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18 Riemann surfaces and modular curves

Let O be an order in an imaginary quadratic field and let cl(O) be its ideal class group
(proper O-ideals up to homothety, or equivalently, invertible fractional O-ideals modulo
invertible principal O-ideals). In the previous lecture we showed that the set

EllO(C) := {j(E) : E/C with End(E) = O}

of isomorphism classes of elliptic curves E/C with complex multiplication by O is a torsor
for the group cl(O). If a and b are proper O-ideals and Eb is the elliptic curve corresponding
to the complex torus C/b, then Eb has CM by O and the O-ideal a acts on Eb via

aEb = Ea−1b.

The isogeny ϕa : Eb → aEb induced by the lattice inclusion b ⊆ a−1b has kernel

kerϕa = Eb[a] := {P ∈ Eb(C) : αP = 0 for all α ∈ a ⊆ O ≃ End(Eb)},
#kerϕa = deg ϕa = Na := [O : a].

To make further progress in our development of the theory of complex multiplication, we
need a better understanding of the isogenies ϕa. The key to doing so, both from a theoretical
and practical perspective, is to understand the modular curves that “parameterize” isogenies
of elliptic curves (in a sense that will be made clear in later lectures).

In this lecture our goal is simply to introduce the notion of a modular curve, beginning
with the canonical example X(1). Modular curves, and the modular functions that comprise
their function fields, are a major topic in their own right, one to which entire courses are
devoted; we shall necessarily only scratch the surface of this rich and beautiful subject. Our
presentation is adapted from [2, V.1] and [4, I.2].

18.1 The modular curves X (1) and Y (1)

Recall from Lecture 15 that the modular group Γ := SL2(Z) acts on the upper half-plane
H := {τ ∈ C : im τ > 0} via linear fractional transformations:(

a b
c d

)
τ :=

aτ + b

cτ + d
.

The quotient H/Γ (the Γ-orbits of H) is known as the modular curve Y (1), whose points
may be identified with points in the fundamental region

F = {z ∈ H : re(z) ∈ [−1/2, 1/2) and |z| ≥ 1, with |z| > 1 if re(z) > 0}.

You may be wondering why we call Y (1) a curve. Recall from Theorem 15.11 that the
j-function defines a holomorphic bijection from F to C, and we shall prove that in fact Y (1)
is isomorphic, as a complex manifold, to the complex plane C, which we may view as an
affine curve: if we put f(x, y) = y then the zero locus of f is {(x, 0) : x ∈ C} ≃ C.

The fundamental region F is not a compact subset of H, since it is unbounded along
the positive imaginary axis. To remedy this deficiency, we compactify it by adjoining a
point at infinity to H and including it in F . We want SL2(Z) to act on our extended upper
half-plane, and we want this action to be continuous, as it is on H. Given that

lim
im τ→∞

aτ + b

cτ + d
=
a

c
,
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we should also include the set of rational numbers in our extended upper half-plane. So let

H∗ = H ∪Q ∪ {∞} = H ∪ P1(Q),

and let Γ act on H∗ by extending its action on H to P1(Q) via(
a b
c d

)
(x : y) = (ax+ by : cx+ dy).

The points in H∗ − H = P1(Q) are called cusps; as you proved on Problem Set 8,
the cusps are all Γ-equivalent. Thus we may extend our fundamental region F for H to a
fundamental region F∗ for H∗ by including a single cusp: the point ∞ = (1 : 0) ∈ P1(Q),
which we may view as a point lying infinitely far up the positive imaginary axis.

We can now define the modular curve X(1) = H∗/Γ, which contains all the points
in Y (1), plus the cusp at infinity. This is a projective curve, in fact it is the projective
closure of Y (1) in P2. It is also a Riemann surface, a connected complex manifold of
dimension one. Before stating precisely what this means, our first goal is to prove that X(1)
is a compact Hausdorff space.

