18.783 Elliptic Curves Fall 2025
Lecture #18 11/13/2025

18 Riemann surfaces and modular curves

Let O be an order in an imaginary quadratic field and let cl(O) be its ideal class group
(proper O-ideals up to homothety, or equivalently, invertible fractional O-ideals modulo
invertible principal O-ideals). In the previous lecture we showed that the set

Ellp(C) := {j(F) : E/C with End(F) = O}

of isomorphism classes of elliptic curves E/C with complex multiplication by O is a torsor
for the group cl(O). If a and b are proper O-ideals and FEj is the elliptic curve corresponding
to the complex torus C/b, then E, has CM by O and the O-ideal a acts on Fj via

aEb - Ea—lb.
The isogeny ¢q: Ey — aEp induced by the lattice inclusion b € a~!b has kernel

ker ¢pq = Epla] :={P € Ey(C) : aP =0for all « € a C O ~ End(Ey)},
#ker ¢pq = deg pg = Na :=[O : qa].

To make further progress in our development of the theory of complex multiplication, we
need a better understanding of the isogenies ¢,. The key to doing so, both from a theoretical
and practical perspective, is to understand the modular curves that “parameterize” isogenies
of elliptic curves (in a sense that will be made clear in later lectures).

In this lecture our goal is simply to introduce the notion of a modular curve, beginning
with the canonical example X (1). Modular curves, and the modular functions that comprise
their function fields, are a major topic in their own right, one to which entire courses are
devoted; we shall necessarily only scratch the surface of this rich and beautiful subject. Our
presentation is adapted from [2, V.1] and [4, 1.2].

18.1 The modular curves X (1) and Y (1)

Recall from Lecture 15 that the modular group I' := SLa(Z) acts on the upper half-plane
H:= {7 € C:im7 > 0} via linear fractional transformations:

a b at +0b
T = :
c d ct+d
The quotient H/I" (the T-orbits of #) is known as the modular curve Y (1), whose points
may be identified with points in the fundamental region

F ={z€H re(z) € [-1/2,1/2) and |z| > 1, with |z| > 1 if re(z) > 0}.

You may be wondering why we call Y(1) a curve. Recall from Theorem 15.11 that the
j-function defines a holomorphic bijection from F to C, and we shall prove that in fact Y (1)
is isomorphic, as a complex manifold, to the complex plane C, which we may view as an
affine curve: if we put f(z,y) =y then the zero locus of f is {(z,0) : z € C} ~ C.

The fundamental region F is not a compact subset of H, since it is unbounded along
the positive imaginary axis. To remedy this deficiency, we compactify it by adjoining a
point at infinity to H and including it in F. We want SLs(Z) to act on our extended upper
half-plane, and we want this action to be continuous, as it is on H. Given that

ar+b a

im = -,
imr—oo cT + d C
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we should also include the set of rational numbers in our extended upper half-plane. So let
H* =HUQU {o0} = HUPLQ),

and let T act on H* by extending its action on H to P1(Q) via

The points in H* — H = P(Q) are called cusps; as you proved on Problem Set 8,
the cusps are all ['-equivalent. Thus we may extend our fundamental region F for H to a
fundamental region F* for H* by including a single cusp: the point co = (1 : 0) € P}(Q),
which we may view as a point lying infinitely far up the positive imaginary axis.

We can now define the modular curve X (1) = H*/T", which contains all the points
in Y(1), plus the cusp at infinity. This is a projective curve, in fact it is the projective
closure of Y(1) in P2. Tt is also a Riemann surface, a connected complex manifold of
dimension one. Before stating precisely what this means, our first goal is to prove that X (1)
is a compact Hausdorff space.

We extend the topology of H to a topology on H* by taking as a basis of open neigh-
borhoods:

e 7 € H: all open disks about 7 that lie in H;

o 7€ Q: all sets {7} U D, where D C H is an open disk tangent to the real line at 7;

e 7 = oco: all sets of the form {r € H :im7 > r} for any r > 0;
The topology of H* is generated by these open neighborhoods under unions and finite
intersections; note that the induced subspace topology on H is just its standard topology.

It is clear that H* is a Hausdorff space (any two points can be separated by neighbor-
hoods). It does not immediately follow that X (1) = H*/I" is a Hausdorff space; a quotient

of a Hausdorff space need not be Hausdorff. To show that X (1) is Hausdorff we first prove
two lemmas that will be useful in what follows.

