
b bk − a
d dk − c

)
∈ Γ0(N),

which implies d ≡ 0 mod N and det γ2 = ad− bc ≡ 0 mod N , a contradiction. In case (b),
with m = k − j we have

γ1 = γ2ST
mS−1 =

(
a b
c d

)(
0 −1
1 m

)(
0 1
−1 0

)
=

(
a− bm b
c− dm d

)
∈ Γ0(N).

Thus c − dm ≡ 0 mod N , and since c ≡ 0 mod N and m ̸≡ 0 mod N , we must have
d ≡ 0 mod N , which again implies det γ2 = ad− bc ≡ 0 mod N , a contradiction.

Theorem 19.17. ΦN ∈ Z[X,Y ].

Proof (for N prime). Let γk := ST k. By Lemma 19.16 we have

ΦN (Y ) =
(
Y − jN (τ)

)N−1∏
k=0

(
Y − jN (γkτ)

)
.

Let f(τ) be a coefficient of ΦN (Y ). Then f(τ) is a holomorphic function on H, since j(τ)
is, and f(τ) is Γ(1)-invariant, since it is a symmetric polynomial in jN (τ) and the functions
jN (γkτ), corresponding to a complete set of right coset representatives for Γ0(N); and f(τ)
is meromorphic at the cusps, since it is a polynomial in functions that are meromorphic
at the cusps. Thus f(τ) is a modular function for Γ(1) holomorphic on H and therefore
a polynomial in j(τ), by Corollary 19.10. By Lemma 19.18 below, if we can show that
the q-expansion of f(τ) has integer coefficients, then it will follow that f(τ) is an integer
polynomial in j(τ) and therefore ΦN ∈ Z[X,Y ].

We first show that the q-expansion of f(τ) has rational coefficients. We have

jN (τ) = j(Nτ) =
1

qN
+ 744 +

∞∑
n=1

anq
nN ,

where the an are integers, thus jN ∈ Z((q)). For jN (γkτ), we have

jN (γkτ) = j(Nγkτ) = j
((

N 0
0 1

)
ST kτ

)
= j
(
S
(
1 0
0 N

) (
1 k
0 1

)
τ
)
= j
((

1 0
0 N

) (
1 k
0 1

)
τ
)
= j

(
τ + k

N

)
,
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where we are able to drop the S because j(τ) is Γ-invariant. If we let ζN = e
2πi
N , then

q ((τ+k)/N) = e2πi(
τ+k
N ) = e2πi

k
N q1/N = ζkNq1/N ,

and

jN (γkτ) =
ζ−k
N

q1/N
+

∞∑
n=0

anζ
kn
N qn/N ,

thus jN (γkτ) ∈ Q(ζN )((q1/N )). The action of the Galois group Gal(Q(ζN )/Q) on the coeffi-
cients of the q-expansions of each jN (γkτ) induces a permutation of the set {jN (γkτ)} and
fixes jN (τ). It follows that the coefficients of the q-expansion of f are fixed by Gal(Q(ζN )/Q)
and must lie in Q. Thus f ∈ Q((q1/N )), and f(τ) is a polynomial in j(τ), so its q-expansion
contains only integral powers of q and f ∈ Q((q)).

We now note that the coefficients of the q-expansion of f(τ) are algebraic integers, since
the coefficients of the q-expansions of jN (τ) and the jN (γkτ) are algebraic integers, as is
any polynomial combination of them. This implies f(τ) ∈ Z((q)).

Lemma 19.18 (Hasse q-expansion principle). Let f(τ) be a modular function for Γ(1) that
is holomorphic on H and whose q-expansion has coefficients that lie in an additive subgroup A
of C. Then f(τ) = P (j(τ)), for some polynomial P ∈ A[X].

Proof. By Corollary 19.10, we know that f(τ) = P (j(τ)) for some P ∈ C[X], we just need
to show that P ∈ A[X]. We proceed by induction on d = degP . The lemma clearly
holds for d = 0, so assume d > 0. The q-expansion of the j-function begins with q−1, so
the q-expansion of f(τ) must have the form

∑∞
n=−d anq

n, with an ∈ A and a−d ̸= 0. Let
P1(X) = P (X) − a−dX

d, and let f1(τ) = P1(j(τ)) = f(τ) − a−dj(τ)
d. The q-expansion of

the function f1(τ) has coefficients in A, and by the inductive hypothesis, so does P1(X),
and therefore P (X) = P1(X) + a−dX

d also has coefficients in A.
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