We extend the topology of H to a topology on H∗ by taking as a basis of open neigh-
borhoods:

• τ ∈ H: all open disks about τ that lie in H;

• τ ∈ Q: all sets {τ} ∪D, where D ⊆ H is an open disk tangent to the real line at τ ;

• τ = ∞: all sets of the form {τ ∈ H : im τ > r} for any r > 0;

The topology of H∗ is generated by these open neighborhoods under unions and finite
intersections; note that the induced subspace topology on H is just its standard topology.

It is clear that H∗ is a Hausdorff space (any two points can be separated by neighbor-
hoods). It does not immediately follow that X(1) = H∗/Γ is a Hausdorff space; a quotient
of a Hausdorff space need not be Hausdorff. To show that X(1) is Hausdorff we first prove
two lemmas that will be useful in what follows.

Lemma 18.1. For any compact sets A,B ⊆ H the set S = {γ ∈ Γ : γA ∩B ̸= ∅} is finite.

Proof. Recall that for any γ =
(
a b
c d

)
∈ Γ we have

im γτ = im
aτ + b

cτ + d
= im

(aτ + b)(ctau+ d)

|cτ + d|2
=

(ad− bc) im τ

|cτ + d|2
=

im τ

|cτ + d|2
.

Now define
r := max{im τA/ im τB : τA ∈ A, τB ∈ B}.

If γτA = τB for some τA ∈ A and τB ∈ B, then |cτA+ d|2 = im τA/ im τB ≤ r, which implies
upper bounds on |c| and |d| for any γ ∈ S. Thus the number of pairs (c, d) arising among(
a b
c d

)
∈ S is finite. Let us now fix one such pair and define

s = max{|τB||cτA + d| : τA ∈ A, τB ∈ B}.

For any γ =
(
a b
c d

)
∈ Γ we have |γτ | = |aτ + b|/|cτ + d|. If γτA = τB for some τA ∈ A and

τB ∈ B, then |aτA+b| = |τB||cτA+d| ≤ s, which gives upper bounds on |a| and |b| as above.
The number of pairs (a, b) arising among

(
a b
c d

)
∈ S is thus finite, hence S is finite.
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Lemma 18.2. For any τ1, τ2 ∈ H∗ there exist open neighborhoods U1, U2 of τ1, τ2 such that

γU1 ∩ U2 ̸= ∅ ⇐⇒ γτ1 = τ2,

for all γ ∈ Γ. In particular, each τ ∈ H∗ has an open neighborhood U in which it is the sole
representative of its Γ-orbit and γU ∩ γ′U = ∅ for all γ, γ′ ∈ Γ such that γτ ̸= γ′τ .

Proof. We first note that if γτ1 = τ2, then γU1 ∩ U2 ̸= ∅ for all open neighborhoods U1, U2

of τ1, τ2, so we only need to consider γ for which γτ1 ̸= τ2.
We first consider τ1, τ2 ∈ H. Let C1, C2 ⊆ H be closed disks about τ1, τ2 and define

S(C1, C2) := {γ ∈ Γ : γC1 ∩ C2 ̸= ∅ and γτ1 ̸= τ2}.

If S is nonempty, pick γ ∈ S, and let U3 and U ′
2 be disjoint open neighborhoods of γτ1 and τ2

respectively (they exist because H is Hausdorff). Then γ−1U3 is an open neighborhood of τ1
(since γ acts continuously), and it contains a closed disk C ′

1 ⊆ C1 about τ1, and the open set
U ′
2 similarly contains a closed disk C ′

2 ⊆ C2 about τ2. We then have S(C ′
1, C

′
2) ⊊ S(C1, C2),

since by construction, γ ̸∈ S(C ′
1, C

′
2). By Lemma 18.1, S is finite, so if we continue in this

fashion we will eventually have S(C1, C2) = ∅, at which point we may take U1, U2 to be the
interiors of C1, C2.

We now consider τ1 ∈ H and τ2 = ∞. Let U1 be a neighborhood of τ1 with U1 ⊆ H. The
set {|cτ + d| : τ ∈ U1, c, d ∈ Z not both 0} is bounded below, and {im γτ : γ ∈ Γ, τ ∈ U1} is
bounded above, say by r, since im

(
a b
c d

)
τ = im τ/|cτ + d|2. If we let U2 = {τ : im τ > r} be

our neighborhood of τ2 = ∞, then γU1 ∩ U2 = ∅ for all γ ∈ Γ and the lemma holds. This
argument extends to all the cusps in H∗, since every cusp is Γ-equivalent to ∞, and we can
easily reverse the roles of τ1 and τ2, since if γU1 ∩ U2 = ∅ then U1 ∩ γ−1U2 = ∅.

