18.783 Elliptic Curves Fall 2025
Lecture #16 10/30/2025

16 Complex multiplication

Over the course of the last two lectures we established a one-to-one correspondence between
lattices L C C (up to homothety) and elliptic curves E/C (up to isomorphism), given by
the map that sends each lattice L to the elliptic curve

Er:y? =42® — g2(L)x — g3(L),
together with an explicit isomorphism
¢: C/L — EL(C)
{<p<z>, 9(2) =¢L;
0

z €L,

Z =

where p(z) is the Weierstrass p-function for the lattice L.

To complete our understanding of the categorical equivalence of complex tori and elliptic
curves, we want to relate morphisms of complex tori to isogenies of elliptic curves. In
particular, we want to be able to explicitly understand how to relate the endomorphism ring
of a complex torus to the endomorphism ring of the corresponding elliptic curve.

A complex torus C/L is both a complex manifold and a group in which the group oper-
ations are defined by holomorphic maps (this makes it a complex Lie group). A morphism
in the category of complex tori must respect both structures: we require morphisms of com-
plex tori to be holomorphic maps that are also group homomorphisms (just as isogenies are
morphisms of algebraic varieties that are also homomorphisms of abelian groups).

16.1 Morphisms of complex tori

We have not formally defined what it means to be a holomorphic map of complex manifolds
(or even a complex manifold), but for maps ¢: C/L; — C/Ls of complex tori it simply
means that ¢ is induced by a holomorphic function f: C — C that makes the following
diagram commute:

c—1 ¢

I s

(C/Ll —w% (C/Lz

where 7 and 7y are quotient maps.!

Each a € C determines a holomorphic multiplication-by-ac map z +— «az that is an
endomorphism of C (as a group under addition). Whenever aL; C Lo this induces a group
homomorphism

Lo+ (C/Ll — C/LQ
z+ L1~ az+ Ly
that is also a holomorphic map of complex manifolds.
Remarkably, every morphism of complex tori arises in this way. In fact, every holomor-

phic map that fixes zero arises in this way; this is analogous to the fact that every morphism
of elliptic curves that fixes zero is automatically a group homomorphism.

"We should note that in general holomorphic maps of complex manifolds are defined locally on charts
and need not be induced by a single global map; complex tori are a particularly simple special case.
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Theorem 16.1. Let p: C/Ly — C/Ly be a holomorphic map with ¢(0) = 0. There is a
unique o € C for which ¢ = g

Proof. Let m;: C — C/L; be quotient maps and let f: C — C be a holomorphic function
for which p(m1(2)) = m2(f(z)). For all z € C and w € L; we have

m(f(z +w)) = p(m(z +w)) = p(m(2)) = ma(f(2)),

thus f(2+w)— f(z) € kermgy = Ly. For each w € L; the function g, (z) := f(z+w)— f(z) is

a continuous map from the connected set C to a discrete set Ls; its image must be connected

and therefore consists of a single point. It follows that g,,(2) is constant and g/,(z) = 0, which

implies that f'(z +w) = f/(z) for all z € C and w € L;. Thus f/(z) is periodic with respect

to L; and is therefore a holomorphic elliptic function, hence constant (see Remark 14.10).
Thus f(z) = az + S, for some «, 5 € C. For all w € L1 we have

ma(f(w)) = ¢(m(w)) = ¢(0) = 0.

Taking w = 0 shows that 8 = f(0) € Lo, and we then have aLy C Lo. For all z € C we
have p(71(2)) = m2(f(2)) = m2(az), thus ¢ = ¢,. The value of a is unique: if ¢ = ¢, for
some v € C then (o — )z € Ly for all z € C, which implies o — v = ((a — 7)z) = 0 (as
argued above), and therefore v = a. O

As noted above, a morphism ¢: C/L; — C/Ly of complex tori is a holomorphic map
that is also a group homomorphism; in particular, ¢(0) = 0, so Theorem 16.1 applies and
we have the following corollary.