Lemma 18.1. For any compact sets A, B C H the set S ={y €T :yAN B # 0} is finite.

Proof. Recall that for any v = (‘Cl 3) € I' we have

ar+b . (a7 +b)(ctau+d) (ad —bc)imT imT

crtd 0 leT + d|? et +d2 |er+d)?

im~y7r =im
Now define
r:=max{im7a/im7p : 74 € A, 75 € B}.

If y74 = 7 for some 74 € A and 75 € B, then |cT4 +d|? = im74/im 75 < r, which implies
upper bounds on |¢| and |d| for any v € S. Thus the number of pairs (¢, d) arising among
(f:‘ g) € S is finite. Let us now fix one such pair and define

s = max{|rp|lcTa +d| : T4 € A, 75 € B}.
For any v = (¢%) € I' we have |y7| = a7 4 b|/|cT + d|. If 74 = 75 for some 74 € A and

T € B, then |aT4 +b| = |7g||cTa +d| < s, which gives upper bounds on |a| and |b| as above.
The number of pairs (a, b) arising among (‘; cbl) € S is thus finite, hence S is finite. O
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Lemma 18.2. For any 11,70 € H* there exist open neighborhoods Uy, Us of 11, T such that
’yUlﬁUQ#@ = T = To,

for all v € T'. In particular, each T € H* has an open neighborhood U in which it is the sole
representative of its T'-orbit and YU N~'U = 0 for all v,~" € T such that y7 # ~'r.

Proof. We first note that if y7; = 7, then vU; N Uy # 0 for all open neighborhoods Uy, Us
of 11,79, so we only need to consider « for which y7; # 7.
We first consider 7,7 € H. Let C1,Cy C H be closed disks about 7,70 and define

5(01,02) = {’)/ el :~C1NCy # 0 and 11 # 7’2}.

If S is nonempty, pick v € S, and let Us and U}, be disjoint open neighborhoods of y7; and o
respectively (they exist because H is Hausdorff). Then ~1Us is an open neighborhood of 7
(since v acts continuously), and it contains a closed disk C C C; about 71, and the open set
U} similarly contains a closed disk Cf C Cy about 7. We then have S(C1,C5) C S(Cq, Cs),
since by construction, v ¢ S(C1,C5). By Lemma 18.1, S is finite, so if we continue in this
fashion we will eventually have S(C1, Cs) = (), at which point we may take Uy, Uy to be the
interiors of Cy, Cs.

We now consider 71 € H and 7 = 0o. Let U; be a neighborhood of 71 with U; C H. The
set {|cr +d|: 7 € Uy, e,d € Z not both 0} is bounded below, and {im~y7:vy € I',7 € U} is
bounded above, say by r, since im (¢ %) 7 =im7/[cT +d|?. If we let Uy = {7 : imT > r} be
our neighborhood of 75 = 0o, then yU; N Uy = () for all ¥ € T’ and the lemma holds. This
argument extends to all the cusps in H*, since every cusp is I'-equivalent to co, and we can
easily reverse the roles of 71 and 7o, since if yU; N Uy = () then U; Ny~ U, = 0.

Finally, if 4 =mm =ocowelet Uy =Us = {7 € H :im7 > 1} U {oo}: for im7 > 1 either
im~y7 = im7, in which case v = (} 1) fixes oo, or imy7 =im7/ler +d|* < 1.

To prove the last statement in the lemma, take 74 = 79 = 7 and U = Uy N Us. O

Theorem 18.3. X (1) is a connected compact Hausdorff space.

Proof. It is clear that H is connected, hence its closure H* is connected, and the quotient
of a connected space is connected, so X (1) is connected.

To show that X (1) is compact, we show that every open cover has a finite subcover.
Let {U;} be an open cover of X (1) and let 7: H* — X(1) be the quotient map. Then
{7=1(U;)} is an open cover of H* and it contains an open set Vj containing the point oo.
Let {V4,...,V,} be a finite subset of {7~1(U;)} covering the compact set F — Vp (note that
Vo contains a neighborhood {z : im z > r} of c0). Then {V},...,V,,} is a finite cover of F*,
and {7(Vp),...,m(V;,)} is a finite subcover of {U;}.