Finally, if τ1 = τ2 = ∞ we let U1 = U2 = {τ ∈ H : im τ > 1} ∪ {∞}: for im τ > 1 either
im γτ = im τ , in which case γ = ( 1 ∗

0 1 ) fixes ∞, or im γτ = im τ/|cτ + d|2 < 1.
To prove the last statement in the lemma, take τ1 = τ2 = τ and U = U1 ∩ U2.

Theorem 18.3. X(1) is a connected compact Hausdorff space.

Proof. It is clear that H is connected, hence its closure H∗ is connected, and the quotient
of a connected space is connected, so X(1) is connected.

To show that X(1) is compact, we show that every open cover has a finite subcover.
Let {Ui} be an open cover of X(1) and let π : H∗ → X(1) be the quotient map. Then
{π−1(Ui)} is an open cover of H∗ and it contains an open set V0 containing the point ∞.
Let {V1, . . . , Vn} be a finite subset of {π−1(Ui)} covering the compact set F −V0 (note that
V0 contains a neighborhood {z : im z > r} of ∞). Then {V0, . . . , Vn} is a finite cover of F∗,
and {π(V0), . . . , π(Vn)} is a finite subcover of {Ui}.

To show that X(1) is Hausdorff, let x1, x2 ∈ X(1) be distinct, and choose τ1, τ2 so that
π(τ1) = x1 and π(τ2) = x2. Then τ2 ̸= γτ1 for all γ ∈ Γ (since x1 ̸= x2), so by Lemma 18.2,
there are neighborhoods U1 and U2 of τ1 and τ2 respectively for which γU1 ∩ U2 = ∅ for all
γ ∈ Γ. Thus π(U1) and π(U2) are disjoint neighborhoods of x1 and x2.

We note that Lemmas 18.1 and 18.2 and Theorem 18.3 all hold if we replace Γ by any
finite index subgroup of Γ; the proofs are essentially the same, the only difference is an
additional argument in the proof of Lemma 18.2 to handle inequivalent cusps.
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18.2 Riemann surfaces

Definition 18.4. A complex structure on a topological space X is an open cover {Ui}
of X together with a set of compatible homeomorphisms1 ψi : Ui → C with open images.
Homeomorphisms ψi and ψj are compatible if whenever Ui ∩ Uj ̸= ∅ the transition map

ψj ◦ ψ−1
i : ψi(Ui ∩ Uj) → ψj(Ui ∩ Uj)

is holomorphic.

The homeomorphisms ψi are called charts (or local parameters), and the collection {ψi}
is called an atlas. Each chart ψi allows us to view a local neighborhood Ui of X as a
region of the complex plane, and the transition maps allow us to move smoothly from
one region to another. Note that transition maps are automatically homeomorphisms; the
requirement that they be holomorphic is a stronger condition (this is what differentiates
complex manifolds from real manifolds).

Definition 18.5. A Riemann surface is a connected Hausdorff space with a complex struc-
ture (equivalently, it is a connected complex manifold of dimension one).2

Example 18.6. The torus C/L corresponding to an elliptic curve E/C is a Riemann surface.
To give C/L a complex structure let π : C → C/L be the quotient map, let r > 0 be less
than half the length of the shortest vector in L, and for each z ∈ C in a fundamental region
for L, let Uz ⊆ C be the open disk of radius r centered at z. The restriction of π to each Uz
is injective (by our choice of r) and defines a homeomorphism. We may thus take {π(Uz)}
as our open cover and the inverse maps π−1 : π(Uz) → Uz as our charts. The transition
maps are all the identity map, hence holomorphic.