Corollary 16.2. For any two lattices L1, Ly C C the map
{a eC:alq C Lg} — {morphismsgo: C/Ly — (C/LQ}
Q= Qo
is an isomorphism of additive groups. If L1 = Lo it is an isomorphism of commutative rings.

The set {& € C: aL; C Lo} on the LHS contains 0 and is closed under addition and
negation and is thus an additive subgroup of C, and if L; = Lo it is also closed under
multiplication and forms a subring of C. The set of morphisms on the RHS, which we could
have written as Hom(C/Ly,C/Ly), is an additive group under pointwise addition, and when
Ly = Ly it is the endomorphism ring End(C/L;) with multiplication given by composition.

Proof. Theorem 16.1 gives us a bijection of sets; we just need to check that it is a group/ring
homomorphism. For i = 1,2, let m;: C — C/L; be the projection maps as above. If
ali C Ly and SL1 C Lo then for all z € C we have
Parp(m1(2)) = ma((a+P)z) = m(az)+m2(B2) = va(mi(2)) +ep(m1(2)) = (Patep)(Ti(2)),
thus the map a — ¢, defines a homomorphism of additive groups. If L1 = Lo and we put
7T = m = 9 then we also have
pap(m(2)) = m(afz) = pa(m(B2)) = palps(n(2))) = (Papp)(m(2)),

which shows that oo — ¢, is a ring homomorphism. O

We will henceforth identify Hom(C/L;,C/Ly) with {a € C: aL; C Lo} and ¢, with
«; we thus view any « for which oy C Lo both as a complex number and a morphism

C/Ly — C/Ly. We will also freely use z € C to denote its image under the quotient map
m1: C — C/L; and use az to denote o (m1(2)) = ma(az) whenever the context is clear.
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16.2 Morphisms of complex tori and isogenies of elliptic curves over C

Let Lq,Ls C C be lattices. In order to complete the proof that complex tori and el-
liptic curves over C are equivalent categories, we need to give an explicit isomorphism
Hom(C/L,,C/L2) ~ Hom(Ep,, Er,). To do this we need to first prove a lemma about
fields of elliptic functions.

Recall that the set of all elliptic functions for a given lattice L forms a field C(L) that
includes the constant functions C C C(L). We now show that the extension C(L)/C is
generated by the Weierstrass p-function and its derivative, and the subfield C(L)®v*" of
even functions (the f € C(L) for which f(—z) = f(2)) is generated by the p-function alone.

Lemma 16.3. Let L C C be a lattice. The following hold:
(i) C(L) = C(p,¢);
(il) C(L)*** = C(p);

(iii) of f € C(L)*™ is holomorphic on C — L then f € Clp].

Proof. Every f € C(L) can be written as the sum of an even function and an odd function:

@)+ =2) | ) - f=2)

fz) = HEL 5

Any odd function g € C(L) can be written as

9(2)
g(z) - p/(z)p (Z)a
where ¢g(z)/¢'(2) is an even function; thus (i) follows from (ii).

We now show that (ii) follows from (iii). Let f € C(L)®V*" and let m be the number of
poles of f that lie in Fy — {0}, where Fj is the standard fundamental parallelogram for L.
The integer m is nonnegative and bounded by the order of f. If m > 0 then f(z) has a pole
at some nonzero w € Fy, say of order n. Now consider the even elliptic function

9(2) = (p(2) = p(w))",

which is holomorphic on C — L and has a zero of order at least n at w. The function
gf € C(L)®V* is holomorphic at w, and every pole of gf in C — L must be a pole of f,
so it has strictly fewer than m poles in Fy — {0}. Repeating this process m times yields a
polynomial @ € C[z] such that Q(p)f € C(L)*V" is holomorphic on C — L; If we assume
(iii), then Q(p)f = P(p) for some P € C[z] and f = P(p)/Q(p) € C(p), implying (ii).