To show that X (1) is Hausdorff, let 21,29 € X (1) be distinct, and choose 71,72 so that
m(71) = 1 and w(m2) = x2. Then 7 # 7 for all v € I" (since x1 # x3), so by Lemma 18.2,
there are neighborhoods Uy and Us of 71 and 7 respectively for which vU; N Us = () for all
v € I'. Thus 7(U;) and w(Us) are disjoint neighborhoods of x; and x2. O

We note that Lemmas 18.1 and 18.2 and Theorem 18.3 all hold if we replace I' by any
finite index subgroup of I'; the proofs are essentially the same, the only difference is an
additional argument in the proof of Lemma 18.2 to handle inequivalent cusps.
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18.2 Riemann surfaces

Definition 18.4. A complex structure on a topological space X is an open cover {U;}
of X together with a set of compatible homeomorphisms® v;: U; — C with open images.
Homeomorphisms ¢; and ¢; are compatible if whenever U; N U; # () the transition map

Piov s (U NU;) — ¢;(U; N U;)
is holomorphic.

The homeomorphisms 1); are called charts (or local parameters), and the collection {1);}
is called an atlas. Each chart ¢; allows us to view a local neighborhood U; of X as a
region of the complex plane, and the transition maps allow us to move smoothly from
one region to another. Note that transition maps are automatically homeomorphisms; the
requirement that they be holomorphic is a stronger condition (this is what differentiates
complex manifolds from real manifolds).

Definition 18.5. A Riemann surface is a connected Hausdorff space with a complex struc-
ture (equivalently, it is a connected complex manifold of dimension one).?

Example 18.6. The torus C/L corresponding to an elliptic curve £//C is a Riemann surface.
To give C/L a complex structure let 7: C — C/L be the quotient map, let > 0 be less
than half the length of the shortest vector in L, and for each z € C in a fundamental region
for L, let U, C C be the open disk of radius r centered at z. The restriction of 7w to each U,
is injective (by our choice of ) and defines a homeomorphism. We may thus take {7(U,)}
as our open cover and the inverse maps 7~ 1: m(U,) — U, as our charts. The transition
maps are all the identity map, hence holomorphic.

It is clear that C/L is a connected Hausdorff space, hence a Riemann surface, in fact
a compact Riemann surface. We can compute its genus by triangulating a fundamental
parallelogram and computing its Euler characteristic. Recall Euler’s formula

V-E+F=2-2g,

where V' counts vertices, E counts edges, F' counts faces, and g is the genus. If L = [wy,ws)],
we may triangulate the parallelogram Fy by drawing a diagonal from w; to we. We then
have V' =1 (every lattice point is equivalent to 0), E = 3 (edges on the opposite side of the
parallelogram are equivalent, so 2 edges on the border plus the diagonal), and F' = 2 (two
triangles, one on each side of the diagonal). We thus have

1-342=2-2g,
and g = 1, as expected.

In order to show that X (1) is a Riemann surface, we need to give it a complex struc-
ture. The only difficulty that arises when doing so occurs at points in H* that possess
extra symmetries under the action of I'. We may restrict our attention to the fundamental
region F*, and in this region there are only three points that we need to worry about, the
points i, p := e2™/3  and co. We require the following lemma.

!Recall that a homeomorphism is a bicontinuous function, a continuous function with a continuous inverse.
2Some texts require Riemann surfaces to be second-countable (admit a countable basis of open sets), but
in fact this requirement is automatically satisfied; this is a celebrated theorem of Radé.
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Figure 1: H*/T’

Lemma 18.7. For 7 € F*, let G, denote the stabilizer of T in T = SLy(Z). Let S = (97')
and T = (§1). Then

{£I}~7Z/27 if T ¢ {i,p,00};
G - (S) ~7Z/4A7Z if T =1;
T ) (ST) ~ Z/6Z ifT=p
(+T) ~7Z if T = o0.