It is clear that C/L is a connected Hausdorff space, hence a Riemann surface, in fact
a compact Riemann surface. We can compute its genus by triangulating a fundamental
parallelogram and computing its Euler characteristic. Recall Euler’s formula

V − E + F = 2− 2g,

where V counts vertices, E counts edges, F counts faces, and g is the genus. If L = [ω1, ω2],
we may triangulate the parallelogram F0 by drawing a diagonal from ω1 to ω2. We then
have V = 1 (every lattice point is equivalent to 0), E = 3 (edges on the opposite side of the
parallelogram are equivalent, so 2 edges on the border plus the diagonal), and F = 2 (two
triangles, one on each side of the diagonal). We thus have

1− 3 + 2 = 2− 2g,

and g = 1, as expected.

In order to show that X(1) is a Riemann surface, we need to give it a complex struc-
ture. The only difficulty that arises when doing so occurs at points in H∗ that possess
extra symmetries under the action of Γ. We may restrict our attention to the fundamental
region F∗, and in this region there are only three points that we need to worry about, the
points i, ρ := e2πi/3, and ∞. We require the following lemma.

1Recall that a homeomorphism is a bicontinuous function, a continuous function with a continuous inverse.
2Some texts require Riemann surfaces to be second-countable (admit a countable basis of open sets), but

in fact this requirement is automatically satisfied; this is a celebrated theorem of Radó.
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Figure 1: H∗/Γ

Lemma 18.7. For τ ∈ F∗, let Gτ denote the stabilizer of τ in Γ = SL2(Z). Let S =
(
0 −1
1 0

)
and T = ( 1 1

0 1 ). Then

Gτ =


{±I} ≃ Z/2Z if τ /∈ {i, ρ,∞};
⟨S⟩ ≃ Z/4Z if τ = i;

⟨ST ⟩ ≃ Z/6Z if τ = ρ

⟨±T ⟩ ≃ Z if τ = ∞.

Proof. See Problem Set 8, or stare at Figure 1 and note −I acts trivially and T∞ = ∞.

18.3 The modular curve X(1) as a Riemann surface

We now put a complex structure on X(1). Let π : H∗ → X(1) be the quotient map, and
for each point x ∈ X(1) let τx be the unique point in the fundamental region F∗ for which
π(τx) = x, and let Gx = Gτx be the stabilizer of τx. For each τx ∈ F∗, we can pick a
neighborhood Ux such that γUx ∩ Ux = ∅ for all γ ̸∈ Gx, by Lemma 18.2. The sets π(Ux)
form an open cover of X(1). For x ̸= ∞, we can map Ux to an open subset of the unit disk
D := {z ∈ C : |z| < 1} via the homeomorphism δx : H → D defined by

δx(τ) :=
τ − τx
τ − τx

. (1)

To visualize the map δx, note that it sends τx to the origin, and if we extend its domain
to H ⊆ C, it maps the real line to the unit circle minus the point 1 and sends ∞ to 1. Note
that im τ > 0 and im τx < 0, so δx(τ) is defined and nonzero for all τ ∈ H.
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To define ψx we need to map π(Ux) into D. For τx ̸= i, ρ,∞ we have Gx = {±1}, which
fixes every point in Ux, not just τx. In this case the restriction of π to Ux is injective, we
have Ux/Γ = Ux/Gx = Ux, so we can simply define ψx := δx ◦ π−1.

When |Gx| > 2, the restriction of π to Ux is no longer injective (it is at τx, but not at
points near τx), so we cannot use ψx = δx ◦ π−1. We instead define ψx(z) = δx(π

−1(z))n,
where n = |Gx|/2 is the size of the Γ-orbits in Ux − {τx}. Note that when Gx = {±1} we
have n = 1 and this is the same as defining ψx = δx ◦π−1. To prove that this actually works,
we will need the following lemma.

Lemma 18.8. Let τx ∈ H, with δx(τ) as in (1), and let φ : H → H be a holomorphic
function fixing τx whose n-fold composition with itself is the identity, with n minimal. Then
for some primitive nth root of unity ζ, we have δx(φ(τ)) = ζδx(τ) for all τ ∈ H.