We now prove (iii). Let f € C(L)®*" be nonzero and holomorphic on C — L. If the
order of f is zero then f is constant (by Liouville’s theorem, since an elliptic function is
necessarily bounded). Otherwise f must have a pole at 0 and its Laurent series expansion
at 0 has the form

with a_s, # 0, where 2n is order of f (which must be even). The function

f(2) = a_onp"(2)

is an even elliptic function holomorphic on C — L of order at most 2(n — 1). Repeating this
at most n times yields a polynomial P € C|x] such that f — P(p) € C, and (iii) follows. O
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Theorem 16.4. For i = 1,2 let L; C C be a lattice, let E; := Er, be the corresponding
elliptic curve, define p;(z) := p(z; L;), and let ®;: C/L; — E;(C) be the isomorphism that
sends z & L; to (goi(z), p;(z)) and z € L; to 0. For any o € C*, the following are equivalent:

(1) aL; C Ly;

(2) p2(az) =u(p1(2))/v(p1(2)) for some polynomials u,v € Clz];
(3) There is a unique ¢ € Hom(E1, Eg) such that the following diagram commutes:

C— C/Ll — & — El((C)

@ ¢Ot
l

C———C/Ly —®:— E»(C)

For every morphism ¢ € Hom(E1, Ey) there is a unique o = vy satisfying (1)—(3). The maps
¢ = ag and o — @, define inverse isomorphisms of Hom(E1, E2) and {a € C: aly C La}.

Proof. (1) = (2): Let w € L;. We have po(a(z + w)) = pa(az + aw) = pa(az). Thus
p2(az) is periodic with respect to Lj, and it is meromorphic, so it is an elliptic function
for Ly. It is an even function, so it is a rational function u(pi(z))/v(p1(z)) of pi(z), by
Lemma 16.3.

(2) = (3): Let pa(az) = u(p1(2))/v(p1(2)), let s := (v'v—v'u) and t := av?, and define

Then

p’2<az>=;(m<az>)’=;(“ ) ) D),

and we have

Da(P1(2)) = dalp1(2), 01 (2)) = (u(pl(z)) s(p1(2))

/

) &
v(pr(2)) (=)
so the diagram in (3) commutes. If ¢ € Hom(E, F2) also satisfies ¢(®1(z)) = P2(az) then

(¢ — 0a)(P1(2)) = d(P1(2)) — Pa(P1(2)) = P2(az) — P2(az) =0,

and ¢ = ¢q; thus ¢, is the only element of Hom(F1, E2) that makes the diagram commute.

(3) = (1): For all w € L1 we have ®2(aw) = ¢ (P1(w)) = ¢a(0) = 0, which implies
aw € Lo, thus alq C L.

For any ¢ € Hom(FE1, E3), the map <I>51 o ¢ o Py is an element of Hom(C/Ly,C/Ly) and
is therefore induced by the multiplication-by-o map z — az for a unique o = a4 satisfying
aly C La, by Corollary 16.2. The maps a + ¢, and ¢ — oy are thus inverse bijections.

We now show that the map U: Hom(E1, E2) = {a € C: aly C Lo} defined by ¢ — oy
is a group homomorphism. We have ¥(0) = 0, and for all ¢1, ¢2 € Hom(E, Es)

<z>) = (p2(az), h(az)) = Ds(a),

U(p1+ o) = Byl o(p1+ o) o®; = Dy 01 o®) + Dy ogoo®y = U(gr) + V(o).

Thus ¥ is a group homomorphism and therefore an isomorphism, since it is a bijection. [
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16.3 Endomorphism rings of complex tori and elliptic curves over C

We now specialize to the case L = Lo = L;, and put ¥ = FEp, in which case the group
{a €C: aL C L} ~Hom(F, F) =End(F) is also a ring.

Corollary 16.5. Let L C C be a lattice and let E := Ey. The maps o+ ¢o and ¢ — oy
are inverse ring isomorphisms between {o € C : «L C L} and End(FE), the involution ¢ — b
of End(E) corresponds to complex conjugation o — & in {o € C : oL C L}, and we have
T(a) := a4+ a =tro, and N(«) := aa = deg ¢ = degu = degv + 1, where u,v € Clz] are
as in (2) of Theorem 16.4.