Proof. See Problem Set 8, or stare at Figure 1 and note —1I acts trivially and Too = co. [

18.3 The modular curve X (1) as a Riemann surface

We now put a complex structure on X(1). Let m: H* — X (1) be the quotient map, and
for each point = € X(1) let 7, be the unique point in the fundamental region F* for which
m(1z) = x, and let G, = G, be the stabilizer of 7,. For each 7, € F*, we can pick a
neighborhood U, such that yU, N U, = 0 for all v ¢ G, by Lemma 18.2. The sets w(U,)
form an open cover of X (1). For x # oo, we can map U, to an open subset of the unit disk
D :={z € C: |z| < 1} via the homeomorphism d,: H — D defined by

T — Ty

0x(7) = (1)

T—Tg

To visualize the map d,, note that it sends 7, to the origin, and if we extend its domain
to H C C, it maps the real line to the unit circle minus the point 1 and sends co to 1. Note
that im7 > 0 and im 7, < 0, so 0;(7) is defined and nonzero for all 7 € H.
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To define 1, we need to map 7(Uy) into D. For 7, # i, p, 00 we have G, = {£1}, which
fixes every point in U,, not just 7. In this case the restriction of m to U, is injective, we
have U, /T = U, /G, = Uy, so we can simply define v, := 6, o w1

When |G| > 2, the restriction of 7w to U, is no longer injective (it is at 7., but not at
points near 7)), so we cannot use ¢, = 6, o7 . We instead define v, (2) = 6,(7~1(2))",
where n = |G;|/2 is the size of the I'-orbits in U, — {7,}. Note that when G = {£1} we
have n = 1 and this is the same as defining ¢, = §,om 1. To prove that this actually works,

we will need the following lemma.

Lemma 18.8. Let 7, € H, with §,(7) as in (1), and let p: H — H be a holomorphic
function fixing T, whose n-fold composition with itself is the identity, with n minimal. Then
for some primitive nth root of unity ¢, we have §,(p(7)) = (d,(7) for all T € H.

Proof. The map f = §, 0 ¢ 0d, ! is a holomorphic bijection (conformal map) from D to D
that fixes 0. Every such function is a rotation f(z) = (z with |(| = 1, by [5, Cor. 8.2.3].
Since the n-fold composition of f with itself is the identity map, with n minimal, ¢ must be
a primitive nth root of unity. O

What about x = c0? We have G, = (£T), so the intersection of the I'-orbit of any
point 7 € Uso — {00} with Uy is the set {7 +m : m € Z}. We now define

2miz if
5s(2) = {e if z # oo,

0 if z = o0,
and let Yoo = doo © ™ L. Then doo (T + M) = doo(7) for all 7 € Uy, — {00} and m € Z.

The following commutative diagrams summarize the charts 1,.:

Uy —7— U, /G, Uy —7m— Uy /Gy
| | L |
l { \ l
D 2 — D D
T # 00, 0g(T) = 2= T = 00, 6,(7) = 2™
n=|Gy|/2

We are now ready to prove that X(1) is a compact Riemann surface. Theorem 18.3
states that X (1) is a connected compact Hausdorff space, so we just need to prove that we
have a complex structure on X (1). This means verifying that the maps ¢, : 7(U,) — D are
well-defined (we must have ¥ (7 (y7)) = ¢(xw(7)) for all 7 € U, and v € G;), that they are
homeomorphisms, and that the transition maps are holomorphic.

Theorem 18.9. The open cover {U,} and atlas {15} define a complex structure on X (1).

Proof. As above, let © = mw(7,) with 7, € F*. We first verify that the maps 1, are well-
defined homeomorphisms.

We first consider z # co. By Lemma 18.7, the stabilizer G, of 7, is cyclic of order 2n,
and v = +1 acts trivially for all v € G,. Applying Lemma 18.8 to the function ¢(7) = v,
we have 0;(vz) = (d5(2) for all z € Uy, where ( is a primitive nth root of unity. Thus

Ya(m(72)) = 02(72)" = ("02(2)" = 02(2)" = Yu(m(2))
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for all z € U,. It follows that 1, is well defined on U,/G,. To show that 1, is a home-
omorphism, it suffices to show that it is holomorphic and injective, by the open mapping
theorem [5, Thm. 5.5.4|. Tt is clearly holomorphic, since §,(7) is a rational function with no
poles in U,. To prove injectivity, assume 9, (7(71)) = ¥z(7(72)). Then for some integer k

0 (11)" = 02(72)"
6z(11) = Ckér(ﬁ) = 5x(7k72)
T = "}/kTQ
(1) = 7(12).
Thus 1, is injective and therefore a homeomorphism.