Proof. The map f = δx ◦ φ ◦ δ−1
x is a holomorphic bijection (conformal map) from D to D

that fixes 0. Every such function is a rotation f(z) = ζz with |ζ| = 1, by [5, Cor. 8.2.3].
Since the n-fold composition of f with itself is the identity map, with n minimal, ζ must be
a primitive nth root of unity.

What about x = ∞? We have G∞ = ⟨±T ⟩, so the intersection of the Γ-orbit of any
point τ ∈ U∞ − {∞} with U∞ is the set {τ +m : m ∈ Z}. We now define

δ∞(z) :=

{
e2πiz if z ̸= ∞,

0 if z = ∞,

and let ψ∞ = δ∞ ◦ π−1. Then δ∞(τ +m) = δ∞(τ) for all τ ∈ U∞ − {∞} and m ∈ Z.

The following commutative diagrams summarize the charts ψx:

Ux Ux/Gx Ux Ux/Gx

D D D

π

δx ψx

zn

π

δx ψx

x ̸= ∞, δx(τ) =
τ−τx
τ−τx x = ∞, δx(τ) = e2πiτ

n = |Gx|/2

We are now ready to prove that X(1) is a compact Riemann surface. Theorem 18.3
states that X(1) is a connected compact Hausdorff space, so we just need to prove that we
have a complex structure on X(1). This means verifying that the maps ψx : π(Ux) → D are
well-defined (we must have ψ(π(γτ)) = ψ(π(τ)) for all τ ∈ Ux and γ ∈ Gx), that they are
homeomorphisms, and that the transition maps are holomorphic.

Theorem 18.9. The open cover {Ux} and atlas {ψx} define a complex structure on X(1).

Proof. As above, let x = π(τx) with τx ∈ F∗. We first verify that the maps ψx are well-
defined homeomorphisms.

We first consider x ̸= ∞. By Lemma 18.7, the stabilizer Gx of τx is cyclic of order 2n,
and γn = ±1 acts trivially for all γ ∈ Gx. Applying Lemma 18.8 to the function φ(τ) = γτ ,
we have δx(γz) = ζδx(z) for all z ∈ Ux, where ζ is a primitive nth root of unity. Thus

ψx(π(γz)) = δx(γz)
n = ζnδx(z)

n = δx(z)
n = ψx(π(z))
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for all z ∈ Ux. It follows that ψx is well defined on Ux/Gx. To show that ψx is a home-
omorphism, it suffices to show that it is holomorphic and injective, by the open mapping
theorem [5, Thm. 5.5.4]. It is clearly holomorphic, since δx(τ) is a rational function with no
poles in Ux. To prove injectivity, assume ψx(π(τ1)) = ψx(π(τ2)). Then for some integer k

δx(τ1)
n = δx(τ2)

n

δx(τ1) = ζkδx(τ2) = δx(γ
kτ2)

τ1 = γkτ2

π(τ1) = π(τ2).

Thus ψx is injective and therefore a homeomorphism.
For x = ∞, the point τ = ∞ ∈ H∗ is the unique point in U∞ for which π(τ) = ∞, and

ψx(τ) = 0 if and only if τ = ∞. So ψ∞ is well defined at ∞. For τ ∈ U∞ − {∞}, we have

ψ∞(π(τ +m)) = δ∞(τ +m) = e2πi(τ+m) = e2πiτ = δ∞(τ) = ψ∞(π(τ))

for all m ∈ Z, thus ψ∞ is well defined. The map ψ∞ is clearly continuous, and it has a
continuous inverse

ψ−1
∞ (z) =

{
π
(

1
2πi log z

)
if z ̸= 0,

∞ otherwise,

thus it is a homeomorphism.
We now show that the transition maps are holomorphic. Let us first consider Ux, Uy

with x, y ̸= ∞. For any z ∈ ψx(π(Ux) ∩ π(Uy)) ⊆ D we have

ψy ◦ ψ−1
x (z) = ψy ◦ π ◦ π−1 ◦ ψ−1

x (z) = (ψy ◦ π) ◦ (ψx ◦ π)−1(z) = δ
ny
y ◦ δ−1

x (z1/nx),

where nx = |Gx|/2 and ny = |Gy|/2. The map δny
y ◦δ−1

x is holomorphic on D, so it suffices to
show that it is a power series in znx ; this will imply that δny

y ◦δ−1
x (z1/nx) is defined by a power

series in z, hence holomorphic. Let ζ be an nxth root of unity such that δx(γz) = ζδx(z),
where γ generates Gx, as in Lemma 18.8. Note that π ◦ γ = π for any γ ∈ Γ, so we have