Proof. Let ®: C/L — E(C) and ¥: End(F) — {a € C: oL C L} be as in Theorem 16.4
and its proof (so ¥(¢) = ay); they are both group isomorphisms. For ¢, ¢2 € End(E) we
have

U(prgo) = P lo(proge)o® = (D Lopo®)o (P opyod) = U(hy)T (o),

thus W is a ring homomorphism and therefore a ring isomorphism, since it is a bijection.
For any ¢ € End(E), the complex number « := ay satisfies the characteristic equation

2? — (tr¢)z + deg ¢ = 0,

which has integer coefficients and discriminant tr(¢)? — 4 deg(¢) < 0. Thus a € Z, or « is an
algebraic integer in an imaginary quadratic field, and in either case its complex conjugate &
satisfies the same quadratic equation and we have @a = deg¢ = ¢3¢>, which implies a = qAS
({a € C: aL C L} ~ End(F) has no zero divisors, so the cancellation law applies), and we
have T(a) =a+a = ¢+ ¢ =tré and N(a) = aa = od = deg ¢.

Finally, for any o € {a € C : L C L} we can apply (2) in Theorem 16.4 to write
v(p(2))p(az) = u(p(z)) for some u,v € C[z]. The functions u(p(z)) and v(p(z)) have poles
of order 2degu and 2degv at 0, respectively, while p(«az) has a pole of order 2 at 0, so we
must have degu = degv + 1 and

deg ¢ = max(degu,degv) = degu = degv + 1,

where ¢ = ¢ := (Z%B’ i((;cgy> is as in the proof of Theorem 16.4. O

Remark 16.6. Theorem 16.4 and Corollary 16.5 explain the origin of the term complex
multiplication (CM). When End(FE}) is bigger than Z the extra endomorphisms in End(Ey)
all correspond to multiplication-by-a maps in End(C/L), for some o« € C — R that is an
algebraic integer in an imaginary quadratic field.

Corollary 16.7. Let E be an elliptic curve defined over C. Then End(E) is commutative
and therefore isomorphic to either Z or an order in an imaginary quadratic field.

Proof. Let L be the lattice corresponding to E. The ring End(F) ~ {a € C: oL C L} is
clearly commutative, and therefore not an order in a quaternion algebra. The result then
follows from our classification of endomorphism rings of elliptic curves in Lecture 12, see
Theorem 12.17 and Corollary 12.20. O

Remark 16.8. Corollary 16.7 applies to elliptic curves over QQ, number fields, or any field
that can be embedded in C. It can be extended to all fields of characteristic 0 via the
Lefschetz principle; see [1, Thm. VI.6.1].
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16.4 Elliptic curves with a given endomorphism ring

We have shown that for any lattice L C C we have ring isomorphisms
End(Er) ~{ae€C:aL C L} ~End(C/L). (1)

As noted above, we have been treating the isomorphism on the left as an equality, and it
will be convenient to do the same for the isomorphism on the right. The endomorphism
algebra End®(E;) is isomorphic to either Q or an imaginary quadratic field, so we can
always embed End’(Ey) in C. Once we have done this, provided that we regard End(EL) as
a subring of End®(Ey) (via the canonical injection ¢ — ¢® 1), we actually have an equality
End(Er) = {a € C : oL C L}; moreover, when End(C/L) is an imaginary quadratic
order @, we can choose the embedding of End” (E'r) into C so that each multiplication-by-«
endomorphism of C/L is identified with ¢, € End(EL) (as opposed to ¢4). This is known as
the normalized identification of End(EL) with End(C/L) = O, which we henceforth assume.

We now want to focus on the CM case, where End(E},) is an order O in an imaginary
quadratic field K. The order O is a lattice, and we would like to understand how the lattices
L and O are related. In particular, for which lattices L do we have End(Er) = O?