For = oo, the point 7 = oo € H* is the unique point in Uy, for which 7(7) = oo, and
Y.(7) = 0 if and only if 7 = co. So 1 is well defined at co. For 7 € Uy, — {00}, we have

oo (W7 + 1)) = B (7 4 m) = THTHM = 27T = 5 () = oo (m(7))
for all m € Z, thus 1 is well defined. The map 1 is clearly continuous, and it has a

continuous inverse
1 .
w;ol(Z) _ {W(Zmlogz) if 2 #0,

00 otherwise,

thus it is a homeomorphism.
We now show that the transition maps are holomorphic. Let us first consider U, U,
with x,y # co. For any z € ¢, (m(U,) N7(Uy)) € D we have

wyoty ! (2) =yyomom oy l(2) = (Byom) o (Yo om) T (2) = dy” 0 8, (#1/"),

where n, = |G,|/2 and n, = |G|/2. The map 6, 04, * is holomorphic on D, so it suffices to
show that it is a power series in 2™=; this will imply that (5; Yod, 1(2’1/ =) is defined by a power
series in z, hence holomorphic. Let { be an n,th root of unity such that 6,(vz) = (dx(z2),
where v generates G, as in Lemma 18.8. Note that w o+ = 7 for any v € I, so we have

8y 0851 (¢2) = (Yyom) o (Y001 (2) =ty omodt(2) = 6" 08, (2).

It follows that 5;9 o ;! is a power series in 2", since it maps (z and z to the same point.
For x # oo and y = oo we have

Yoo 041 (2) = Yy o mom 0911 (2) = (o m) o (1 0 m)1(2)
= 0o0 00,1 (2"/7) = exp (27Ti (5;1(21/7”)) ;

where Jo, 0 8,1 is holomorphic. By the argument above, it is a power series in 2",
For the case x = oo and y # oo, we have

53 (2 +1) =ty omoTz = o m(z) = 337 (2),

o) 5;} Y is a holomorphic function in the variable ¢ = €2™* (note 2z € Uy N U, is bounded).
Thus the transition map

002 () =05 (g tow )

is holomorphic. The case = y = 0o is trivial, since 1o, 0 93! is the identity map. O
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Theorem 18.10. The modular curve X (1) is a compact Riemann surface of genus 0.

Proof. That X (1) is a compact Riemann surface follows immediately from Theorems 18.3
and 18.9. To show that it has genus 0, we triangulate X (1) by connecting the points i, p,
and oo, partitioning the surface into two triangles. Applying Euler’s formula

V-E4+F=2-2g
with V =3, E =3, and F' = 2, we see that g = 0. 0

Theorem 18.10 implies that X (1) is homeomorphic to the Riemann sphere S = P!(C),
since up to homeomorphism, S is the unique compact Riemann surface of genus 0. The
modular curve Y (1) is also a Riemann surface of genus 0, but it is not compact. As we saw
in Lecture 17, Y (1) is homeomorphic to the complex plane C via the j-function.

18.4 Modular curves

We also wish to consider modular curves defined as quotients H* /T for various finite index
subgroups I' of SLy(Z) that have desirable arithmetic properties.

Definition 18.11. The principal congruence subgroup I'(N) is defined by
P(N) ={(¢5) €8La(Z) : (¢5) = (§9) mod N}

A congruence subgroup (of level N) is any subgroup of SLy(Z) that contains I'(IV). A
modular curve is a quotient of H* or ‘H by a congruence subgroup.

Remark 18.12. Every congruence subgroup is a finite index subgroup of SLo(Z). The
converse does not hold; in fact, most finite index subgroups of SLg(Z) are not congruence
subgroups, although it is surprisingly difficult to write down explicit examples (you will have
the opportunity to explore this question in Problem Set 10).

There are two families of congruence subgroups of particular interest:

Dy(N):={(28%) €SLa(Z): (2%) = ({}) mod N} ;
To(NV) := {(2g) €SL2(2): (24) = (53

Note that T'(1) = I';(1) = Ty(1) = SLy(Z). We now define the modular curves
X(N):=#H*/T(N),  Xi(N):=H*/T1(N),  Xo(N) = H*/To(N),
and similarly define
Y(N)=#H/T(N),  Yi(N):=#H/Ti(N),  Yo(N) := H/Ty(N).

Following the same strategy we used for X(1), one can show that X(N), Xo(N), X1(N)
are all compact Riemann surfaces (the only difference in the proof is that in general a
fundamental region may contain multiple cusps, we only had to consider the cusp o).
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