δ
ny
y ◦ δ−1

x (ζz) = (ψy ◦ π) ◦ (γ ◦ δ−1
x (z)) = ψy ◦ π ◦ δ−1

x (z) = δ
ny
y ◦ δ−1

x (z).

It follows that δny
y ◦ δ−1

x is a power series in znx , since it maps ζz and z to the same point.
For x ̸= ∞ and y = ∞ we have

ψ∞ ◦ ψ−1
x (z) = ψy ◦ π ◦ π−1 ◦ ψ−1

x (z) = (ψy ◦ π) ◦ (ψx ◦ π)−1(z)

= δ∞ ◦ δ−1
x (z1/nx) = exp

(
2πi δ−1

x (z1/nx)
)
,

where δ∞ ◦ δ−1
x is holomorphic. By the argument above, it is a power series in znx .

For the case x = ∞ and y ̸= ∞, we have

δ
ny
y (z + 1) = ψy ◦ π ◦ Tz = ψy ◦ π(z) = δ

ny
y (z),

so δny
y is a holomorphic function in the variable q = e2πiz (note z ∈ U∞ ∩ Uy is bounded).

Thus the transition map

ψy ◦ ψ−1
∞ (z) = δ

ny
y

(
1

2πi
log z

)
is holomorphic. The case x = y = ∞ is trivial, since ψ∞ ◦ ψ−1

∞ is the identity map.
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Theorem 18.10. The modular curve X(1) is a compact Riemann surface of genus 0.

Proof. That X(1) is a compact Riemann surface follows immediately from Theorems 18.3
and 18.9. To show that it has genus 0, we triangulate X(1) by connecting the points i, ρ,
and ∞, partitioning the surface into two triangles. Applying Euler’s formula

V − E + F = 2− 2g

with V = 3, E = 3, and F = 2, we see that g = 0.

Theorem 18.10 implies that X(1) is homeomorphic to the Riemann sphere S = P1(C),
since up to homeomorphism, S is the unique compact Riemann surface of genus 0. The
modular curve Y (1) is also a Riemann surface of genus 0, but it is not compact. As we saw
in Lecture 17, Y (1) is homeomorphic to the complex plane C via the j-function.

18.4 Modular curves

We also wish to consider modular curves defined as quotients H∗/Γ for various finite index
subgroups Γ of SL2(Z) that have desirable arithmetic properties.

Definition 18.11. The principal congruence subgroup Γ(N) is defined by

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 0

0 1 ) mod N
}
.

A congruence subgroup (of level N) is any subgroup of SL2(Z) that contains Γ(N). A
modular curve is a quotient of H∗ or H by a congruence subgroup.

Remark 18.12. Every congruence subgroup is a finite index subgroup of SL2(Z). The
converse does not hold; in fact, most finite index subgroups of SL2(Z) are not congruence
subgroups, although it is surprisingly difficult to write down explicit examples (you will have
the opportunity to explore this question in Problem Set 10).

There are two families of congruence subgroups of particular interest:

Γ1(N) :=
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 ∗

0 1 ) mod N
}
;

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( ∗ ∗

0 ∗ ) mod N
}
;

Note that Γ(1) = Γ1(1) = Γ0(1) = SL2(Z). We now define the modular curves

X(N) := H∗/Γ(N), X1(N) := H∗/Γ1(N), X0(N) := H∗/Γ0(N),

and similarly define

Y (N) := H/Γ(N), Y1(N) := H/Γ1(N), Y0(N) := H/Γ0(N).

Following the same strategy we used for X(1), one can show that X(N), X0(N), X1(N)
are all compact Riemann surfaces (the only difference in the proof is that in general a
fundamental region may contain multiple cusps, we only had to consider the cusp ∞).
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