An obvious candidate is L = O. If a € End(Ep), then aO C O and therefore a € O,
since the ring O contains 1. Conversely, if a € O, then aO C O, since O is closed under
multiplication, and therefore a € End(Ep); thus End(Ep) = O.

The same holds for any lattice homothetic to O. Indeed, the set {a € C: aL C L} does
not change if we replace L with L' = AL for any A € C*, so we are really only interested in
lattices up to homothety (and elliptic curves up to isomorphism). The question now before
us is this: are there any lattices L not homothetic to O for which we have End(Er) = O7

Given that we are only considering lattices up to homothety, we may assume without

loss of generality that L = [1,7], and we can always write O = [1,w] for some imaginary
quadratic integer w. If End(EL) = O, then we must have w-1 =w € L, so w = m + nr,
for some m,n € Z with n # 0. Thus nL = [n,n7] = [n,w — m] C [1,w] = O, which means

that L is homothetic to a sublattice of O. This sublattice must be closed under multiplication
by O, which implies that L is homothetic to an O-ideal (recall that an O-ideal is an additive
subgroup of O closed under multiplication by O, equivalently, any O-submodule of O).

But the situation is a bit more complicated than it appears. While every lattice L for
which End(Er) = O is an O-ideal, the converse does not hold (unless O is the maximal
order Ok). If we start with an arbitrary O-ideal L, it is clear that the set

OL):={aeC:aLCL}={a€eK:aLCL}

is an order in K: note that O C O(L) = End(FE}), since the O-ideal L is closed under
multiplication by O, and this implies that End’(Er) = K. But it is not necessarily true
that O(L) is equal to O; if O # Ok we can always find an O-ideal L for which O(L) strictly
contains O (see Problem Set 9). This motivates the following definition.

Definition 16.9. Let O be an order in an imaginary quadratic field K, and let L be an
O-ideal. We say that L is a proper O-ideal if O(L) = O.

Given that we are only interested in lattices up to homothety, we shall regard two O-
ideals as equivalent if they are homothetic as lattices. A homothety L' = AL between lattices
that are O-ideals can always be written with A = o/ for some «, 8 € O. To see this, note
that if L = [wq, ws] then we can take & = Awy € O and = wy. Thus homothetic O-ideals L
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and L’ always satisfy an equation L = L’ for some «a, 3 € O. This motivates the following
definition.

Definition 16.10. Let O be an order in an imaginary quadratic field K. Two O-ideals a
and b are said to be equivalent if they are homothetic as lattices; equivalently, ca = Sb for
some nonzero «, 5 € O; we can also write this as (a)a = ()b, where (a) and () denote
principal ideals and (a)a and (5)b are products of ideals.

Recall that the product of two O-ideals a and b is the ideal generated by all products
ab with @ € a and b € b, and that ideal multiplication is commutative and associative. It is
enough to consider products of generators, so if a = [aj, as] and b = [by, be], then ab is the
ideal generated by the four elements a1b1, a1b2, asbi, asbs. Since ab is an additive subgroup
of O, it is necessarily a free Z-module of rank 2 and can be written as a lattice [c1, c2], where
c1 and ¢y are O-linear combinations of a1b1, a1bs, asby, asbs. Note that ideal multiplication
respects equivalence:

aa=pband y¢c =00 = avyac= [Ibd.

Definition 16.11. Let O be an order in an imaginary quadratic field. The ideal class group
cl(O) is the multiplicative group of equivalence classes of proper O-ideals.

We should note that it is not clear a priori that cl(O) is actually a group; it is clearly
closed under an associative multiplication and contains an identity element (the class of
principal ideals), but it is not obvious that every element has an inverse. We will give an
explicit proof of this in the next lecture (see Problem Set 9 for an alternative proof that also
shows that cl(Q) is finite). But even without knowing that cl(Q) is actually a group, our
discussion above makes the following theorem clear.

Theorem 16.12. Let O be an order in an imaginary quadratic field. There is a one-to-one
correspondence between elements of the ideal class group cl(Q) and homothety classes of
lattices L C C for which End(E}) ~ O.
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